Metadata language
Status troficzny gatunków zooplanktonu słodkowodnego
Subtitle:Trophic status of freshwater zooplankton species ; Status troficzny zooplanktonu
Creator: Contributor:Polska Akademia Nauk. Komitet Ekologiczny
Publisher: Place of publishing: Date issued/created: Description:Pages 197-206 ; 24 cm ; Bibliographical references (pages 201-204) ; Abstract in English
Type of object: Subject and Keywords:food chains (ecology) ; nutrient cycles ; freshwater zooplankton
Abstract:Each effort for an ecological classification based on the concept of species always encounters serious difficulties. It is nevertheless necessary when data obtained for species are to be used for the construction of a complex system model composed of the trophic levels. Even the plankton, generally accepted as one of the most simple systems, can be subjected only with great difficulty to the trophic classification operations (Fig 1). The essence of this difficulty is the very unclear trophic status of each animal component of the system. Nevertheless such classification efforts are quite common nowadays (works on IBP synthesis) placing each zooplankton species into herbivores, carnivores, detritivores or omnivores, where only the last group seems reasonable as most species allotted to the three former groups in reality represent their own groups only in specific conditions, e.g. laboratory experiments.The type of food of a given species is largely dependent on three factors: 1. Morphological and functional aspects of food uptake (filter feeding, sedimentation or raptorial feeding, n.b. many species mak e use of two or even three mechanisms alternatively). 2. Animal behaviour which determines its food selectivity: a. ease of choice of a particular feeding zone, b. ease of choice of particular objects from the potential food variety. 3. Abundance of diverse types of food in the environment. The first two factors are essentially of species origin but even these may change quite a bit not only from stage to stage of individual development, but also from environment to environment differ ing in food sources. E.g. Chydorus sphaericusis a typical “scraper” when feeding on periphyton or large phytoplankton colonies(Fryer 1968), but acts as a typical filter feeder in limnetic environment wherethere are no large phytoplankton forms (Gliwicz 1969c). Also, a typical cyclopoidcopepod feeding almost exclusively on phytoplankton in natural conditions,will be a successful carnivore when animal food is more available. Here, whenconsidering the third factor, we come across the greatest difficulty. One cannever be sure whether a species, which in one lake is beyond all doubts a carnivore,is not by chance a typical herbivore in another lake, as is certainly the casewith Cyclops abyssorum tatricus (compare Eppacher 1968 and Pechlaneretal. 1972) or Heterocope saliens (Monakov 1972). ; This is also true of species which do not change their food uptake mechanizmnor feeding behaviour from one to another environment . In this case a sufficientreason for changing the trophic status of a species might be exclusively a modificationof the food conditions. A typical filter feeder grazes mostly on small nannoplanctonicalgae ranging in size from a few to about 20 microns in diameter whenin oligotrophic waters, whereas in eutrophic lakes it becomes a typical detrito andbacteriovore, because, as a result of the very same filtration process, notalgae but bacteria and detritus will be collected in its filtering chamber ( Gliwicz 1969a, 1969b).It seems that correct classification of limnetic animals into trophic types, oreven trophic levels, is possible only in the case of oligotrophic lakes, where theclassic structure of a food chain is usually maintained: phytoplankton — herbivorouszooplankton — carnivorous zooplankton — fish. This is clearly demonstratedby the succes in building very accurate models of the Alpine Unterer FinstertalerSee (Pechlaner et al. 1972) and the Arctic Char Lake (Rigler 1972). Thetrophic statuses of zooplankton species there are precisely defined thanks to thecharacter of plankton primary production and the lack of an intensive inflow ofallochtonic organic matter.In such oligotrophic waters, because of the low nutrient concentrations thenannoplanctonic algae are the main or exclusive primary producers. This probablybecause their higher surface/volume ratio makes them more effective nutrientutilizers. These small algae (flagellates, greens, small diatoms) fall perfectly intothe size range of food particles available to the typical filter feeder. Furthermore,the small income of allochtonic organic material holds bacteria concentration onlow level, While the low plankton primary production causes insignific ant concentrationof detritus particles. Although both of these are mostly also within thesize range of available food particles, the main food collected in the filteringchamber is the fresh living algae (Fig. 2). So here we have to do with true herbivores— well distinguis hed primary consumers’ trophic level.The situation is different in more productive lakes — waters, richer innutrients and usually supplied with a greater flow of allochtonous organic matter.The phytoplankton standing crop here is strongly dominated by net algae (for anattempt of explanation of this phenomenon see Gliwicz 1973), frequently byhuge blue-green colonies and peridinian cells, several hundred microns in length,much too large to be available for filter feeders. The organic matter produced bysuch a phytoplankton community becomes eventually available as decomposedmaterial. The large amount of organic substratum, both of net phytoplankton andallochtonous origin, increases the concentration of bacterial cells and particles of detritus (tripton) in the environment. Thus the number of live algae within thesize range of food particles available for a filter feeder decreases, whereas theamount of detritus and bacteria increases. In other words, the typical filter feederunable to actively select food particles grazes on totally different food in oligotrophicand eutrophic conditions (Fig. 2).In this case, not only does the trophic status of the filtrators changes, butalso that of predators, generally represented in plankton by cyclopoid copepods. ; As a rule they are pure predators in oligotrophic waters, at least in adult stages.But they shift at least in part onto phytoplankton food in eutrophic conditions.It is not coincidence that animal as well as plant food is noted for most ofthe cyclopoid species in Figure 1. From experimental work carried out on manyspecies it would appear that they feed readily on both animal and plant food(depending on which is in great aboundance) although they do not necessarilydigest each equally well. The same is probably true in natural conditions. Theconcentration of animal food is much higher than of phytoplankton in oligotrophicconditions, and in eutrophic conditions the oposite is true.This problem is further complicated by seasonal changes of phytoplanktonspecies composition, standing crop and production, both in the case of “herbivores”and “carnivores”. Even in eutrophic water body the nannoplanctonic algaeavailab le for filter feeders sometimes dominate during spring time, but in midsummerthey usually give way to net phytoplancton blooms. In addition, latesummer brings from the littoral to the limnetic zone a large amount of the organicmatter in the form of macrophytes detritus or dissolved organic compounds,stimulating a mass development of 'bacteria. This changes the trophic status of“herbivores” to an even greater extent (Fig. 3)2.It would than seem that overall classification of plankton animals in termsof their trophic status is almost impossible. Such an attempt should probably besuccessful with each zooplankton community taken on its own and only for a particularseason. The only possible general classifica tion would have to foe presentedas a continuum (Fig. 1).
References:
Anderson R. S. 1967 — Diaptomid copepods from two mountain ponds in Alberta — Can. J. Zool. 45: 1043—1047.
Anderson R. S. 1970 — Predator — prey relationship and predation rates for crustacean zooplankters from some lakes in western Canada — Can. J. Zool. 48: 1 1229—1240.
Beauchamp P. 1961 — Sur Asplachna henrietta (Rotifera) — Bull. Soc. zool. France, 86: 701—704.
Bogatova J. B. 1951 — Kolicestvennye dannye o pitanii Cyclops strenuus Fischeri Cyclops viridis Jurine — Trudy Saratov. Otd. kasp. Fil. VNIRO, 1: 163—176.
Bogatova J. B. 1965 — Pitanie dafnij i diaptomuisov w prudach — Trudy vseros.. nauc.-issled. Inst. prud. ryb. Choz. 13: 165—178.
Bogatova J. B. 1967 — O pitanid Moina rectirostris (Zeidig) — Trudy vseros. nauć.-issled. Inst. prud. ryb. Choz. 15: 106—116.
Burgis M. J. 1971 — The ecology and production of copepods, particularly Thermocyclops hyalinus, in the tropical Lake George, Uganda — Freshwat. Biol. 1: 169—192.
Burgis M. J., Dunn J. G., Ganf G. G., McGowan L. M., Viner A. B. 1972 —Lake George, Uganda. Studies on tropical freshwater ecosystem (Productivity problems of freshwaters, Eds. Z. Kajak, A. Hillbricht-Ilkowska) — Warszawa-Kraków: 301—309.
Burns C. W. 1966 — The feeding behaviour of Daphnia under natural conditions — Ph. Dr Thesis, Univ. Toronto, 88 pp.
Burns C. W. 1968 — The relationship between body size of filter-feeding Cladocera and the maximum size of particle ingested — Limnol. Oceanogr. 13: 675—679.
Cummins K. W., Costa R. R., Rowe R. E., Moshiri G. A., Scanlon R. M., Zajdel R. K. 1969 — Ecological energetics of natural population of predaceous, zooplankter Leptodora kindtii Focike (Cladocera) — Oikos, 20: 189—223.
Edmondson W. T. 1965 — Reproductive rate of planktonic rotifers as related to food and temperature in nature — Ecol. Monogr. 35: 61—111.
Eppacher T. 1968 — Physiographic und Zooplankton des Gossenkdllesees — Ber. naturw.-med. Ver. Innsbruck, 56: 31—123.
Erman L. A. 1958 — Novye laboratornye ustanovki dla kultirovanija kolovratok i izueenija ich pitanija — Nauc. Doki. vyss. Skoly, biol. Nauki, 4: 11—15.
Erman L. A. 1962 — Ob ispolzovanii troficeskich resursov vodoemov plankfoonymi kolovratkami — Bjull. mosk. Obść. Isp. Prir. 67: 32—47.
Fryer G. 1957 — The food of some freshwater cyclopoid copepods and its ecological significance — J. Anim. Ecol. 26: 263—286.
Fryer G. 1968 — Evolution and adaptafive radiation in the Chydoridae (Crustacea: Cladocera). A study in comparative functional morphology and ecology — Phil. Trans, roy. Soc. London, S. B, 254: 221—385.
Galkovskaja G. A. 1963 — Izucenie pitanija planktonnych kolovratkov — Dokl. Akad. Nauk USSR. 7: 202—205.
Gliwicz Z. M. 1967 — Zooplankton and temperature-oxygen conditions of two alpine lakes of Tatra Mts Pol. Arch. Hydrobiol. 14: 53—72.
Gliwicz Z. M. 1969a — Studies on the feeding of pelagic zooplankton in lakes with varying trophy — Ekol. Pol. A, 17: 665—708.
Gliwicz Z. M. 1969b — Wykorzystanie produkcji pierwotnej przez konsumentów planktonowych w zależności od długości łańcucha pokarmowego — Ekol. Pol. B, 15: 63—70.
Gliwicz Z. M. 1969c — Baza pokarmowa zooplanktonu jeziorowego — Ekol. Pol. B, 15: 205—223.
Gliwicz Z. M. 1973 — Importance of zooplankton for plankton system functioning in more and less eutrophic lakes (Eutrophierung und Gewasserschutz — Kurzfassung der Vortrage) — Sehloss Reinhardsbrunn : 16—16d.
Gliwicz Z. M. (in press) — Diurnal and seasonal changes of feeding activity of limnetic freshwater filter feeders — Ekol. Pol.
Gras R., Iltis A., Saint-Jean L. 1971 — Biologie des Crustaces du Lac Tchad. II. Regime alimentaire des Entomostraces planctoniques — Cah. ORSTOM, Ser. Hydrob. 5: 285—296.
Hillbricht-Ilkowska A., Karabin A. 1970 — An attempt to estimate consumption, respiration and production of Leptodora kindtii (Fodke) in field and laboratory experiments — Pol. Arch. Hyidrobiol. 17: 81—86.
Kajak Z., Ranke-Rybicka B. 1970 — Feeding and production efficiency of Chaoborus flavicans Meigen (Diptera, Culicidae) larva in eutrophic and dystrophic lake — Pol. Arch. Hydrobiol. 17: 441—451.
Komarova J. V. 1966 — Izucenie pitanija C. quadrangula, C. pulchella, M. rectirostris, M. brachiata, M. macropa i D. brachyurum — Trudy vseros. inauć.-iissled. Inst. prud. ryb. Choz. 14: 213—225.
Lindeman R. L. 1942 — The trophic-dynamic aspect of ecology — Ecology, 23: 299—418.
Malovickaja L., Sorokin Ju. I. 1961 — K voprosu o pitanii nekotorych vidov diaptomid (Copepoda, Calanoida) bakteriami — Dokl. Akad. Nauk USSR, 136: 948—950.
Manuilova E. F. 1958 — Biologija Daphnia longispina v Rybinskom Vodochranilisce — Trudy biol. Stancii Borok, 3: 236—249.
McMahon J. W., Rigler F. H. 1965 — Feeding rate of Daphnia magna Straus in different foods labeled with radioactive phosphorus — Limnol. Oceanogr. 10: 105-413.
McQueen D. J. 1970a — Grazing rates and food selection in Diaptomus oregonensis (Copepoda) from Marion Lake , British Columbia — J. Fish. Bd. Canada, 27: 13—20.
McQueen D. J. 1970b — Reduction of zooplankton standing stocks by predaceous Cyclops bicuspidatus thomasi in Marion Lake, British Columbia — J. Fish. Res. Bd. Canada, 26: 1605—4618.
Monakov A. V. 1972 — Review of studies on feeding of aquatic invertebrates conducted at the Institute of Biology of Inland Waters, Academy of Science, USSR — J. Fish. Res. Bd. Canada, 29: 263—283.
Monakov A. V. 1973 — O pitanii svobodnozivuscich presnovodnych veslonogich (Trofologija pres novodnych zivotnych) — Moskva: 171—182.
Monakov A. V., Sorokin Ju. I. 1959 — Opyty izućenija chiscnogo pitanija ciklopov s pomoscju izotopnoj metody — Doki. Akad. Nau k USSR, 125: 201—204.
Monakov A. V., Sorokin Ju. I. 1972 — Some results on investigations on nutrition of water animals (Productivity problems of freshwaters, Eds. Z. Kajak, A. Hillbricht-Ilkowska) — Warszawa-Kraków: 765—774.
Morduchaj-Boltovskaja E. D. 1958 — Predvaritelnye dannye po pitaniju chiścnych kladocer (Leptodora kindtii i Bythotrephes) v Rybinskom Vodochraniliśce — Dokl. Akad. Nauk USSR, 122: 723—726.
Morduchaj-Boltovskaja E. D. 1960 — O pitanii chiścnych kladocer Leptodora i Bythotrephes — Bjull . Inst. Biol. Vodochran. Akad. Nauk USSR, 6: 21—22.
Pechlaner R. G., Bretschko G., Gollmann P., Pfeifer H., Tilzer M., Weissenbach H. P. 1972 — Ein Hochgebirgssee (Vorderer Finstertaler See, Kuhtai, Tirol) als Modell des Energietransportes durch ein limnisches Okosystem — Verh . Dtsch. zool. Ges. 65: 47—56.
Pourriot R. 1963 — Utilisation des algues brunes unicellulaires pour 1’elevage des Rotiferes — C. R. Acad. Sci. Paris, 256: 1603—1605.
Pourriot R. 1965 — Rechenches sur l’ecologie des Rotiferes — Vie et Milieu, Suppl. 21: 224 pp.
Pourriot R. 1966 — Regimes et exigences alimentaire des Rotiferes — Verh. int. Vereinig. Limnol. 16.
Pourriot R. 1970 — Quelques Trichocerca (Rotiferes) et leurs regimes alimentaires — Ann. Hydrobiol. 1: 155—171.
Rigler F. H. 1972 — The Char Lake Project. A study of energy flow in a high arctic lake (Productivity problems of freshwaters, Eds. Z. Kajak, A. Hillbricht-Ilkowska) — Warszawa-Kraków: 283—300.
Rigler F. H. 1973 — Zalety i wady koncepcji przepływu energii oraz koncepcji krążenia biogenów — Wiad. ekol. 19: 194—203.
Sebestyen O. 1960 — On the food niche of Leptodora kindtii in the open water communities of Lake Balaton — Int. Revue ges. Hydrobiol. Hydrogr. 45: 277—282.
Sorokin Ju. I., Monakov A. V., Morduchaj-Boltovskaja E. D., Tichon-Lukanina E. D., Rodova R. A. — Opyt primenenija radiouglerodnogo metoda dlja izucenija troficeskoj roli sinezelenych vodoroslej (Ekologija i biologija sinezelenych vodoroslej) — Moskva: 253—260.
Spodniewska I. (in press) — Structure and production of phytoplankton in Mikołajskie Lake — Ekol. Pol. 22.
Suskina E. A., Anisimov S. J., Klekowski R. Z. 1968 — Calculation of production efficiency in plankton copepods — Pol. Arch. Hydrobiol. 15: 251—261.
Suscenija L. M. 1959a — O potreblenii planktonnych vodoroslej zooplanktonom (Trudy V naucn. Konf. po Izuc. vnutr. Vodoj. Pribalt. 1957) — Moskva: 32—37.
Suscenija L. M. 1959b — Issledovanie piscevoj izbiratelnositi u planktonnych rakoobraznych — Nauć. Doki. vyss. Skoly, biol. Nauki 4.
Suscenija L. M. 1961 — Ispolzovanie pervicnoj produkcii planktona v posledujuśćich zvenjach piśćevoj cepi (Pervicnaja produkcija morej i vnutrennych vodoemov) — Minsk: 386—396.
Tribus T. M. 1960 — Nekotorye nabludenaja nad kolovratkami semejstva Asplachnidae (Rotifera) Rybinskogo Vodochranilisca — Bjull. Inst. Biol. Vodochran. Akad. Nauk USSR, 6: 14—17.
Ulomskij S. N. 1953 — Novoe v ekologii nekotorych vidov veslonogich rakoobranych (Copepoda) Mesocyclops leuckarti (Claus) 1857 — Dokl. Akad. Nauk SSSR, 60: 295—297.
Varbapetian S. M. 1972 — Troficeskie svazi chiśćnych rakoobraznych v ozernom zooplaktonie — Ekologija, 3:38—45
MiIZ PAN, call no. P.3259 ; click here to follow the link
Language: Language of abstract: Rights:Creative Commons Attribution BY 3.0 PL license
Terms of use:Copyright-protected material. [CC BY 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY 3.0 PL license, full text available at: ; -
Digitizing institution:Museum and Institute of Zoology of the Polish Academy of Sciences
Original in:Library of the Museum and Institute of Zoology of the Polish Academy of Sciences
Projects co-financed by: Access: