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1 Introduction

The role of well-posedness in scalar optimization problems is widely recognized.
The notion of a well-posed problem and its generalizations play an important
role in model buildinug, in numerical problem solving, and in investigating sta-
bility of solutions.

Nowadays, vector optimization (or multiple objective optimization) is gaining
momentum in the development of its theory and applications. It has its origin
primarily in economics. Recently, multiple objective techniques enter also in
solving engineering desigh problems.

Different approaches to well-posedness in vector optimization are scattered in
the literature. Since the belraviour of minitaizing sequences seemns to be crucial
from the point of view of applications we choose the approach to well posed-
ness in vector optimization via convergence of minimizing scquences so as to
encompass the non-uniqueness and noncompactness of solution sets.

In the present paper we investigate tlhe concept of strict and strong solutions to
vector optimization problems. When applied to scalar optimization problems,
these concepts both reduce to the concept of weak sharp minima due to Polyak
[12] and investigated by many authors, eg. Studniarski and Ward [16], Burke
and Deng [10], Burke and Ferris [9]. It is known that strict solutions play an
important role in deriving conditions for Hélder calmness in scalar optimization
(see e.g. [8]). In Theorem 6.1 we prove calmness of solutions to parametric
vector optimization problems at points which are striet and strong.

In the class of well-posed problems we study conditions ensuring Lipschitz
and/or Holder continuity of efficient solutions to parametric vector optimization
problems. We prove that in the case where calmness of the solution set-valued
mapping S at some solution z¢ is of interest it is enough to assume that the
solution set is simnltaneously strict and strong around zg.




2 Preliminaries

Let Y = (Y,| - ||) be a normed linear space with the open unit ball By and let

K CY be a closed convex convex pointed cone in Y. Let A C Y be a sabsct of

Y. An element y € A is minimal , y € Min(A, K) iff (A—y)n(=K) = {0}. An

clement y € A is a local minisnum, y € LMin(A, £) iff there is a neighbourhood

Voly (A-y)n(-K)nV = {y}.

Let U = (U, || i) be a normed space with the open unit ball By.. A sct-valued

mapping T : U} Y, is

locally upper Lipschitz at ug (see Robinson {15], Aubin,Ekeland [1]) if there

are positive numbers L and r such that I'(x) C I'(up) + Llju — ugl| By for
w € uy + 1By

locally Lipschitz at wp if there are positive numbers L and » such that
I(w1) C [{ug) + Lijuy ~ u2[|By for uy,u2 € uo + rBy

locally upper Hdélder of order m at wug if there are positive numbers L and
r such that ['(u) C I'ug) + Llju — ug||™ By for v € wg + rBy

localty Hélder of arder m at g if there are positive numbers L and r such
that T'(up) C I'(up) + Llluy — uz||™ By for 4y, up € ug +rBy

calm of order q or Hélder calim of order g at (ug,yp) € graphl if there
exist constants L > 0, r > 0, and ¢ > 0 such that I'(u) N (xo +7By) C
T(ug) + Ljlu — uol for fju— wuef < t.

lower Lipschitz at (ug,ys) € graphl, if there exist constants L > 0 and
t > 0 such that (yo + Lllu — ug)| By ) NT(u) # @ for ju — uof| < t.

3 Well-posedness of vector optimization prob-
lems

Let X = (X, || - |l) be a normed space with the open unit ball Bx. Vector
optimization problem

K —min fo(z)
(Po)
subject to z € Ao,

consists in finding the set Min(fo, Ao, K) = Min(fo(40)|K) called the minimal

( or efficient ) point set of (%), and the solution set S(fo, Ag,K) = {z €
Ag | fo(z) € Min(fp, Ao, K)}, where fo: X — Y is a mapping and 4g C X is a
subset of X .




The point xg € Ag is called a local minimal solution of (Py), 2o € LS(Ay, fo,K),
iff there is a neighbourhood V' of zg such that ( fo(AeNV)— fo(20))N(—K) = {0} .
In other words, g € LS(Aq, fo, K) iff there is no € Ag NV, 2 # x4, such that
Jo(z) — fo(zo) € —K.

In the sequel we often refer to problem (P,) as the original problem or the
unperturbed problem. The space X is called the decision space and Y is called
the outcome space.

Definition 3.1 Let € € Y. The problem (F,) is upper Lipschitz well posed
if
(e) = Ao N f5  (Min(fo, Ao, K) + — K)
I(e) = {J Ao fi (n+e—K)
ne Min(fo,40.5))

1s locally upper Lipschitz at 0.

Definition 3.2 Let n € Min(fy, Ag,K). Let € € Y. The problem (Py) is n—
upper Lipschitz well posed if

") = 4o N f5 (n+€— K)
18 locally upper Lipschitz at 0.
Note that I(¢) = @ for ¢ € —K. Il is locally upper Lipschitz at 0 if
T(e) = Ao N fo  (Min{fo, Ag, K) + £ — K) C Min(fo, Ao, K) + |lell Bx

for |iell<ro

4 Lipschitzness of solutions to perturbed vector
optimization problems

Let U be the space of parameters. In the sequel we assume that U is a normed
space. We embed the problem (/) into a family (P,) of vector optimization
problems parametrised by a parameter u € U,

K —min f(u,x)
subject to £ € A(u), (Pu)

where f : U x X — Y is the parametrised objective function and A : U3 X,
is the feasible set multifunction. The problem (Pg) corresponds to a parameter
value ug , fo = f(uo, ), A(uo) = Ao . The performance multifunction P : U3 Y
is defined as P(u) = Min(f(u,-), A(x),K) and the solution multifunction S :
U3 Y is defined as S(u) = S(f(w,-), Au),X).




In the theorein below we prove local upper lipschitzness of the solution set-
valued mapping S at a given up for a family of parametric problems of the form

K —min fo(x)
subject to ¢ € A(u), (P)
in the class of the original problemns (Fy) being upper Lipschitz well posed.

Theorem 4.1 Let X, Y and U be normed spaces. Let K C Y be a closed convex
pointed cone in Y, ntK # 0. If

(i) (Po) is upper Lipschitz well posed,
(i) fo is Lipschitz on X, A is locally upper Lipschitz at o,
(iit) P is locally upper Lipschitz at ug,
then S is locally upper Lipschitz at ug .
Proof. There cxists Ly such that
A(u) € Alug) + Lijju — uol| Bx = Ao + Lil|u — wofl Bx, (1)
for u € up + ry By . By Lipschitz well-posedness of (), we have
Ap 1 fo H{Min(fo, Ao, K) + £ — K} C S(uo) + L|jel| Bx
for any £ € 9By . Assuming that € = O({ju — uplf), i.c,, le]l<allu — uglf and
Ap N fo H{Min(fa, Ao, K) + allu —uel| By — K} C S(uo) + Laflu — ug||Bx. (2)
By (1), and (2},
Ay < [S(up) + Laflu — ugl|Bx U [X \ fo {Min(fo, Ao, K) + alju — uol{ By — K},
and

A(uw) C Ag + Li||v —ugl|Bx

C [A(uo) + Lallu — uo||Bx + Liffu ~ uol| Bx|

ULX \ fo H{Min(fo, Ao, X) + allu — uol|By ~ K} + Li|lu — uol|Bx].
3
Since fg is Lipschitz on X, there exists L3 such that for any z,20 € X

Jo(z1) C fo(x) + Laflzs — 22| By
Hence,

fol X\ fU_I{Min(fn, Ao, K) + allu ~ wol| By — K} + Ljju — uol| Bx|
C folX \ fo H{Min(fo, Ao, K) + axjee — woli By — K} + LaLfju — uol{ By,




and

folX \ £yt {Min(fo, Ao, ) + effe — uol| By — K}] + LaLfju — uof By
C Y\ Min(fo, Ao, K) + allu — ugl| By — K} + LyLiju — ug||By.

Assuming that LL3 < a we get

Y \ [Min(fo, Ao, K) + a|lu — ug||By — KX} + LsLjlu - uo|| By
cY\ [Min(fg, Ao, K} + LaLilu — Uo"BY — K],

and
ST Y \Min( fo, Ao, K+ Ly Liju—uof| By K] € X\ fg  {Min(fo, Ao, K)+Ls Ll|ju—uol By ~K|
Hence, by (3),

A(w) € Ag + Lifu — ul|Bx
C [S(uo) + Laflu — uofl Bx + Liju = uoll Bx] U X \ £ *Min(fo, Ao, K) + LoLlfu — wo|| By — K]}

By (ii4), for any z € S{u), v € ug + 11 By
f(&) € Min(fo, A, K) + Ly fju — uo| By,
and under the assumption that Lo LLs we get
S(u) C S(ug) + (La+ LLg)|lu — uol)Bx
]

5 Strict and strong solutions to vector optimiza-
tion problems

In this section we recall the notions of strict and strong solutions to vector
optimization problem (Fg).

We say that ¢ : Ry — Ry is an admissible function if ¢ is nondecreasing
and lime 9 ¢(¢) = 0.

Definition 5.1 [2/ We say that o € S(fo, Ao, K) is ¢—strict if there is an
7 > 0 such that for each x € Ag N (29 + rB), z # 20,

(fo(=) = fo(zo)) N (¢(liz — zol)) By — K) =0,
where ¢ i3 an admissible function.

Definition 5.2 We say that w0 € S(fo, Ao, K) is strict of order m if there is
an 7 > 0 such that for each x € Ag N (x4 + rB), = # g,

(fole) = folzo}) N (allz — xol™ By — K) = 0.

<




Definition 5.3 [2/ Let intK £ 0. We say that a solution 39 € S(fo, Ay, K) 18
¢—strong if there is an v > 0 such that for each # € Ag N (o + rBx) there
exists 8, € S(f(],A(],K:) N (Io + 'I‘Bx)

fo(z) = folsz) — d(llz — s=[) By C K,
where ¢ is an admissible function.

Definition 5.4 [2, 13, 14] Let intK # §. We say that a solution o € S(fo, Ao, K)
is strong of order m if there are constants r > 0 and a > 0 such that for cach
z € Ag N (xo +7Bx) there exists 35 € S(fo, Ao, K) N (x0 + 78x)

Jo(@) = fo(s=) — ellz — s By C K.

If m =1 wc say that the solution sct is strong.

6 Holder calmness of solutions to parametric
vector optimization problems

In this section we prove caliness of order 1/2 of solutions to parametric vector
optimization problems at points which arc simultancously strict of order 2 and
strong. Similar results for scalar optimization problems were obtained by Bon-
nans and Shapiro (8], sec.4.4.2. In finite dimensional spaces, weak sharp minima
of order 2 were investigated by Ioffe and Shapiro [11}.

To prove our theorem we need onc more definition.

Definition 6.1 We say that the set 5 C S(fo, Ap,K) is a set of strict minimna
of order m of the problem (Po) if there @ a >0 andr >0 such that for any
Ze S andanyz e AgN(S+rBx), z ¢ S5, we have

[fo(z) — fo(2)] N ladist(z,5)™ By ~ K] =0,

where, for any subset C C X, we put dist(x,C) = inf{||z—cf | c€ C}. fm =1
we say that the solution sct S is strong.

Now we are in a position to prove our main result. To fix notations let us
recall that any function f5 : X — Y is locally Lipschitz around zg if there
exist constants Ly > 0 and r3 > 0 such that for any z4, 22, |21 — zof < 7a,
ffzg ~ zof| < 2, we have

lfo(z1) = fo(zaMli<Lillzi — zaf -

Theorem 6.1 Let X = (X, || - 1), Y = (Y, || - ||) end U = (U, |} - ||} be normed
spaces and let K C Y be a closed conver pointed cone in Y, intkC # . Assume
that there exists T > O such that § = S(fo, Ao, K) N (zo + r1.Bx) is a set of
strict minimal solutions of order 2 to (Pp). If




(i) fo: X =Y is Lipschitz locally at xq,

(i) A : U — X is calm and Lipschitz lower semicontinuous at (ug,xp) €
graphA,

(iii) zg € S(fo, Ao, K) is strong with constants a > 0 and rg > 0,

then S is Hélder calm at (ug,mqg) of order § in the sense that for a constunt
L >0, a neighbourhood V of 2o and any z(u) € S{u) NV we have

dist(z(w), S{up))< Lilu — uolf
for all u in some neighbourhood Uy of ug.

Proof. By the calmness of A, at {(ug, To) € graphA there is an Lg, 79 > 0 and
tg > 0 satisfying

A(u) N (zo + roBx ) C A(ug) + Lolju — ugl|Bx ,

for [Ju — ugf| < to. Without losing generality we can assume that ro + ¢g < 7y .
Put r = min{rg, r2}. For each z(u) € A(u) N (zg + rBx ) there is z(u) € A(ug)
such that

fte(u) — z(u)li<Lollu — uol) .

Without loss of generality we can assume that S(u) N (2o + rBx) # 0 for all
u, Jlu — wlt < ¢, t > 0. Take any z(u) € S(u) N (xo + rBx). There exists
z(u) € A(up) such that

Jo(w) — z(u)li<Lolle — uoll -
By the local lipschitzness of fy around zg,
flfo(z(w)) — folz(I<Lillz(vw) — z{u)f<LiLollu — uoll.

Since by (4ii), zo € S(fo, Ao, K) is strong, and z(u) € Ag N (zo + rBx) there
exists Z(u) € S(fo, Ao, K) N (xo +7rBx) such that

folZ(w)) = fo(z(w)) = ku, ku € K ku +afz(u) — Z(uw)||By CK.
By the lower Lipschitz continuity of A there exist Ly > 0, t; > 0, and &E(u) €
A(u) such that
fl#(u) — 2l Lalln — uof),

for ||u — ug|l<ti. Now we show that

o(2ta)) = (et < “ELELD




Indced, by the local lipschitzness of fo around zg,
[ fo(2(w)) — fo(Z())l<Lal#(w) - Z(u){<Li Lalfu — uol,
and hence,

Fo(@(w))—fo(x(u)) = [fo(@(u) — folZ(N] + [fo(2(u)) - fo(z(w))] + [fo(z(w) — folz(w))]
= —ky + w(n),

where
w(u) = [fo(2(w)= fo(Z(w)|+fo(z(w))—fo(z(x))] and [w(u)li<Li(La+Lo)llu—uoi.

If it were

L3(L3+ L
1( 3+ 0)“u_uO
[0

Ikl > Il

then

Lf|Z(u) = 2(uw)]| >

L3(Ls+ L
Al Dol o

and
allzw) = ()} > Li(Ls + L)l — o)l
Then it would be w(u) € af|z(u) — z(u){|Bx which would contradict the mini-
mality of z(u), since it would imply that
ky + wlu) € K.
This proves that

L3 (Lo + L
_1(_0{1_3)"1,_ gl

lfo(2(w)) = fo(z(w))li<

or
. Li(Ly + L
fole) ~ fote) € LT LDy,
Observe now that J|Z(n) — xofl < r and hence #(u) € 5. By the strict local
minimality of S

Folz(w)) = fol2(w)) & Ladist(z(w), 5By — K.
Finally,
Lﬂ"aﬂ llu — uol| By ¢ Lodist(z(u), $)*By ~ K,

and consequently

2 L ~
ﬂ{—:—a)ﬂu —ug||By ¢ Ladist(z(u), S)* By,




which means that

2
dist(z(u), §)2§_£1ﬂ[7+.[’_3)”u — gl
[£455))

: 12
dist(2(u), §)< MH“ —uglj? .
LYL2

dist(z(u), §)<||z (1) — 2(w)]| +dist(z(u), S)< <Lo + M) o — o) .

or

Finally,

aLz

a

In the theoremn below we prove general Hélder calmness of the solution set-
valued mapping S of order min{p, ;£ }, around (ug, Zo), whenever the order of
continuity of the set-valued mapping A is p > 1, xp is strong of order m > 1
and the solution set S( fo, Ao, K} is strict of order 2 in some neighbourhood of
Zg.

Theorem 6.2 Let X = (X,|[- ), Y = (Y, |- |}) and U = (U, { - I} be normed
spaces and let K C'Y be a closed conver pointed cone in Y, intK # 0. Assume
that there exists ry > 0 such that § = S(fo, Ap, K) N (zg + 71Bx) is a set of
strict minimal solutions of order £ to (Py). If

(i) fo: X — Y is Lipschitz locally at zq,

(%) A:U — X is calm of order p > 1 and Lipschitz lower scmicontinuous of
order p > 1 at (ug, zo) € graphA,

(#ii) =g € S(fo, Ao, K) is strong of order m > 1 with constents « > O and
ro > 0,

then S is Hélder calm at (u,z0) of order min{p, ;E-} in the scnse that for a
constant L > 0, a neighbourhood V of 2o and any z(u) € S(u) NV we have

dist(z(1), S(ue)<Lllu — ugl| ™" Prow
for all u in some neighbourhood Uy of ug.

Proof. By the calmness of A, at (ug,zg) € graphA there is an Lg, rp > 0 and
to > 0 satisfying

A(u) N (zo -+ rgBx ) C A(ug) + Loflu — uol|”Bx



for |lu — ug|| < tg. Without losing generality we can assume that ro + 1ty < ;.
Put 7 = min{rg, r2}. For each z(u) € A(u) N (zo + rBx) there is z(u) € A(up)
such that

Jl2(w) — e(u)ll<Loflu — uoll” .

Without loss of generality we can assume that S(u) N (zg + rBx) # @ for all
u, Jlu~ugll < t, t > 0. Take any z(u) € S(u) N (xo + rBx). There cxists
z(u) € A(ug) such that

ffz(u) — 2(u)ll<Lollu — uol)” .
By the local lipschitzness of fy around zq,
i fo(z(w)) = folz(u)li<Lflz(u) - s(u)li<inLoflu — uollP.

Since by (i), zo € S(fo, Ao, K) is strong of order m, and z(u) € AgN(zo+rBx)
there exists Z(u) € S(fo, Ao, K) N (zo + rBx) such that

fo(2(1)) = fo(2(w)) — ku, ku €K ku+afl2(u) — Z(u)|" By C K.

By the lower Lipschitz continuity of A there exist Lz > 0, t; > 0, and Z(u) €
A(u) such that
12(x) — Z(w)li<Lalle — woll?,

for [lu — upjl<t;. Now we show that

oteta) ~ foleu) < L)y — g,

Indeed, by the local lipschitzness of fy around zg,
[ fo(@(w)) ~ fo(z(w)l<n|Z(w) — Z(u)l|<Li Lsltu — w7,
and hence,

fo(@(w))— folz(w) = [fo(&(w) — fo(2(u))] + [fo(2(w) — folz(w)] + [folz(n)) ~ falz(u))]

- —ky + w(u),

where

w(w) = [fo(Z(u)~fo(Z(u)+{fo(z(w) - fo(z(w)] and |hw(u)l<la (Lat+Lo)lle—uol/”.
Assume that Ln(Ls 4 Lo)< (I (Lo + Lg))™ . If it were

L3(Ls + Lo)
e

Ikull > fles — woP/,

then
meﬁwb~%#QWuW"
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and
allz(u) — 2(wWl™ > (La{Ls + L1))™ Jlu — uo||".

Then it would be w(u) € al|Z(u) — 2(u)|[™Bx which would contradict the min-
imality of z(u), since it would imply that

ku +w(u) € K.

This proves that

1 ol2(u)) - fo(Z(u))l|<——L%/~+—L“—)ll ~ ot/
or
LZ(L() + Lg)

fo(2(u)) - fo(2(u)) € ‘T""‘“ﬂ”p/mﬁw
Observe now that [[2(u) — zofl < r and hence z(u) € §. By the strict local
minimality of §
Folz(w) ~ fo(Z(w)) & Lodist(z(x), 5)2By ~ K.

Finally,

Li(Lo + L3)

a

and consequently

2
Li(Lo + La)”u

a

flw — uol[”/™ By ¢ Lydist(z(u),5)*By — K,

— ul"/™ By ¢ Lydist(z(u), 5)* By ,

which means that
L() + Lg)

dist(z(w), S)2 ~Wal, flee — woliP/™
or
. & L%(Lo + L:r) B
dist(z(u), S)< ——"\‘/_E_L—z__”u —ugf[ .
Finally,

: o : g L%(LO + L ) min {p, 3%
dist(z(u), S)<llz(w)—2(u)]|+dist(z(u), S)< (Lo + —ml) ffu—uolf iz} .

5]

Note, in particular that in the case when the solution set is strict of order 2
around z¢ and zo is strong of order 2, then the solution set-valued mapping is
calm at (up,zg) of order 1/4 which differs from the scalar case.
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