Object structure
Title:

Formy pierścieniowe w rejonie Wejherowa jako prawdopodobne pozostałości po-pingo i ich znaczenie dla paleogeografii późnego glacjału w północnej Polsce = Ring forms in the area of Wejherowo as likely remnants of pingos, and their significance for Late-Glacial paleogeography in Northern Poland

Subtitle:

Przegląd Geograficzny T. 91 z. 3 (2019)

Creator:

Błaszkiewicz, Mirosław : Autor ORCID ; Danel, Weronika : Autor ORCID

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2019

Description:

24 cm

Type of object:

Journal/Article

Subject and Keywords:

ring forms ; open pingo systems ; permafrost ; Late Glacial ; degradation ; post-pingo ; North Poland

Abstract:

Several potential Polish locations for the occurrence of fossil pingos were determined on the basis of analyses of a digital terrain model. Subsequent field reconnaissance connected with drilling into the geological structure, confirmed that one form located NW of Gdańsk, was indeed a fossil pingo. The aforementioned forms occur in a moraine plateau area related to the last ice-sheet retreat towards the Gardno phase moraine. This surface of the plateau is noticeably inclined south-north, at elevations of between 170 and 110 metres. It in fact proved possible to identify more than 80 very well-developed fossil pingos in the area investigated, with each found to consist of a central depression of average diameter 60‒80 m, as surrounded by a rampart 3–7 m high. By drilling into the central parts of the fossil pingos, we found them to be filled with organic sediments up to 6 or 7 m deep. The bottom layer of infill has carbonate and mineral-carbonate gyttjas up to 2 m thick. These are overlain by a peat layer up to 4 m thick, while these organic sediments are underlain by gley till sand. The ramparts are of sandy till frequently intercalated with silty sand. The established sequence of infilling of the central parts of the fossil pingos indicates that, in the immediate aftermath of ice-core melting, these played host to small ponds in which the accumulation of gyttja was able to take place. The gradual accumulation of lake-bottom sediments resulted in a shallowing of the ponds and the development of peat bogs. The morphological image of the above forms and initial drilling in the studied area suggest an association between their genesis and the presence of an ice-cored mound of the pingo type, experiencing subsequent degradation in the direction of the current, fossil pingo, form. Besides the classical, literal morphology of these forms, a decisive argument for acceptance of the above concept is provided by rampart lithology indicating how essential slow processes were in their accumulation. The nature and thickness of the organic infilling in the central part of a post-pingo prove equally important, suggesting an extended period of lake and peat-bog accumulation, probably lasting for the entire Holocene. The aforementioned arguments allow for the precluding of any origin linked with direct human activity (ground construction, bomb craters). The high density and close proximity and morphological similarity of the forms are likewise inimical to an identification as craters caused by above-ground meteorite explosions. Likewise, comparative analysis of the studied forms and kettle holes (usually larger irregularly-shaped larger forms of varied bottom topography) fails to indicate that the ring forms under study here have somehow arisen through the melting of buried dead ice. Analysis of deep boreholes made previously may support a geological structure of the analysed area consisting of a sand layer over 90 metres thick covered by a discontinuous till moraine several metres thick. The thick sand layer in question consists of differently-aged glaciofluvial sediments. This is a hydrogeological window connecting three main Quaternary aquifers and offering a perfect location for the ascension of groundwater. In conditions of developing discontinuous permafrost, this movement led to the creation of pingo forms in open systems on the surface. It is clear that investigation work is not currently at a stage allowing for about as to age to be made, or all details regarding evolution provided. However, the results of planned geomorphological, hydrogeological and geochronological studies should provide for both the recognition and detailed definition of the forms, thereby prompting discussion as to the evolution of permafrost during the late Weichselian transgression and recession in Central Europe.

References:

Babiński Z., 1982, Pingo degradation in the Bayan-Nuurin-Khotnor Basin, Khangai Mountains, Mongolia, Boreas, 11, s. 291-298. https://doi.org/10.1111/j.1502-3885.1982.tb00538.x
Ber A., 2000, Szczegółowa Mapa Geologiczna Polski w skali 1:50 000. Arkusz Krasnopol wraz z objaśnieniami, Państwowy Instytut Geologiczny, Warszawa.
Błaszkiewicz M., 2005, Późnoglacjalna i wczesnoholoceńska ewolucja obniżeń jeziornych na Pojezierzu Kociewskim (wschodnia część Pomorza), Prace Geograficzne, IGiPZ PAN, 201, Warszawa.
Błaszkiewicz M., 2011, Timing of the final disappearance of permafrost in the Central European Lowland as reconstructed from the evolution of lakes in N Poland, Geological Quarterly, 55, 4, s. 361-374.
Błaszkiewicz M., Piotrowski J., Brauer A., Gierszewski P., Kordowski J., Kramkowski M., Lamparski P., Lorenz S., Noryśkiewicz A., Ott F., Słowiński M., Tyszkowski S., 2015, Climatic and morphological controls on diachronous postglacial lake and river valley evolution in the area of Last Glaciation, northern Poland, Quaternary Science Reviews, 109, s. 13-27. https://doi.org/10.1016/j.quascirev.2014.11.023
Böse M., 1995, Problems of dead ice and ground ice in the central part of the North European Plain, Quaternary International, 28, s. 123-125. https://doi.org/10.1016/1040-6182(95)00039-L
Dahms E., 1972, Limnogeologische Untersuchungen im Dümmer-Becken. Geologische Untersuchungen an Niedersächsischen Binnenseen, Freie Universität, Berlin.
De Gans W., 1981, The Drentsche Aa Valley System. A Study in Quaternary Geology, Vrije Universiteit, Academisch Proefschrift, Amsterdam.
Demidov N., Wetterich S., Verkulich S., Ekaykin A., Meyer H., Anisimov M., Schirmeister L., Demidov V., Hodson A.J., 2019, Pingo development in Grøndalen, West Spitsbergen, The Cryosphere Discussions, https://doi.org/10.5194/tc-2019-76.
Dobrowolski R., 2006, Glacjalna i peryglacjalna transformacja rzeźby krasowej północnego przedpola wyżyn lubelsko-wołyńskich (Polska SE, Ukraina NW), Wydawnictwo Uniwersytetu Marii Curie--Skłodowskiej, Lublin.
Dylik J., 1964, Eléments essentiels de la notion de "périglaciaire" - réponse a l'enquete, Biuletyn Peryglacjalny, 14, s. 111-132.
Eyles N., Boyce J.I., Barendregt R.W., 1999, Hummocky moraine: sedimentary record of stagnant Laurentide Ice Sheet lobes resting on soft beds, Sedimentary Geology, 123, s. 163-174. https://doi.org/10.1016/S0037-0738(98)00129-8
Forysiak J., Majecka A., Marks L., Tołoczko-Pasek A., Okupny D., 2017, Cechy litologiczne wypełnień wybranych zagłębień bezodpływowych obszaru Wysoczyzny Łódzkiej, Acta Geographica Lodziensia, 106, s. 195-210. https://doi.org/10.26485/AGL/2017/106/15
French H.M., 1976, The periglacial environment, Longmans, London.
Gao X., Schlosser C.A., Sokolov A., Anthony K.W., Zhuang Q., Kicklighter D., 2013, Permafrost degradation and methane: Low risk of biogeochemical climate-warming feedback, Environmental Research Letters, 8, 3, s. 1-7. https://doi.org/10.1088/1748-9326/8/3/035014
Goździk J., 1973, Geneza i pozycja stratygraficzna struktur peryglacjalnych w środkowej Polsce, Acta Geographica Lodziensia, 31, Łódź.
Jahn A., 1970, Zagadnienia strefy peryglacjalnej, Państwowe Wydawnictwo Naukowe, Warszawa.
Jaroszewski W., Marks L., Radomski A., 1985, Słownik geologii dynamicznej, Wydawnictwa Geologiczne, Warszawa.
Jaworski T., Chutkowski K., 2015, Genesis, Morphology, Age and Distribution of Cryogenic Mounds on Kaffiøyra and Hermansenøya, Northwest Svalbard, Permafrost and Periglacial Processes, 26, s. 304-320. https://doi.org/10.1002/ppp.1850
Kluiving S.J., Verbers A.L.L.M., Thijs W.J.F., 2010, Lithological analysis of 45 presumed pingo remnants in the northern Netherlands (Friesland): Substrate control and fill sequences, Netherlands Journal of Geosciences - Geologie en Mijnbouw, 89, 1, s. 61-75. https://doi.org/10.1017/S0016774600000822
Kozarski S., 1995, Deglacjacja północno-zachodniej Polski: warunki środowiska i transformacja geosystemu (~20 ka → 10 ka BP), Dokumentacja Geograficzna, IGiPZ PAN, 1, Warszawa.
Liedtke H., 1993, Phasen periglaziär-geomorphologischer Prägung während der Weichseleiszeit im norddeutschen Tiefland, Zeitschrift für Geomorphologie, 93, s. 69-94.
Łoziński W., 1909, Über die mechanische Verwitterung der Sandsteine im Gemässigten Klima, Polska Akademia Umiejętności, Kraków, Biuletyn Wydziału Matematyczno-Przyrodniczego, 1, s. 1-25.
Łoziński W., 1912, Die periglaziale Fazies der mechanischen Verwitterung, [w:] Compte rendu de la XIe session du Congrès Géologique International (Stockholm 1910), Fascicule, 2, s. 1039-1053.
Mackay J.R., 1962, Pingos of the Pleistocene Mackenzie Delta Area, Geographical Branch, Mines and Technical Surveys, Ottawa, Geographical Bulletin, 18, s. 21-63.
Mackay J.R., 1998, Pingo Growth and collapse, Tuktoyaktuk Peninsula Area, Western Arctic Coast, Canada: A long-term field study, Géographie physique et Quaternaire, 52, 3, s. 271-323. https://doi.org/10.7202/004847ar
Marks L., 2012, Timing of the Late Vistulian (Weichselian) glacial phases in Poland, Quaternary Science Reviews, 44, s. 81-88. https://doi.org/10.1016/j.quascirev.2010.08.008
Mojski J.E., 2005, Ziemie polskie w czwartorzędzie. Zarys morfogenezy, Państwowy Instytut Geologiczny, Warszawa.
Mollard J.D., 2000, Ice-shaped ring-forms in Western Canada: Their airphoto expressions and manifold polygenetic origins, Quaternary International, 68-71, s. 187-198. https://doi.org/10.1016/S1040-6182(00)00043-4
Müller F., 1959, Beobachtungen über Pingos, Meddelelser om Grønland, 153, 3.
Petelski K., Sadurski A., 1987, Geneza Pradoliny Redy-Łeby w świetle teorii transportu masy i ciepła, Czasopismo Geograficzne, 58, 4, s. 439-456.
Petera-Zganiacz J., Dzieduszycka D.A., 2017, Palaeoenvironmental Proxies for Permafrost Presence During the Younger Dryas, Central Poland, Permafrost and Periglacial Processes, 28, 4, s. 726-740. https://doi.org/10.1002/ppp.1956
Pissart A., 1956, L'origine périglaciaire des viviers des Hautes Fagnes, Annales de la Société géologique de Belgique, 79, s. 119-131.
Pissart A., 2003, The remnants of Younger Dryas lithalsas on the Hautes Fagnes Plateau in Belgium and elsewhere in the world, Geomorphology, 52, s. 5-38. https://doi.org/10.1016/S0169-555X(02)00246-5
Richardson J., 1851, Arctic searching expedition, 1, Longman, London.
Rutkowski J., Król K., Lemberger M., 1998, The pingo remnant in the Suwalki Lake region (NE Poland), Quaternary Studies in Poland, 15, s. 55-60.
Shakhova N., Semiletov I., Panteleev G., 2005, The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle, Geophysical Research Letters, 32, 9, s. 1-4. https://doi.org/10.1029/2005GL022751
Słowiński M., Błaszkiewicz M., Brauer A., Noryśkiewicz B., Ott F., Tyszkowski S., 2015, The role of melting dead ice on landscape transformation in the early Holocene in Tuchola Pinewoods, North Poland, Quaternary International, 388, s. 64-75. https://doi.org/10.1016/j.quaint.2014.06.018
Szewczyk J., Nawrocki J., 2011, Deep-seated relict permafrost in northeastern Poland, Boreas, 40, 3, s. 385-388. https://doi.org/10.1111/j.1502-3885.2011.00218.x
Vandenberghe J., Pissart A., 1993, Permafrost changes in Europe during the last glacial, Permafrost and Periglacial Processes, 4, 2, s. 121-135. https://doi.org/10.1002/ppp.3430040205
Van Huissteden K., Berrittella C., Parmentier F-J.W., Mi Y., Maximov T.C., Dolman H.A.J., 2011, Methane emissions from permafrost thaw lakes limited by lake drainage, Nature Climate Change, 1, s. 119-123. https://doi.org/10.1038/nclimate1101
Van Loon A., Błaszkiewicz M., Degórski M., 2012, The role of permafrost in shaping the Late Glacial relief of northern Poland, Netherlands Journal of Geosciences, 91, 1-2, s. 223-231. https://doi.org/10.1017/S001677460000161X
Walter K.M., Zimov S.A., Chanton J.P., Verbyla D., Chapin III F.S., 2006, Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming, Nature Letters, 443, s. 71-75. https://doi.org/10.1038/nature05040
Weckwerth P., Wysota W., Piotrowski J.A., Adamczyk A., Krawiec A., Dąbrowski M., 2019, Late Weichselian glacier outburst floods in NE Poland: Landform evidences and palaeohydraulic significance, Earth-Science Reviews, 194, s. 216-233. https://doi.org/10.1016/j.earscirev.2019.05.006
Włodarski M., Papis J., Szczuciński W., 2017, Morphology of the Morasko crater field (western Poland): Influences of pre-impact topography, meteoroid impact processes, and post-impact alterations, Geomorphology, 295, s. 586-597. https://doi.org/10.1016/j.geomorph.2017.08.025
Wojtanowicz J., 1994, O termokrasowej genezie jezior łęczyńsko-włodawskich, Annales UMCS, B, 49, s. 1-18.
Zaleszkiewicz L., 2005, Szczegółowa Mapa Geologiczna Polski w skali 1:50 000. Arkusz Łęczyce wraz z objaśnieniami, Państwowy Instytut Geologiczny, Warszawa.
Zimov S.A., Schuur E.A.G., Chapin III F.S., 2006, Permafrost and the Global Carbon Budget, Science, 312, s. 1612-1613. https://doi.org/10.1126/science.1128908

Relation:

Przegląd Geograficzny

Volume:

91

Issue:

3

Start page:

405

End page:

419

Resource type:

Text

Detailed Resource Type:

Article

Format:

File size 1,3 MB ; application/octet-stream

Resource Identifier:

2300-8466 (on-line) ; 10.7163/PrzG.2019.3.6

Source:

CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link

Language:

pol

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Operational Program Digital Poland, 2014-2020, Measure 2.3: Digital accessibility and usefulness of public sector information; funds from the European Regional Development Fund and national co-financing from the state budget.

Access:

Open

×

Citation

Citation style: