Object structure
Title:

The relationships between different forms of iron and aluminium in soils as indicators of soil-cover development on India’s Cherrapunji Spur (Meghalaya Plateau)

Subtitle:

Geographia Polonica Vol.84 No.1 (2011)

Creator:

Degórski, Marek

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2011

Description:

111 pp. ; 24 cm

Type of object:

Journal/Article

Subject and Keywords:

forms of iron and aluminium ; leaching and podolization of soil ; Cherrapunji spur, India

References:

1. Alexsandrova, L.N., (1960), Use of sodium pyrophosphate for the extraction of free humic substances and their organomineral compounds from soil, Pochvovedeniye, 2: 90-97.
2. Arduino, E., Barberis, E., Ajmone-Marsan, E, Zanini, E., Franchini, M. (1986), Iron oxide and clay minerals within profiles as indicators of soil age in northern Italy, Geoderma, 37: 45-55.
http://dx.doi.org/10.1016/0016-7061(86)90042-X -
3. Bednarek, R. (1991), Wiek, geneza i stanowisko systematyczne gleb rdzawych w świetle badań paleopedologicznych w okolicach Osia, Bory Tucholskie [Age, genesis and systematic position of rusty soil on the basis of paleopedological study in Osie, Bory Tucholskie]. Rozprawy UMK, Toruń.
4. Bednarek, R., Pokojska U. (1996), Diagnostyczne znaczenie niektórych wskaźników chemicznych w badaniach paleopedologicznych [Diagnostic value of some chemical indices in paleopedological study]. Konferencja „Metody badań paleopedologicznych i wykorzystanie gleb kopalnych w paleopedologii". Łódź 26-28 June 1996, Komisja Paleopedologii Komitetu Badań Czwartorzędu PAN, Uniwersytet Łódzki, Łódź, 25-29.
5. Blume, H., Schwertmann, U. (1969), Genetic evaluation of profile distribution of aluminum, iron and manganese oxides. Soil Science Society of America Proceedings, 33: 438-444.
http://dx.doi.org/10.2136/sssaj1969.03615995003300030030x -
6. Borggard, O. (1976), Selective extraction of amorphous iron oxide by EDTA from the mixture of amorphous iron oxide, goethite, and hematite, Journal of Soil Science, 27: 478-486.
http://dx.doi.org/10.1111/j.1365-2389.1976.tb02017.x -
7. Budek, A., Prokop, P. (2005), Mikromorfologiczne cechy pokryw glebowych obszaru o najwyższych opadach na świecie - Cherrapunji, Wyżyna Meghalaya, Indie [Micromorphological features of soil in the region of highest precipitation in the world - Cherapunji, Meghalaya, India], Przegląd Geologiczny, 53, 4: 293-298.
8. Catt, J. (1988), Quaternary geology for scientist and engineers, John Wiley and Sons, New York-Chichester-Brisbane-Toronto.
9. Degórski, M. (2002), Przestrzenna zmienność właściwości gleb bielicoziemnych środkowej i północnej Europy a geograficzne zróżnicowanie czynników pedogenicznych [The spatial variability to the properties of podzolic soils in Central and Northern Europe and the geographical differentiation of pedogenic fac-tors]. Prace Geograficzne, 182, Instytut Geografii i Przestrzennego Zagospodarowania (IGiPZ), PAN.
10. Degórski, M. (2007), Spatial variability in podzolic soils of Central and Northern Europe, U.S. Environmental Protection Agency, Washington, D.C.
11. Farmer, V., Russell, J., Berrow, M. (1980), Imogolite and proto-imogolite allophane in spodic horizons evidence for a mobile aluminum silicate complex in podzol formation. Journal of Soil Science, 31: 673-684.
http://dx.doi.org/10.1111/j.1365-2389.1980.tb02113.x -
12. Farmer, V., Fraser, A. (1982), Chemical and colloidal stability of sols in the Al,0,-Fe,0,-Si0,-H,0 system: their role in podzolization. Journal of Soil Science, 33: 737-742.
http://dx.doi.org/10.1111/j.1365-2389.1982.tb01803.x -
13. Fridland, V. (1957), Podzolization and illmerization, Dokuchaev Soil Science Institute, Soviet Union, Doklady Akademii Nauk, 115: 1006-1009.
14. Giesler, R., Ilvesniemi H., Nyberg L., Hees P., Starr M., Bishop T., Kareinen T., Lundsr-trom U. (2000), Distribution and mobilization of Al., Fe and Si in three podzolic soil profiles in relation to the humus layer, Geoderma, 94: 249-263.
http://dx.doi.org/10.1016/S0016-7061(99)00057-9 -
15. Gustafsson J., Bhattacharya, P., Bain, D., Fraser, A., McHardy, W. (1995), Podzolization mechanisms and the synthesis of imogolite in northern Scandinavia, Geoderma, 66: 167-184.
http://dx.doi.org/10.1016/0016-7061(95)00005-9 -
16. Gustafsson, J., Bhattacharya, P., Karltun, E. (1999), Mineralogy of poorly crystalline aluminium phases in the B horizon of Podzols in southern Sweden, Applied Geochemistry, 14, 6: 707-718.
http://dx.doi.org/10.1016/S0883-2927(99)00002-5 -
17. Gustafsson, J., Lumsdon, D., Simonsson, M. (1998), Aluminum solubility characteristics of spodic B horizons containing imogolite-type materials. Clay Minerals, 33: 77-86.
http://dx.doi.org/10.1180/000985598545444 -
18. Hess, P., Lundstróm, U. (2000), Equilibrium models of aluminum and iron complexation with different organic acids in soil solution, Geoderma, 94: 201-221.
http://dx.doi.org/10.1016/S0016-7061(98)00139-6 -
19. Karltun, E., Bain, D., Gustafsson, J., Mannerkoski, H., Murad, E., Wagner, U., Fraser, A., Mc Hardy, W., Starr M. (2000), Surface reactivity of poorly-ordered minerals in podzol B horizons, Geoderna, 94, 265-288.
http://dx.doi.org/10.1016/S0016-7061(98)00141-4 -
20. Konecka-Betley, K. (1968), Zagadnienia żelaza w procesie glebotwórczym [Iron in the soil process],Roczniki Gleboznawcze, 19,1:51-97.
21. Lumsdon, D., Farmer, V. (1995), Solubility characteristics of proto-imogolite sols: How silicic acid can de-toxic aluminum solutions, European Journal of Soil Science, 46: 179-186.
http://dx.doi.org/10.1111/j.1365-2389.1995.tb01825.x -
22. Lundstróm, U.,van Breemen, N., Bain, D. (2000), The podzolization process. A review, Geoderma, 94: 91-107.
http://dx.doi.org/10.1016/S0016-7061(99)00036-1 -
23. Mazumdar, S. (1978), Morphogenetic evolution of the Khasi Hills, Meghalaya, Miscellaneous Publication, Geological Sun'ey of India, 30: 208-213.
24. Mazumdar, S. (1986), The Precambrian framework of part of the Khasi Hills, Meghalaya, Records of the Geological Sun'ey of India, 117, 2: 1-59.
25. McKeague, J. (1967), An evaluation of 0,1 M pyrophosphate-dithionite in comparison with oxalate as extractants of the accumulation products in Podzols and some other soils, Canadian Journal of Soil Science, 47: 95-99.
http://dx.doi.org/10.4141/cjss67-017 -
26. McKeague, J. (ed.), (1981), Manual on soil sampling and methods of analysis, Canadian Society of Soil Science.
27. McKeague, J., Brydon, J., Miles, N. (1971), Differentiation of forms of extractable iron and aluminium in soils. Soil Science Society of America Proceedings, 35: 33-38.
http://dx.doi.org/10.2136/sssaj1971.03615995003500010016x -
28. Mehra, O., Jackson, J. (1960), Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay and Clays Minerals, 5: 317-327.
29. Melke, J. (1997), Niektóre prawidłowości w składzie chemicznym gleb brunatnych różnych regionów geograficznych [Some regularities in chemical compositions of brown soils in different geographical regions]. Wydział Biologii i Nauk o Ziemi, Rozprawy habilitacyjne, 56. Wydawnictwo UMCS, Lublin.
30. Mocek, A. (1988), Żelazo w vertisolach i mollisolach okolic Shahrazoor i Raniya w pótnono-wschodniej części Iraku [Iron in Vertisols and Mollisols of Shahrazoor and Raniy regions in north-ester part of Irak], Roczniki Gleboznawcze, 39, 3: 45-55.
31. Mokma, D. (1983), New chemical criteria for defining the spodic horizon. Soil Science of American Journal, 47, 5: 972-976.
http://dx.doi.org/10.2136/sssaj1983.03615995004700050026x -
32. Mokma, D. (1991), Genesis of spodosols in Michigan, USA, Trends in Soil Science, 1: 25-32.
33. Mokma, D., Buurman, P. (1982), Podzols and podzolization in temperate regions, ISM Monograph 1, International Soil Museum, Wageningen. The Netherlands, 126 pp.
34. Petersen, L. (1976), Podzols and podzolization. Royal Veterinary and Agricultural University, Copenhegen.
35. Pokojska, U. (1979), Geochemical studies on podzolization. Part I. Podzolization in the light of the profile distribution of various forms of iron and aluminium. Roczniki Gleboznawcze, 30, 1: 189-215.
36. Prokop, P. (2007), Degradacja środowiska przyrodniczego południowego skłonu Wyżyny Meghalaya, Indie [Land degradation of the southern slope of the Meghalaya Plateau, India]. Prace Geograficzne 210, Instytut Geografii i Przestrzennego Zagospodarowania (IGiPZ), PAN.
37. Riise, G., Hess, P, Lundstróm, U., Strand, L. (2000), Mobility of different size fraction of organic carbon, Al., Fe, Mn, and Si in podzols. Geoderma, 94: 237-247.
http://dx.doi.org/10.1016/S0016-7061(99)00044-0 -
38. Schwertmann, U. (1964), Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Losung, Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 105: 194-202.
http://dx.doi.org/10.1002/jpln.3591050303 -
39. Soil Taxonomy (1999), A Basic system of soil classification for making and interpreting soil surveys, Soil Survey Staff United States Department of Agriculture. Agriculture Handbook Natural Resources Conservation Service Number 436.
40. Soja, R. (2004), The climate, in Starkel, L., Singh, S. (eds.). Rainfall, runoff and soil erosion in the globally extreme humid area, Cherrapunji region, India, Prace Geograficzne 191, Instytut Geografii i Przestrzennego Zagospodarowania (IGiPZ), PAN: 42-43.
41. Soja, R., Starkel L. (2007), Extreme rainfalls in Eastern Himalaya and southern slope of Meghalaya Plateau and their geomorphic impacts, Geomorphology, 84: 170-180.
http://dx.doi.org/10.1016/j.geomorph.2006.01.040 -
42. Starkel, L. (1996), Present-day formation of the Southern part of Meglalaya Plateau, Hill Geographer, 12,1-2: 13-19.
43. Systematyka Gleb Polski (1989), Polskie Towarzystwo Gleboznawcze, Roczniki Gleboznawcze 40,3-4: 5-62.
44. Tamm, C. (1922), Om bestamning av de oorganiska componenterna i markens gelkomplex, Medd. Stattens Skogsforsoksanst, 19: 385-404.
45. Tamm, C. (1932), Uber die oxalatmethode in der chemichen bodenanalyse, Medd. Stettens Skogsforsoksanst, 27: 1-20.
46. Van Reeuwijk, L. (1995) Procedures for soil analysis, Technical Paper 9, International Soil Reference and Information Centre, Wageningen.
47. WRB (1998), World reference base for soil resources, World Soil resources Reports 84, FAO, ISRIC and IUSS.
48. WRB (2006), World reference base for soil resources, A framework for international classification, correlation and communication. World Soil resources Reports 103, FAO, ISRIC and IUSS.

Relation:

Geographia Polonica

Volume:

84

Issue:

1

Start page:

61

End page:

73

Resource type:

Text

Detailed Resource Type:

Article

Format:

File size 2,1 MB ; application/pdf

Resource Identifier:

10.7163/GPol.2011.1.4

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Rights:

Rights Reserved - Free Access

Terms of use:

Copyright-protected material. May be used within the limits of statutory user freedoms

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund

Access:

Open

×

Citation

Citation style: