Metadata language
Geographia Polonica Vol. 94 No. 3 (2021)
Creator:Śleszyński, Przemysław : Autor (kartografia)
Publisher: Place of publishing: Date issued/created: Description: Subject and Keywords:pandemia ; COVID-19 ; SARS-Co-V-2 ; geografia medyczna ; geoepidemiologia ; dyfuzja przestrzenna ; lockdown ; Polska
Abstract:The article is a continuation of research published by the author elsewhere (Śleszyński, 2020). The elaboration presents the regularity of spatial distribution of infections during the first six months after the detection of SARS-CoV-2 coronovirus in Poland under strong lockdown conditions. The main aim is to try to determine the basic temporal-spatial patterns and to answer the questions: to what extent the phenomenon was ordered and to what extent it was chaotic, whether there are any particular features of spread, whether the infection is concentrated or dispersed and whether the spreading factors in Poland are similar to those observed in other countries. Day by day data were used according to the counties collected in Rogalski’s team (2020). The data were aggregated to weekly periods (7 days) and then the regularity of spatial distribution was searched for using the cartogram method, time series shifts, rope correlation between the intensity of infections in different periods, Herfindahl-Hirschman concentration index (HHI) and cluster analysis. A spatial typology of infection development in the population was also performed. Among other things, it was shown that during the first period (about 100 days after the first case), the infections became more and more spatially concentrated and then dispersed. Differences were also shown in relation to the spread of the infection compared to observations from other countries, i.e. no relation to population density and level of urbanization.
References:
Aloi, A., Alonso, B., Benavente, J., Cordera, R., Echániz, E., González, F., Ladisa, C., Lezama-Romanelli, R., López-Parra, Á., Mazzei, V., Perrucci, L., Prieto-Quintana, D., Rodríguez, A., Sañudo, R. (2020). Effects of the COVID-19 lockdown on urban mobility: Empirical evidence from the city of Santander (Spain). Sustainability, 12(9), 3870. https://doi.org/10.3390/su12093870
Amin, H.N.M. (2020). Climate analysis to predict potential spread and seasonality for global (COVID-19) in Iraqi Kurdistan region. Kurdistan Journal of Applied Research, 5(3), 72-83. http://doi.org/10.24017/kjar
Ascani, A., Faggian, A., Montresor, S. (2020). The geography of COVID-19 and the structure of local economies: The case of Italy. Discussion Paper Series in Regional Science & Economic Geography, Discussion paper No. 2020-01, April 2020, L'Aquila: Gran Sasso Science Institute. https://ideas.repec.org/p/ahy/wpaper/wp1.html [26.09.2020]
Askitas, N., Tatsiramos, K., Verheyden, B. (2020). Lockdown strategies, mobility patterns and COVID-19. CESifo Working Paper, 8338. https://ssrn.com/abstract=3619687
Badr, H.S., Du, H., Marshall, M., Dong, E., Squire, M.M., Gardner, L.M. (2020). Association between mobility patterns and COVID-19 transmission in the USA: A mathematical modelling study. Lancet Infection Disease, 20(11), 1247-1254. https://doi.org/10.1016/S1473-3099(20)30553-3
Bashir, M.F., Ma, B., Bilal, Komal., B., Bashir., M.A., Tan, D., Bashir, M. (2020). Correlation between climate indicators and COVID-19 pandemic in New York, USA. Science of The Total Environment, 728, 138835. https://doi.org/10.1016/j.scitotenv.2020.138835
Bassett, M.T., Chen, J.T., Krieger, N. (2020). Variation in racial/ethnic disparities in COVID-19 mortality by age in the United States: A cross-sectional study. PLoS Med, 17(10), e1003402. https://doi:10.1371/journal.pmed.1003402
Bonaccorsi, G., Pierri, F., Cinelli, M., Flori, A., Galeazzi, A., Porcelli, F., Flori, A., Schmidt, A.L., Valensise, C.M., Scala, A., Quattrociocchi, W., Pammolli, F. (2020). Economic and social consequences of human mobility restrictions under COVID-19 (April 11, 2020). Proceedings of the National Academy of Sciences, 117(27), 15530-15535. https://doi.org/10.1073/pnas.2007658117
Callaway, E., Ledford, H., Viglione, G., Watson, T., Witze, A. (2020). COVID and 2020: An extraordinary year for science. Nature Brieffing, 14.12.2020. https://www.nature.com/immersive/d41586-020-03437-4/index.html
Carozzi, F. (2020). Urban density and COVID-19. IZA Discussion Paper, 13440. https://doi.org/10.1016/j.healthplace.2020.102378
Cheng, K.J.G., Sun, Y., Monnat, S.M. (2020). COVID-19 Death rates are higher in rural counties with larger shares of Blacks and Hispanics. Journal of Rural Health, 36(4), 602-608. https://doi.org/10.1111/jrh.12511
Ciechański, A. (2020). Non-urban public bus transport against the COVID-19 pandemic - evidence from the Low Beskids and the Bieszczady counties. Prace Komisji Geografii Komunikacji PTG, 23(2), 28-34. https://doi.org/10.4467/2543859XPKG.20.004.12102
Cliff, A.D., Haggett, P. (1989). Spatial aspects of epidemic control. Progress in Human Geography, 13(3), 315-347. https://doi.org/10.1177/030913258901300301
Cordes, J., Castro, M.C. (2020). Spatial analysis of COVID-19 clusters and contextual factors in New York City. Spatial Spatiotemporal Epidemiology, 34, 100355. https://doi.org/10.1016/j.sste.2020.100355
Danon, L., Brooks-Pollock, E., Bailey, M., Keeling, M.J. (2020). A spatial model of CoVID-19 transmission in England and Wales: Early spread and peak timing. MedRxiv. http://doi:10.1101/2020.02.12.20022566
Darch, S.E, Simoska, O., Fitzpatrick, M., Barraza, J.P., Stevenson, K.J., Bonnecaze, R.T., Shear, J.B., Whiteley, M. (2018). Spatial determinants of quorum signaling in a Pseudomonas aeruginosa infection model. Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4779-4784. https://doi.org/10.1073/pnas.1719317115
Du, Z., Javan, E., Nugent, C., Cowling, B.J. Meyers, L.A. (2020). Using the COVID-19 to influenza ratio to estimate early pandemic spread in Wuhan, China and Seattle. EClinicalMedicine, 100479. https://doi.org/10.1016/j.eclinm.2020.100479
Duszyński, J., Afelt, A., Ochab-Marcinek, A., Owczuk, R., Pyrć, K., Rosińska, M., Rychard, A., Smiatacz, T. (2020). Zrozumieć COVID-19. Opracowanie Zespołu ds. COVID-19 przy Prezesie Polskiej Akademii Nauk, Warszawa: PAN.
Else, H. (2020). How a torrent of COVID science changed research publishing - in seven charts. Nature, 553. https://doi.org/10.1038/d41586-020-03564-y
Ficetola, G.F., Rubolini, D. (2020). Climate affects global patterns of COVID-19 early outbreak dynamics. MedRxiv, preprint. https://doi.org/10.1101/2020.03.23.20040501
Fitriani, R., Jaya, I.G.N.M. (2020). Spatial modeling of confirmed COVID-19 pandemic in East Java province by geographically weighted negative binomial regression. Communications in Mathematical Biology and Neuroscience, ID58. https://doi.org/10.28919/cmbn/4874
Flaxman, S., Mishra, S., Gandy, A., Unwin, H.J.T., Mellan, T.A., Coupland, H., Whittaker, Ch., Zhu, H., Berah, T., Eaton, J.W., Monod, M., Imperial College COVID-19 Response Team, Ghani, A.C., Donnelly, C.A., Riley, S., Vollmer, M.A.C., Ferguson, N.M., Okell, L.C., Bhatt, S. (2020). Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature, 584(7820), 257-261. https://doi.org/10.1038/s41586-020-2405-7
Florida, R., Mellander, Ch. (2020). The geography of COVID-19 in Sweden. CESIS Electronic Working Paper Series, Stockholm: The Royal Institute of Technology, Centre of Excellence for Science and Innovation Studies (CESIS). https://ideas.repec.org/p/hhs/cesisp/0487.html
Franch-Pardo, I., Napoletano, B.M., Rosete-Verges, F., Billa, L. (2020). Spatial analysis and GIS in the study of COVID-19. A review. Science of The Total Environment, 140033. https://doi.org/10.1016/j.scitotenv.2020.140033
Hamidi, S., Ewing, R., Sabouri, S. (2020). Longitudinal analyses of the relationship between development density and the COVID-19 morbidity and mortality rates: Early evidence from 1165 metropolitan counties in the United States. Health & Place, 64, 102378. https://doi:10.1016/j.healthplace.2020.102378
Jarynowski, A., Wójta-Kempa, M., Płatek, D., Krzowski, Ł., Belik, V. (2020). Spatial diversity of COVID-19 cases in Poland explained by mobility patterns: Preliminary results. SSRN, Elsevier. https://doi.org/10.2139/ssrn.3621152
Jia, J.S., Lu, X., Yuan, Y., Xu, G., Jia, J., Christakis, N.A. (2020). Population flow drives spatio-temporal distribution of COVID-19 in China. Nature, 582, 389-394. http://doi.org/10.1038/s41586-020-2284-y
Khanh, N.C., Thai, P.Q., Quach, H.-L., Thi, N.A.-H., Dinh, P.C., Duong, T.N., Mai, L.T.Q., Nghia, N.D., Tu, T.A., Quang, L.N., Quang, T.D., Nguyen, T.-T. Vogt, F., Anh, D.D. (2020). Transmission of severe acute respiratory syndrome coronavirus 2 during long flight. Emerging Infectious Disease, 26(11), 2617-2624. https://doi.org/10.3201/eid2611.203299
Khose, S., Moore, J.X., Wang, H.E. (2020). Epidemiology of the 2020 Pandemic of COVID-19 in the State of Texas: The first month of community spread. Journal of Community Health, 45(4), 696-701. https://doi.org/10.1007/s10900-020-00854-4
Krzysztofik, R., Kantor-Pietraga, I., Spórna, T. (2020). Spatial and functional dimensions of the COVID-19 epidemic in Poland. Eurasian Geography and Economics, 61(4-5), 573-586. https://doi:10.1080/15387216.2020.1783337
Levin, P.J., Gebbie, E.N., Qureshi, K. (2007). Can the health-care system meet the challenge of pandemic flu? Planning, ethical, and workforce considerations. Public Health Reports, 122(5), 573-578. https://doi.org/10.1177/003335490712200503
Liu, Q., Sha, D., Liu, W., Houser, P., Zhang, L., Hou, R., Lan, H., Flynn, C., Lu, M., Hu, T., Yang, C. (2020). Spatiotemporal Patterns of COVID-19 Impact on Human Activities and Environment in Mainland China Using Nighttime Light and Air Quality Data. Remote Sensing, 12, 1576. https://doi.org/10.3390/rs12101576
Łoboda, J. (1983). Rozwój koncepcji i modeli przestrzennej dyfuzji innowacji. Acta Universitatis Wratislaviensis, 585, Studia Geograficzne, 57, Wrocław: Wydawnictwo Uniwersytetu Wrocławskiego.
Mangili, A., Gendreau, M.A. (2020). Transmission of infectious diseases during commercial air travel. Lancet, 365(9463), 989-996. https://doi.org/10.1016%2FS0140-6736(05)71089-8
Meade, M.S. (2014). Medical Geography, The Wiley Blackwell Encyclopedia of Health, Illness, Behavior, and Society, https://doi.org/10.1002/9781118410868.wbehibs204
Méndez-Arriaga, F. (2020). The temperature and regional climate effects on communitarian COVID-19 contagion in Mexico throughout phase 1. Science of The Total Environment, 735, 139560. https://doi.org/10.1016/j.scitotenv.2020.139560
Mollalo, A., Vahedi, B., Rivera, K.M. (2020). GIS-based spatial modeling of COVID-19 incidence rate in the continental United States. Science of The Total Environment, 728, 138884. https://doi.org/10.1016/j.scitotenv.2020.138884
Moore, A., Hawarden, V. (2020). Discovery Digital Health strategy: COVID-19 accelerates online health care in South Africa. Emerald Emerging Markets Case Studies, 10(3), 1-18. https://doi.org/10.1108/EEMCS-06-2020-0197
Moore, J.X., Langston, M.E., George, V., Coughlin, S.S. (2020). Epidemiology of the 2020 pandemic of COVID-19 in the state of Georgia: Inadequate critical care resources and impact after 7 weeks of community spread. Journal of the American College of Emergency Physicians Open, 1(4), 527-532. https://doi:0.1002/emp2.12127
Morrill, R.L. (1968). Waves of spatial diffusion. Papers in Regional Sciences, 8(1), 1-18. https://doi.org/10.1111/j.1467-9787.1968.tb01281.x
Napierała, T., Leśniewska-Napierała, K., Burski, R. (2020). Impact of geographic distribution of COVID-19 cases on hotels' performances: Case of Polish cities. Sustainability, 12, 4697. https://doi.org/10.3390/su12114697
Ngwa, M.C., Young, A., Liang, S., Blackburn, J., Mouhaman, A., Morris, J.G. (2017). Cultural influences behind cholera transmission in the Far North Region, Republic of Cameroon: a field experience and implications for operational level planning of interventions. The Pan African Medical Journal, 28, 311. https://doi.org/10.11604/pamj.2017.28.311.13860
Nowak, J. (Ed.) (2021). Polityka przestrzenna w czasie kryzysu. Warszawa: Wydawnictwo Naukowe Scholar.
Pai, M. (2020). Covidization of research: What are the risks? Nature Medicine, 26, 1159. https://doi.org/10.1038/s41591-020-1015-0
Pan, D., Sze, S., Minhas, J.S., Bangash, M.N., Pareek, N., Divall, P., Williams, C.M., Oggioni, M.R., Squire, I.B., Nellums, L.B., Hanif, W., Khunti, K., Pareek, M. (2020). The impact of ethnicity on clinical outcomes in COVID-19: A systematic review. EClinicalMedicine, 23, 100404. https://doi:10.1016/j.eclinm.2020.100404
Panum, P.L. (1846). Measels in the Faroe Islands. Virchows Archiv für Pathologie und Medizin, 1, 492-512.
Paul, R., Arif, A.A., Adeyemi, O., Ghosh, S., Han, D. (2020). Progression of COVID-19 from urban to rural areas in the United States: A spatiotemporal analysis of prevalence rates. Journal of Rural Health, 36(4), 591-601. https://doi.org/10.1111/jrh.12486
Pequeno, P., Mendel, B., Rosa, C., Bosholn, M., Souza, J.L., Baccaro, F., Barbosa, R., Magnusson, W. (2020). Air transportation, population density and temperature predict the spread of COVID-19 in Brazil. PeerJ Life and Environment, 8, e9322. https://doi.org/10.7717/peerj.9322
Pijet-Migoń, E. (2020). Empty sky over the world - passenger air transport in the first weeks of the 2020 pandemic. Prace Komisji Geografii Komunikacji PTG, 23(2), 20-27. https://doi.org/10.4467/2543859XPKG.20.003.12101
Pullano, G., Valdano, E., Scarpa, N., Rubrichi, S., Colizza, V. (2020). Evaluating the effect of demographic factors, socioeconomic factors, and risk aversion on mobility during the COVID-19 epidemic in France under lockdown: A population-based study. The Lancet Digital Health, 2(12), e638-e649. https://doi.org/10.1016/S2589-7500(20)30243-0
Raciborski, F., Pinkas, J., Jankowski, M., Sierpiński, R., Zgliczyński, W.S., Szumowski, Ł., Rakocy, R., Wierzba, W., Gujski, M. (2020). Dynamics of COVID-19 outbreak in Poland: an epidemiological analysis of the first two months of the epidemic. Polish Archives of Internal Medicine. https://doi.org/10.20452/pamw.15430
Rahmani, S.E.A., Chibane, B., Hallouz, F., Benamar, N. (2020). Spatial distribution of COVID-19, a modeling approach: Case of Algeria. Research Square. https://doi.org/10.21203/rs.3.rs-40447/v1
Rogalski, M. (2020). Internetowa baza danych o zakażeniach COVID według województw i powiatów, aktualizowana codziennie. https://docs.google.com/spreadsheets/d/1ierEhD6gcq51HAm433knjnVwey4ZE5DCnu1bW7PRG3E/edit?usp=sharing [24.09.2020]
Rogalski, M., Dadel M., Sobkowska K., Rusinek B., Sikorski, M., Kowal M., Tarnowski, P., Supko, W., Dziedzic, T., Zespół BIQ Data Wyborcza. (2020). Dane o COVID-19 według powiatów. https://bit.ly/covid19_powiaty
Roser, M., Ritchie, H., Ortiz-Ospina, E. (2020). Coronavirus Disease (COVID-19) - Statistics and Research. https://www.sipotra.it/wp-content/uploads/2020/03/Coronavirus-Disease-COVID-19-%E2%80%93-Statistics-and-Research.pdf [26.09.2020]
Rosik, P., Duma, P., Goliszek, S., Komornicki, T. (2020). COVID-19 pandemic and international accessibility. In P. Śleszyński, K. Czapiewski (Eds.), Visehrad Atlas (pp. 213-217). Warsaw: Instytut Współpracy Polsko-Węgierskiej im. Wacława Felczaka, Polskie Towarzystwo Geograficzne.
Şahin, M. (2020). Impact of weather on COVID-19 pandemic in Turkey. Science of The Total Environment, 728, 138810. https://doi.org/10.1016/j.scitotenv.2020.138810
Sattenspiel, L., Lloyd, A. (2009). The geographic spread of infectious diseases: Models and applications. New York: Princeton University Press.
Sharifi, A., Khavarian-Garmsir, A.R. (2020). The COVID-19 pandemic: Impacts on cities and major lessons for urban planning, design, and management. Science of The Total Environment, 749, 142391. https://doi.org/10.1016/j.scitotenv.2020.142391
Skydsgaard, M.A. (2010). It's probably in the Air: Medical Meteorology in Denmark, 1810-1875. Medical History, 54(2), 215-236. https://doi.org/10.1017/s0025727300006724
Smolarski, M. (2020). Restrictions on regional passenger transport during epidemiological threat (COVID-19) - an example of the Lower Silesian Voivodship in Poland. Prace Komisji Geografii Komunikacji PTG, 23(2), 56-61. https://doi.org/10.4467/2543859XPKG.20.009.12107
Sun, F., Matthews, S.A., Yang, T-Ch., Hu, M.-H. (2020). A spatial analysis of COVID-19 period prevalence in US counties through June 28, 2020: Where geography matters? Annals of Epidemiology, 52, e1, 54-59, https://doi:10.1016/j.annepidem.2020.07.014
Sun, Z., Zhang, H., Yang, Y., Wan, H., Wang, Y. (2020). Impacts of geographic factors and population density on the COVID-19 spreading under the lockdown policies of China. Science of The Total Environment, 746, 141347. https://doi.org/10.1016/j.scitotenv.2020.141347
Śleszyński, P. (2013). Delimitacja Miejskich Obszarów Funkcjonalnych stolic województw. Przegląd Geograficzny, 85(2), 173-197. https://doi.org/10.7163/PrzG.2013.2.2
Śleszyński, P. (2020). Prawidłowości przebiegu dyfuzji przestrzennej rejestrowanych zakażeń koronawirusem SARS-CoV-2 w Polsce w pierwszych 100 dniach epidemii. Czasopismo Geograficzne, 89(1-2), 5-18.
Śleszyński, P., Nowak, M., Blaszke, M. (2020). Spatial policy in cities during the COVID-19 pandemic in Poland. TeMA Journal of Land Use, Mobility and Environment, 3, 427-444. https://doi.org/10.6092/1970-9870/7146
Taczanowski, J. (2020). The influence of COVID-19 on international and long-distance passenger rail transport. The cases of Italy and Poland - the first observations. Prace Komisji Geografii Komunikacji PTG, 23(2), 14-19. https://doi.org/10.4467/2543859XPKG.20.002.12100
Taczanowski, J., Kołoś, A. (2020). The influence of COVID-19 on regional railway services in Italy and Poland. Prace Komisji Geografii Komunikacji PTG, 23(2), 40-45. https://doi.org/10.4467/2543859XPKG.20.006.12104
Tammes, P. (2020). Social distancing, population density, and spread of COVID-19 in England: A longitudinal study. BJGP Open, 4(3), bjgpopen20X101116. https://doi.org/10.3399/bjgpopen20X101116
Tarkowski, M., Puzdrakiewicz, K., Jaczewska, J., Połom, M. (2020). COVID-19 lockdown in Poland - changes in regional and local mobility patterns based on Google Maps data. Prace Komisji Geografii Komunikacji PTG, 23(2), 46-55. https://doi.org/10.4467/2543859XPKG.20.007.12105
Thompson, R.N. Hollingsworth, T.D., Isham, V., Arribas-Bel, D., Ashby, B., Britton, T., Challenor, P., Chappell, L.H.K., Clapham, H., Cunniffe, N.J., Dawid, A.P., Donnelly, C.A., Eggo, R.M., Funk, S., Gilbert, N., Glendinning, P., Gog, J.R., Hart, W.S., Heesterbeek, H., House, T., Keeling, M., Kiss, I.Z., Kretzschmar, M.E., Lloyd, A.L., McBryde, E.S., McCaw, J.M., McKinley, T.J., Miller, J.C., Morris, M., O'Neill, P.D., Parag, K.V., Pearson, C.A.B., Pellis, L., Pulliam, J.R.C., Ross, J.V., Tomba, G.S., Silverman, B.W., Struchiner, C.J., Tildesley, M.J., Trapman, P., Webb, C.R., Mollison, D., Restif, O. (2020). Key questions for modelling COVID-19 exit strategies. Proceedings of the Royal Society B. Biological Sciences, 287(1932), 20201405. https://doi.org/10.1098/rspb.2020.1405
Traoré, A., Konané, F.V. (2020). Modeling the effects of contact tracing on COVID-19 transmission. Advances in Difference Equations, 509. https://doi.org/10.1186/s13662-020-02972-8
Vokó, Z., Pitter, J.G. (2020). The effect of social distance measures on COVID-19 epidemics in Europe: An interrupted time series analysis. GeroScience, 42, 1075-1082. https://doi.org/10.1007/s11357-020-00205-0
WHO. (2020). Coronavirus disease (COVID-19), weekly report. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200921-weekly-epi-update-6.pdf?sfvrsn=d9cf9496_6 [26.09.2020]
Wilson, M.E. (2010). Geography of infectious diseases. Infectious Diseases, 1055-1064. https://doi.org/10.1016/B978-0-323-04579-7.00101-5
Wiskulski, T. (2020). COVID-19 and tourism - the case of Poland. Prace Komisji Geografii Komunikacji PTG, 23(2), 35-39. https://doi.org/10.4467/2543859XPKG.20.005.12103
Wu, Y., Jing., W., Liu, J., Ma, Q., Yuan., J., Wang., Y., Du, M., Liu., M. (2020). Effects of temperature and humidity on the daily new cases and new deaths of COVID-19 in 166 countries. Science of The Total Environment, 729, 139051. https://doi.org/10.1016/j.scitotenv.2020.139051
Zhao, S., Chen, H. (2020). Modeling the epidemic dynamics and control of COVID-19 outbreak in China. Quantitative Biology, 8(1), 11-19. https://doi.org/10.1007/s40484-020-0199-0
0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0207
Source:CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link
Language: Language of abstract: Rights:Licencja Creative Commons Uznanie autorstwa 4.0
Terms of use:Zasób chroniony prawem autorskim. [CC BY 4.0 Międzynarodowe] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 4.0, której pełne postanowienia dostępne są pod adresem: ; -
Digitizing institution:Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk
Original in: Projects co-financed by: Access: