
Raport Badawczy 

Research Report 

W ell posedness 

RB/77/2003 

and Iipschitzness of solutions 
in vector optimization 

E. Bednarczuk 

Instytut Badań Systemowych 
Polska Akademia Nauk 

Systems Research Institute 
Polish Academy of Sciences 



POLSKA AKADEMIA NAUK 

Instytut Badań Systemowych 

ul. Newelska 6 

O 1-44 7 Warszawa 

tel.: (+48) (22) 8373578 

fax : (+48)(22)8372772 

Kierownik Pracowni zgłaszający pracę: 
Prof dr hab. inż. Kazimierz Malanowski 

Warszawa 2003 



Well-posedness and Lipschitzness of solutions in 
vector optimization 

Ewa M. Bednarczuk 

1 Introduction 

The role of well-posedness in scalar optimization problems is widely recognized . 
The notion of a well-posed problem and its generalizations play an important 
role in model building, in numerical problem solving, and in investigating sta­
bility of solutions. 
Nowadays, vector optimization (or multiple objective optimization) is gaining 
momentum in the development of its theory and applications. lt has its origin 
primarily in economics. Recently, multiple objective techniques enter also in 
solving engineering design problems. 
Different approaches to well-posedness in vector optimization are scattered in 
the literature. Since the behaviour of minimizing sequcnces seems to be crucial 
from the point of view of applications we choose the approach to well poscd­
ness in vector optimization via convergence of rninimiziug st.~uences so as to 
encompass the non-uniqueness and noncompactness of solution sets. 
In the present paper we investigate the concept of strict and strong solutions to 
vector optimization problems. When applied to scalar optimization problems, 
these concepts both reduce to the concept of weak sharp minima d ue to Polyak 
[12] and investigated by many authors, eg. Studniarski and Ward [16], Burke 
and Deng [10], Burke and Ferris [9]. It is known that strict solutions play an 
important role in deriving conditions for Holder calmness in scalar optimization 
(see e.g. [81). In Theorem 6.1 we prove calmness of solutions to parametric 
vector optimization problcms at points which are strict and strong. 
In the class of well-posed problems we study conditions ensuring Lipschitz 
and/or Holder continuity of efficient solutions to parametric vector optimization 
problems. We prove that in the case where calmness of the solntion set-valued 
mapping S at some solution x0 is of interest it is cnough to assume that the 
solution set is simultaneously strict and strong around x0 • 



2 Preliminaries 

Let Y = (Y, li · li) be a normed linear space wit.h the open unit bali Bv and let 
/C C Y be a close<l convex convex pointe<l cone in Y. Let A C Y be a subset of 
Y. An elementy E A is minimal, y E Min(A, /C) ilf (A - y) n (-/C) = {O}. An 
element y E A is a loca! minimum, 11 E LMin(A, /C) ilf there is a neighbourhood 
V of 11 (A -11) n (-/C) n V= {11}. 
Let U= (U, li· li) be a normed space with the open unit bali Bu„ A set-v-olued 
mapping r : U4 Y , is 

loeally upper Lipschitz at Uo (see Robinson [15J, Aubin,Ekeland [li) ifthere 
arc positive nurnbers Land r such that r(u) C r(Uo) + LIiu - UollBu for 
UEUo+rBu 

locally Lipschitz at Uo if there are positive numbers L and ,. such that 
r(ui) C r(tt2) + LIJtt1 - tt2ł1Bu for tt1, tt2 E tto + rBu 

locally upper Holder of order m at tto if there are positive numbers L and 
r such that r(tt) C r(tto) + Llltt - UollmBu for tt E Uo + rBu 

locally Holder of order m at tł() if there are positive numbers L and r suci, 
that r(tti) C r(tt2) + LIJu1 - u2llm Bu for u,, U2 EU()+ rBu 

calm of order q or Holder calm of order ą at (Uo,Yo) E graphr if there 
exist constants L > O, r > O, and t >Osuch that r(u) n (x0 + rBv) C 

r(un) + LIiu - uoll for Ilu - uoll < t. 

lower Lipschitz at (,'<l, Yo) E gravhr, if there exist constants L > O ,mel 
t >Osuch that (Yo+ Llltt - ttollBv) n r(u) # 0 for Ilu - ttoll < t. 

3 Well-posedness of vector optimization prob­
lems 

Let X= (X,11-11) be a norme<l space with the open unit bali Bx, Vector 
optimization problem 

/C - min fo(x) 
(Po) 

subjcct to x E Ao, 

consists in finding the set Min(/0 , A0 , /C) = Min(f0 (Ao)I/C) called the minimal 

( or efficicnt) point set of (Po), and the solution set S(f0 ,A0 ,/C) = {x E 
Ao lfo(x) E Min(fo,Ao,/C)}, where /o: X-+ Y is a mapping and Ao C X is a 
subset of X. 
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The point x0 E Ao is called a /ocal minimal solution of (Po), x0 E LS(Ao, / 0 , K), 
ilf there is a neighbourhood V of xo such that (/o(AonV)- / 0 (xo))n(-K,) = {O}. 
In othcr words, x0 E LS(Ao,/o,K) iff there is uo x E A0 n V, x f= x0 , such that 
fo(x) - fo(xo) E -K. 
In the sequel we often refer to problem (Po) as the original problem or the 
unperturbed problem. The space X is called the decision space and Y is callcd 
the outcome space. 

Definition 3.1 Lete E Y. The problem (Po) is upper Lipschitz well posed 
if 

IT(e) = Ao n / 0 1{Min(/o, Ao,K) +e - K,) 

IT{e) = u 
,eMin(fo,Ao,IC)) 

is locally upper Lipschitz at O. 

Definition 3.2 Let 1/ E Min(fo,Ao, K). Lete E Y. The problem (Po) is 71-
upper Lipschitz well posad i/ 

is loeally upper Lipschitz at O. 

Note that IT(e) = 0 for e E -K. IT is locally upper Lipschitz at O if 

IT{e) = Ao n fo 1 (Min(fo,Ao,K) + e - K) C M·in(fo,Ao,JC) + llellBx 

for llell~ro. 

4 Lipschitzness of solutions to perturbed vector 
optimization problems 

Let U be the space of parameters. In the sequel we assume that U is a normed 
space. We cmbed the problem (Po) into a family (Pu) of vector optimization 
problems parametrised by a parameter -u E U, 

JC - min /{-u, x) 
subject to x E A(-u), (Pu) 

where f : U x X • Y is the parametrised objective function and A : U=ł X, 
is the fcasible set multifunction. The proble111 (Pi,) corresponds to a parametcr 
value uo, / 0 = /(-uo, ·), A(-uo) = Ao. The performance 111ultifuuction 'P: U=ł Y 
is defined as 'P{-u) = Min(f(-u,-),A{-u),JC) and the solution multifuuction S: 
U=ł YisdefinedasS(-u)= S(f(-u,•),A(-u),JC). 
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In the thcorem bclow we prove loca! upper lipschitzncss of the solut.ion set­
valued mapping S at a given Uo for a family of pararnetric problems of the form 

K, - ruin /o(x) 
subjcct to x E A(n), (P,.) 

in the class of the original problems (Po) being upper Lipschitz well posed. 

Theorem 4.1 Let X, Y and U be normed space.,. Let K, C Y be a closed convex 
pointed cone in Y, intK i 0. I/ 

(i} (Po) is upper Lipschitz well posed, 

{ii} / 0 is Lipschitz on X, A is locally upper Lipschitz at n0 , 

{iii} P is locally upper Lipschitz at tto , 

then S is locally upper Livschitz at n0 • 

Proof. There exists L1 such that 

A(u) C A(Uo) + L,llu- UollBx = A.i+ L1llu - ttol!Bx, (1) 

for n E n0 + r 1Bu. By Lipschitz well-posedness of (Po), we have 

Ao n /0- 1{Min(Jo, Ao, K) + e: - K,} C S(uo) + Llle:IIBx 

for any c E roBv . Assuming that c = O(lln - noli) , i.e., llc:11:'.S'..alln - Uoll and 

Ao n fo 1 {Min(/o, Ao,K) + alln - Uol!Bv - K,} C S(Uo) + Lalin - ttol!Bx . (2) 

By (1), and (2), 

Ao C [S(tto) + Lallu - nollDx) u [X\ fo 1{Min(/o,Ao,K) + allu - nollBv - K,}), 

and 

A(u) C A0 +L11łn - Uoł1Bx 
C [A(Uo) + Lalin - Uol!Bx + Ldln - nol!Bx) 
U[X \ fo 1 {Min(/o, Ao, K,) + allu - ttollBv - K,} + L1 Ilu - Uol!Bx ). 

(3) 
Since Jo is Lipschitz on X, there exists L3 such that for any x1, x2 E X 

Hencc, 

/o[X \ / 0- 1 {Min(/o, Ao, K,) + allu - nol!Bv - K,} + LIiu - uollBx) 
C /o[X \ fo 1{Min(/o,Ao,K) + allu - nollBi, - K,}) + L3Lllu - uollBv, 
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and 

fo[X \ fo 1 {Min(/o,Ao,,q + allu - uollBy - IC}] + L3Lllu - uollBy 
CY\ [Min(/u ,Ao,K.) + allu - uullBy - K.) + L3Lllu- uullBy. 

Assuming that LL3 < a we get 

and 

Y \ [Min(/o, Ao, K.) + allu - uollBy - K.) + L:iLllu - uollBy 
C Y \ !Min(/o, Ao, K.) + L3Lllu - uu IIBv - KJ, 

fo 1 [Y\Min(/o, Ao, K.)+L3Lllu-uoł1By-K.J C X\Jo'[Min(/o, Au, K.)+L3Lllu-uoł1By - K.] 

Hence, by (3), 

A(u) C Ao + LIiu - UollBx 
c [S(uo) + follu- uollBx + LIiu- uollBxl U [X \/0 1[Min(/u,Ao,K.) + L3Lllu - "UollBy - KII 

Dy (iii), for any x E S(u), u E Uo +r1Bu 

f(x) C Min(/o,Ao,K.) + ½Ilu- uollBy, 

and under the assumption that ½~LL3 we get 

S(u) C S(Uo) + (fo + LL3)1łu - uollBx 

o 

5 Strict and strong solutions to vector optimiza­
tion problems 

In this section we rccall the notions of strict and strong solutions to vector 
optimization problem (Po)-

We say that </> : R+ • R+ is an admissible Junction if </> is nondecreasing 
and !imt-,o q,(t) = O. 

Definition 5.1 [2/ We say that xo E S(/0 , A0 , K.) is q,-strict i/ tlicre is an 
r > O such that for each x E Ao n (x0 + ,·B), x # x0 , 

Uo(x) - fo(xo)) n (q,(1/x - xoll)By - K.) = 0, 

where q, is an admissible Junction. 

Definition 5.2 We say tliat x0 E S(/0 , A0 , K.) is strict of order m i/ thcre is 
an r > O such that for cach x E Ao n (xo + ,·B), x # xo, 

(/o(x) - fo(xo)) n (allx - xollm By - K.) = 0 . 
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Definition 5.3 (2/ Let intK, i 0. We say that a solution x0 E S(/0 , A 11 , /C) is 
</>-strong if thcre is an r > O such that /01· each x E A0 n ( x0 + r B x) there 
exists s, E S(/o, Ao, IC) n (xo +,·Ex) 

fo(x) - fo(sx) - </>(llx - sxll)By CIC, 

where ,p is an admissible Junction. 

Definition 5.4 (2, 13, 14/ Let int/C # 0. We say that a solution x0 E S(/0 , A0 , IC) 
is strong of order m if there are constants r > O and a > O such that for each 
x E A0 n (xo + rBx) there exists sx E S(/0 , A0 ,/C) n (x0 + rBx) 

fo(x) - fo(sx) - allx - sxll"' By CIC. 

ff m = 1 we .say that the solution set is strong. 

6 Holder calmness of solutions to parametric 
vector optimization problems 

In this section we prove calmness of order 1/2 of solutions to parametric vector 
optimization problems at points which are simultancously strict of order 2 and 
strong. Similar results for scalar optimization problems werc obtaincd by Bon­
nans and Shapiro [8], sec.4.4.2. In linite dimensional spa.ces, wcak sharp minima 
of order 2 were investigated by Ioffe and Shapiro [llj . 
To prove aur thcorem we nced one mare delinition. 

Definition 6.1 We say that the set S C S(/0, A0 , IC) is a set of strict minima 
of order m of the problem (Po) if there is a > O and r > O such that for any 
x ES and anyx E Aon(S+rBx), x <f. S, we have 

[fo(x) - fo(x)] n [adist(x, sr Dy - /Cl = 0, 

where, for any subset CC X, we put dist(x, C) = inf{llx -cll I c EC} . !fm = 1 
we say that the solution set S is strong. 

Now we are in a position to provc our main result. To fix notations Jet us 
recall that any function fo : X • Y is locally Lipschitz around xo if there 
exist constants L1 > O and r2 > Osuch that for any X1,x2, llx1 - xoll < r2, 
llx2 - xoll < r2, we have 

llfo(xi) - fo(xs)ll:$.L1llx1 - x2II-

Theorem 6.1 Let X = (X, li · 11), Y = (Y, li · li) and U = (U, li · li) be normed 
spaces and let IC C Y be a closed convex pointed cone in Y, inlK, # 0 . A ssume 
that there exists r1 > O such that S = S(10 , A0 , IC) n (x0 + r1Bx) is a set of 
strict minimal solutions of order 2 to (P0 ). ff 
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(i) fu : X --+ Y is Lipschitz locally at x 0 , 

(ii} A : U --+ X is calm and Li1>schitz tower semicontinuous at (1to, x 0 ) E 
_graphA, 

(iii) x 0 E S(/0 , A0 , K) is strong urith constants o: > O and r 2 > O, 

then S is Hólder calm at (uo, xo) of order ½ in the sense that for a constant 
L > O, a neighbourhood V of xo ,md any x(u) E S(u) n V we have 

dist(x(u), S( tło) )$.LIiu - uo li½ 

jo,· all ·a in some neighbourhood Uo of uo. 

Proof. By the calmncss of A, at (uo, xo) E graphA there is an L0 , r0 > O and 
lu > O satisfying 

A(u) n (xo + roBx) c A(uo) + Lollu - uollBx, 

for Ilu - uoll < to . Without losing generality we can assume that 1·0 + to < r1. 

Put r = min{ro, r2}- For each x(u) E A(u) n (xu + rBx) there is z(u) E A(Uo) 
such that 

llz(u) - x(u)ll:;Lollu - uoll -

Without loss of generality we can assume that S(u) n (x0 + rBx) i- 0 for all 
u, Ilu - uoll < t, t > O. Take any x(u) E S(u) n (xo + ,·Bx) . There exists 
z(u) E A(uo) such that 

llx(u) - z(u)IISLollu - uoll -

By the !ocal lipschitzness of / 0 around x 0 , 

11/u(z(u)) - fo(x(u))llsLdlz(u) - x(u)IISL1Lollu - uoll -

Since by (iii), xu E S(fo,Ao,K) is strong, and z(u) E Ao n (xo + rBx) there 
exists z (u) E S(/0, A0, K,) n (x0 + rBx) such that 

fo(z(u)) = fo(z(u)) - ku, ku E K, ku+ allz(u) - z(u)IIBy CK,. 

By the !ower Lipschitz continuity of A there exist La > O, t1 > O, and x(u) E 
A(u) such that 

llx(u) - z(u)IISL3llu- uull, 

for Ilu - •Lollst,. Now we show that 

Lo(L1 + L3) 
11/o(z(u)) - /o(z(u))II < ~---'--=ilu - uoll-

°' 
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Ind~'Cd, by the !ocal lipschitzncss of / 0 around x0 , 

11/o(x(u)) - /o(z(n))ł15.Ldlx(u) - z(u)ll5.L1Lallu - uoll , 

and hence, 

/ 0 (x(u))- fo(x(u)) = [fo(x(u) - fo(z(u))] + lfo(z(u)) - /o(z(u))] + [/o(z(u)) - /o(x(u))] 
= - k., +w(u), 

where 

w(u) = [f0 (x(u)- /o(z(u))]+l!o(z(u)) - /o(x(u))] and llw(u)ll5.L, (La+Lo)llu- Uoll , 

If it were 

then 
LHLa + L.) 

Ltllz(u) - z(u)II > ~--~uu - uoll 

°' and 
ollz(u) - z(u)II > L1 (La+ Li)l!u - uol!. 

Then it would he w(u) E ol!z(u) - z(u)l!Bx which would contradict the mini­
mality of x(1L), since it would imply that 

k., + w(u) E K.. 

This proves that 

L~(Lo + La) 
11/o(z(u)) - /o(z(u))ll<---llu - Uol!, - °' 

or 
fo(z(u)) - fo(z(u)) E LHLo + La) 1!11 - tLollBy . 

°' 
Observe now that llz(u) - xoll < r and hcnce z(u) E S. By the strict !ocal 
minimality of S 

/o(z(u)) - /0(2(11)) rf_ L2dist(z(u),S)2 By - K, . 

Finally, 
L~(Lo + La) - 2 ~--~jiu - uol!Dy r/. L,dist(z(u), S) Dy - K,, 

°' and consequently 

LI(Lo + La) - 2 
~~0-~1111 - uol!By r/. L2dist(z(t1), S) By, 
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• 

which means that 

. - 2 LHLo + L3) 
d1st(z(u), S) ~ L Ilu - ttoll 

'-' 2 

or 

Finally, 

dist(x(u), S~llx(u) - z(u)II +dist(z(u), s~ ( Lo + 

o 

In the theorem below we prove generał Holder calmness of the solution set­
valued mapping Sof order min{p, ,J;;; }, around (Uo, x0), whenever the order of 
continuity of the set-valued mapping A is p ;::: 1, xo is strong of order m ;::: 1 
and the solution set S(J0 , A0 , K,) is strict of order 2 in some neighbourhood of 
Xo. 

Theorem 6.2 Let X = (X, 11 · li), Y = (Y, li · li) and U = (U, li · li) be normed 
spaces and let K, C Y be a closed convex pointed cone in Y, intK, # 0. Assume 
that there exists r1 > O such that S = S(/o, Ao, K,) n (x0 + r1Bx) is a set of 
strict minimal solutions of order 2 to (Po) . Jf 

(i) fo : X -+ Y is Lipschitz locally at xo , 

(ii) A : U -+ X is calm of order p > I and Lipschitz /ower semicontinuous of 
order p ;::: 1 at ( Uo, Xo) E graphA, 

{iii) x0 E S(/0 , A0 , K,) is strong of order m ;::: 1 with co11Stants a > O and 
r2 > O, 

then S is Hólder calm at (Uo,xo) of order min{p, ,J;;;} in the sense that for a 
constant L > O, a neighbourhood V of Xo and any x(u) E S(u) n V we have 

dist(x(u),S(uo))~Lllu - uoll'";"(P,-ła; 

for all u in some neighbourhood Uo of Uo. 

Proof. By the calmness of A, at (u0 , x 0 ) E graphA thcrc is an L0 , r 0 > O and 
to > O satisfying 

A(u) n (xo + roBx) C A(Uo) + Lollu - uoll''Bx , 
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for Ilu - ttoll < to, Without losing generality we can assume that r0 + t0 < r 1 . 
Put r = min{ro,r2} , For each x(u) E A(u) n (xo + rBx) there is z(u) E A(uo) 
suci, that 

llz(u) - x(u)ll'.,;Lollu - uollP . 

Without loss of generality we can assume that S(u) n (x0 + rBx) f 0 for all 
u, Ilu - ttoll < t, t > O. Take any x(u) E S(u) n (xo + rBx) . Thcre cxists 
z(u) E A(u0 ) such that 

llx(u) - z(u)ll:,;Lollu - uollP. 

By the !ocal lipschitzness of /o around x 0 , 

11/o(z(u)) - /u(x(u))ll:,;LifJz(u) - x(u)ł1:,;L1Lollu - •'<lllP . 

Since by (iii), Xo E S(/o,Ao,K) isstrongoforderm, and z(u) E Aon(xo+rBx) 
there exists z(u) E S(/o,Ao,K) n (x0 +rBx) suci, that 

fo( z(u)) = /o(z(u)) - ku, ku E K', ku+ all z(u) - z(u)llm By CK, . 

By the !ower Lipschitz continuity of A there exist L3 > O, t1 > O, and x(u) E 
A(u) such that 

llx(u) - z(u)ł1:,;L31łu - uollv, 

for Ilu - ttolf:,;t1 . Now we show that 

Lo(L, + L3) I 
11/o(z(u)) - /o(z(u))II < ifti Ilu - uollP m . 

=a 

lndeed, by the loca] lipschitzness of / 0 around x 0 , 

and hence, 

fo(x(u))-fo(x(u)) = [/o(x(u) - /o(z(u))] + [Jo(z(u)) - /o(z(u))] + Uo(z(u)) - fo(x(u))J 
= - ku +w(u), 

where 

w(u) = [/o(x(u) - /o(z(u))]+[/o(z(u)) - /o(x(u))] and 1łw(u)ll:,;L1 (L3+Lo)llu- uollv. 

Assume that L1 (L3 + Lok (L1 (Lo + L3))m . If it were 

llkull > Li(L~ Lo) Ilu - uollp/m, 

then 

Ldlz(u) - z(u)II > L?(L~ LJ) Ilu - ttollp/m 

10 
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and 
a[lz(u) - z(u)II"' > (L1(L3 + L1))"' Ilu- uollP. 

Then it would be w(u) E a[lz(u) - z(u)ll"'Bx which would contradict the min­
imality of x(u), since it would imply that 

ku+ w(u) E /C. 

This proves that 

or 

llfo(z(u)) - fo(z(u))ll~Lf(L'~ L3) Ilu- Uollp/m, 

fo(z(u)) - fo(z(u)) E LHL~ L3) llu-Uollp/mBy. 
-a 

Observe now that llz(u) - xoll < r and hence z(u) E S. By the strict !ocal 
minimality of S 

fo(z(u)) - fo(z(u)) rf ~dist(z(u), 8)2 By - IC. 

Finally, 

and consequently 

which means that 

• - 2 L1(Lo + L3) / 
d1st(z(u),S) ~ 'y'aL2 Ilu- ttollP m 

or 

Finally, 

dist(x(u), Bkllx(u)-z(u)ll+dist(z(u), Bk ( Lo + 

• 
Note, in particular that in the case when the solution set is strict of order 2 
around x0 and x0 is strong of order 2, then the solution set-valued mapping is 
calm at (Uo, x0 ) of order 1/4 which differs from the scalar case. 
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