Object structure
Title:

Stability of higher-level energy norms of strong solutions to a wave equation with localized nonlinear damping and a nonlinear source term

Subtitle:

Raport Badawczy = Research Report ; RB/93/2007

Creator:

Lasiecka, Irena ; Toundykov, Daniel

Publisher:

Instytut Badań Systemowych. Polska Akademia Nauk ; Systems Research Institute. Polish Academy of Sciences

Place of publishing:

Warszawa

Date issued/created:

2007

Description:

30 stron ; 21 cm ; Bibliografia s. 29-30

Abstract:

We derive global in time a priori bounds on higher-level energy norms of strong solutions to a semilinear wave equation: in particular, we prove that despite the influence of a nonlinear source, the evolution of a smooth initial state is globally bounded in the strong topology ∼ H2 × H1. And the bound is uniform with respect to the corresponding norm of the initial data. It is known that an m-accretive semigroup generator monotonically propagates smoothness of the initial condition; however, this result does not hold in general for Lipschitz perturbations of monotone systems where higher order Sobolev norms of the solution may blowup asymptotically as t → ∞. Due to nonlinearity of the system, the only a priori global-in-time bound that follows from classical methods is that on finite energy: ∼ H1 × L2. We show that under some correlation between growth rates of the damping and the source, the norms of topological order above the finite energy level remain globally bounded. Moreover, we also establish this result when damping exhibits sublinear or superlinear growth at the origin, or at infinity, which has immediate applications to asymptotic estimates on the decay rates of the finite energy. The approach presented in the paper is not specific to the wave equation, and can be extended to other hyperbolic systems: e.g. plate, Maxwell, and Schrödinger equations.

Relation:

Raport Badawczy = Research Report

Resource type:

Tekst

Detailed Resource Type:

Raport

Source:

RB-2007-93

Language:

eng

Language of abstract:

eng

Rights:

Licencja Creative Commons Uznanie autorstwa 4.0

Terms of use:

Zasób chroniony prawem autorskim. [CC BY 4.0 Międzynarodowe] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 4.0, której pełne postanowienia dostępne są pod adresem: ; -

Digitizing institution:

Instytut Badań Systemowych Polskiej Akademii Nauk

Original in:

Biblioteka Instytutu Badań Systemowych PAN

Projects co-financed by:

Program Operacyjny Polska Cyfrowa, lata 2014-2020, Działanie 2.3 : Cyfrowa dostępność i użyteczność sektora publicznego; środki z Europejskiego Funduszu Rozwoju Regionalnego oraz współfinansowania krajowego z budżetu państwa

Access:

Otwarty

×

Citation

Citation style: