
Raport Badawczy 

Research Report 
RB/48/2006 

On sharp minima in vector 
optimization with applications 

to multicriteria linear problems 

E. Bednarczuk 

Instytut Badań Systemowych 
Polska Akademia Nauk 

Systems Research Institute 
Polish Academy of Sciences 



POLSKA AKADEMIA NAUK 

Instytut Badań Systemowych 

ul. Newelska 6 

O 1-44 7 Warszawa 

tel.: (+48) (22) 8373578 

fax: (+48) (22) 8372772 

Kierownik Pracowni zgłaszający pracę: 
Prof. dr hab. inż. Kazimierz Malanowski 

Warszawa 2006 



On sharp minima in vector optimization with 
applications to multicriteria linear problems. 

Ewa Bednarczuk 
Systems Research Institute of the PAS, Warsaw, Poland 

Abstract 

In the paper we discuss the notions of !ocal and global sharp and weak 
sharp solutions to vector optimization problems. As an application we 
provide sufficient conditions for stability of solutions in perturbed prob­
lems and we specialize these conditions to linear multicriteria problems. 
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1 Introduction 
Let Y and Y be normed spaces and let JC C Y be a closed convex pointed 
cone in Y . We consider vector optimization problems of the form 

(VOP) 
JC - min f(x) 

subject to x E A 

where f : X -> Y, A C Y is a feasible set. By EC Y we denote the set of 
all global efficient points of (VOP), i.e., a EE if (f(A)-a)n(-JC) = {O} . 
The set S C X defined as S = A n f- 1 (E) is the set of all global solutions 
to (VOP). 

A point xo E A, f(xo) = a, is a loca! solution to (VOP) if there exists 
p > O such that 

(f(A n B(x0 , p)) - a) n (-JC) = {O} . 

a E f(A) is a local efficient point if there exists p > Osuch that 

(f(A) n B(a, p) - a) n (-JC) = {O}. 

If f(xo) E f(A) is a loca! efficient point to (VOP) and fis continuous at 
x o, then xo is loca! solution to (VOP). Moreover, if f(A) is a convex set, 
then the sets of loca! and global efficient points coincide. 

We discuss the notions of sharp and weak sharp solutions to (VOP) . 
In Section 2 loca! notions are presented and their basie properties are 
proved. In Section 3 global sharp and weak sharp solutions are discussed. 



The equiva!ence between loca! and global notions is investigated under 
standard convexity assumptions. In Section 4 sharp and weak sharp solu­
tions are exploited to derive generał stability results for perturbed prob­
!ems. Finally, in Section 5, the generał results are applied to formulate 
stability conditions for linear multicriteria optimization problems. 

2 Local sharp and weak sharp solutions 

In scalar optimization, the role of weak sharp minima and their relation­
ships to the existence of error bounds and stability is widely recognized, 
see e.g. [1, 2, 3, 5, 6). In Section 4 we use vector weak sharp minima to 
derive stability results. 

By B(xo, r) we denote the open bali of centre xo and radius r, by Bx 
and By we denote open unit balls in X and Y, respectively. Moreover, 
for any set CC X, d(x, C) = inf{l/x - cl/ : c EC}. 

For any a E E, put 

S,, := {x ES: f(x) = a}. 

Definition 2.1 We say that xo E A, f(xo) = a, is a loca] a-weak sharp 
solution to (VOP) if there exist constants T > O and p > O such that 

f(x) - f(xo) ff. Td(x, So)By - iC for all x EA n B(xo, p) x ff. S°'. (1) 

Any ]ocal a-weak sharp solution xo EA is a loca! solution to (VOP) since 
by (1), 

f(x) - f(xo) ff. -iC, for x EA n B(xo, p) f(x) =I f(xo) 

which says that xo is a loca! solution to (VOP). 

A function f is locally Lipschitz around xo E X if there exist constants 
L J > O and p > O such that 

f(x) - f(x') E L11/x - x'jjBy for x, x' E B(xo, p). 

The fo!Jowing proposition relates weak sharp solution to well-posedness 
of (VOP) (see also [11, 12, 13). It improves Proposition 4.3 of [4) in the 
sense that here we do not assume that intiC o/ 0. On the other hand, 
the multifunction [°' defined below is slightly different from that used in 
Proposition 4.3 of [4). 

Proposition 2.1 Let xo EA, f(xo) = a. 

{i) ff xo is a loca/ a-weak sharp solution to (VOP) with constants T > O 
and p > O, then 

f(x) - f(xo) ff. Td(x, So)By x EA n B(xo, p) x ff. So . (2) 

(ii) xo is a local a-weak sharp solution to (VOP) with constants T > O 
and p > O if and only if the following condition holds: 
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(C) there exist €o> O and p > O such that for each O<€< €o 

E"'(c:)nB(xo,p) := AnB(xo,p)nr 1 (a+c:By-łC) C So+E~By. 
T 

Proof. ( i) immediate. 
To prove (ii), suppose on the contrary that (C) does not hold, i.e., 

there exist sequences En --> o+ and (xn) C A, Xn --> xo satisfying 

/(xn) E a+ €nBY - K, for n 2: 1, 

and d(xn, Sa) 2: En¼. Hence, Xn \i!" Sa and for n 2: 1 

J(xn) =a+ Enbn - kn, where bn E By , kn E K. 

Therefore, 

Clearly, 
- En B 
b,. := d( S ) b„ E y, 

T Xn, a 

and 

Suppose now that xo E Sa is not a !ocal a-weak sharp solution with 
constant T > O. There exists a sequence (xn) C A\ Sa, Xn --> xo, such 
that 

f(xn) - a E Td(xn, S 0 )By - K , 

and one can choose Tn < T such that 

J(xn) - a E T„d(x,., S")b,. - kn, where b„ E By, kn E K. 

Take En := Tnd(xn, Sa) --> O. Hence, for any given p > O and all n 
sufficiently large 

Xn EA n B(xo, p) n r 1 (a + EnBY - łC) 

while d(xn, Sa) = r:, En > ¼en which contradicts condition (C). • 

Condition (C) of Proposition 2.1 (ii) can be rephrased as follows. The 
set-valued mapping E"' : R+=! X defined as 

E"'(c:) :=An r 1 (a + c:By - łC) 

is calm at any (O, xo) E graph E, with constants p > O and ¼ > O, where a 
set-valued mapping r: X=! Y is calm at (xo, Yo) E graph r if there exist 
constants p > O, L > O and t > O such that 

r(x) n (yo+ pBy) C r(xo) + Lllx - xollBY for XE B(xo, t). 

Moreover, E"'(O) = Sa. . For similar results see e.g. Proposition 4.1 and 
Proposition 4.3 of (4). 

Below we define loca! sharp solutions to (VOP) . 
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Definition 2.2 We say that xo E A, f (xo) = a, is a !ocal sharp solution 
to (VOP) if there exist constants T > O and p > O such that 

f(x) - f(xo) fi Tllx - xo/lBv - K, for x EA n B(xo, p) x fi S,,. (3) 

Clearly, each loca! sharp solution xu, f(xo) = a, is a loca! a-weak sharp 
solution. Let us note that condition (3) does not imply that xo is a locally 
unique solution to (VOP), whereas the condition 

f(x) - f(xo) fi Tllx - xollBv - K, for x EA n B(xo, p) x f xo. 

(see e.g. [10]) implies that xo is a locally unique solution to (VOP) in the 
sense that f(x) f f(xo) for all x E B(xo,p). 

We say that a EE is a local strict efficient point of order 1 to (VOP) 
if there exist constants 'Y > O and p > O such that 

f(x)- f (xo) fi 'Yllf (x)- f(xo) IIBv-K for x E AnB(xo, p), x fi So. ( 4) 

Proposition 2.2 ff fis locally Lipschitz around xo with constant LJ and 
xo E A, f(xo) = a, is a local sharp solution with constant T > O, then 

T ~ LJ, 

and a is a loca/ strict ejficient point of order 1 with constant { 1 . 

Proof. Since fis locally Lipschitz around xo, there exist constants LJ > O 
and p > O such that 

llf(x) - f(xo)II ~ LJllx- xoll for x E B(xo,p). (5) 

If it were T > L f, then it would be 

f(x) - f(xo) fi LJllx - xollBY - K, for x EA n B(xo, p), x fi S°' 

and consequently 

f(x) - f(xo) ./. LJllx - xollBv 

contradictory to (5). Moreover, by (5), 

T 
f(x) - f(xo) ./. LJ llf(x) - f(xo)IIBv - K, for x EA n B(xo, p), x ./. S°' 

which proves that a is a !ocal strictly efficient point of order 1. • 

We define directional differentiability of f at xo in the direction u via 
the contingent derivative 

f '( ) 1. f(xo + tv) - f(xo) 
xo; u = 1m 

(t,v)-(O+ ,u) t 

and we say that f is directionally differentiable at xo if f is directionally 
differentiable at xo in any direction v E X. 

The following proposition provides sufficient conditions for sharp so-
1 utions in terms of contingent directional derivatives. Put 

S°' = {x E S : f(x) = f(xo) x f xo}. 
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Proposition 2.3 Let X be a finite dimensional space. Let f be direc­
tionally differentiable at xo E A, f(xo) = a. Jf, for any tangent direction 

O i v E TA\sJxo) 
J'(xo; v) r/. TBy - JC, 

where Ev stands for the closure of By, then xo E A is a /ocal sharp 
solution to (VOP) with constant T > O. 

Conversely, if xo E A is a loca/ sharp solution with constant T > O, 
then for any tangent direction v E TA\S" (xo), v # O, 

J'(xo; v) r/. TBy - JC. 

Proof. Suppose that xo is not a !ocal sharp solution with constant T > O. 
For each n 2 1 there exists Xn EA n B(xo, ¼), Xn r/. S0 , Xn-+ xo, such 
that 

f(xn) - f(xo) E TI/Xn - xollBv - IC. 

Putting Vn := 11 :;:==~II we get Vn-+ v E TA\sJxo), v # O, and 

f(xn) - f(xo) . '( . ) -llxn-xoll ETBy-lC, 1.e. f xo,v ETBy-JC. 

Conversely, suppose that xo is a !ocal sharp solution to (VOP). There 
exist constans T > O and p > O such that 

f(x) - f(xo) r/. Tl/x - xollBv - JC for x EA n B(xo, p), x r/. Sa. 

Take any Xn CA \S0 , Xn-+ O and put Vn := 11 ::=:~II and tn = llxn-Xol/ ­

Then Vn -+ v E TA\Sa (xo) and 

f(xo + tnvn) - f(xo) r/. TBy _ JC. 
tn 

Hence, J'(xo;v) r/. TBy - JC. • 

Corollary 2.1 Let X be afinite-dimensional space and let f be direction­
ally differentiable at xo EA. Then, xo is a /ocal sharp solution to (VOP) 
if and only if for any v E TA\Sa• v =/= O, 

J'(xo; v) r/. -JC. 

Proof. 'If' part of the proof is the same as the 'if' part of the proof of 
Proposition 2.3 with T = ¼-

To complete the proof, assume that there exists v E TA \Sa, v /; O, 
such that 

J'(xo;v) = ko E -JC. 

The remaining part of the proof follows the lines of the second part of the 
proof of Theorem 4.1 of (10]. • 

Now we discuss the relationships between !ocal sharp solutions and 
!ocal Henig proper solutions. 
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We say that a E Eis a /ocal Henig proper efficient point to (VOP) if 
there exists a closed convex cone n C Y, int n f= 0, such that /C \ {O} C 
int n and p > O such that 

(f(x) - a) n (-n) = {O} for x EA n B(xo, p) \ Sa. 

Moreover, xo E S, f(xo) = a, is a local Henig proper solution to (VOP) 
if a is a !ocal Henig proper efficient point to (VOP). 

Proposition 2.4 Let 1C be a based cone with a compact base e. 
(i) a EE is a !ocal Henig proper efficient point to (VOP) if and only if 

a is a /ocal strict efficient point of order 1. 

(ii) Let f be locally Lipschitz around xo. ff xo E A is a /ocal sharp 
solution to (VOP), then xo is a !ocal Henig proper solution. 

Proof. (i). Suppose that a is not a !ocal strict efficient point to (VOP). 
There exists x,., E A \ Su, Xn ......, xo such that 

1 
f(xn) - a E -/lf(xn) - f(xo)IIBY - IC, 

n 

i.e., there exist An > O and Bn E 8 such that 

1 
f(xn) - f(xo) = -/lf(xn) - f(xo)llbn - AnBn, where bn E By . (6) 

n 

Hence, 
f(xn) - f(xo) = ]:_bn _ An Bn 

llf(xn) - f(xo)/1 n llf(xn) - f(xo)II · 

Hence, since 8 is bounded, /IBn/1 ~ M for same constant ./I.II> O and 

1 < .!:_ + An M 
- n /lf(xn) - f(xo) li 

and consequently, 
An > _l_ 

llf(xn) - f (xo) li - 2M · 

This proves that llf(x,.)-f(xo)II < 2M. 
An -

Thus, E:n := .! IIJ(x,.~-f(xo)U --+ O and 
n n 

f(xn) - f(xo) = -An(E:n(-bn) + Bn) 

which proves that a is not a loca! Henig proper efficient point. 
Suppose naw that a is not a !ocal Henig proper efficient point. Hence, 

there exists Xn E A\ Sa, Xn --+ xo such that 

1 
f(xn) - a E - cone(-By + 8), 

n 

i.e., there exist An > O and Bn E 8 such that 

f (xn) - f (xo) = An bn - AnBn, where bn E By . (7) 
n 
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Hence, 
f(xn) - f(xo) _ ]:_b _ 0 

\ - n n, 
An n 

and since 8 is compact, we can assume that 0n -> 0o E 8, 0o f= O and 

Vn := f(xn) ).~ f(xo) __, _ 00 _ 

This proves that there exists Jy[ > O such that IIJ(xn)-f(xo)II >_ M and 
An 

consequently 
>-n < _!_ 

11/(x,,) - /(xo)II - M. 

Hence, En := fi llf(x,.(_:_1(xo)II --, O and by (7), 

f(xn) - a= Enllf(x,.) - f(xo)[[bn - kn, where kn E JC. 

This proves that a is not a !ocal strict efficient point. 
(ii). If xo EA, f(xo) = a, is a !ocal sharp solution to (VOP), then by 

Proposition 2.2, a is a loca! strict efficient point of order 1, and by part 
(ii) , a is a !ocal Henig efficient point to (VOP). 

• 

3 Global sharp and weak sharp solutions 

Let a EE. 

Definition 3.1 /4/ We say that xo E A, f(xo) = a, is a global a-weak 
sharp solution to (VOP) if there exists a constant T > O such that 

f(x) - a 't rd(x, Sa)By - JC for all x EA\ Sa. (8) 

Any global a-weak sharp solution xo EA is a solution to (VOP). Indeed, 
if xo is a global a-weak sharp solution to (VOP), then 

f(x) - f(xo) 't -JC, for f(x) i= f(xo) 

which shows that xo is a solution to (VOP). 
If intJC i= QI we consider also weak solutions to (VOP). xo EA is weak 

solution to (VOP), xo E WS, if (!(A) - f(xo) n (- int JC) = QI. It is easy 
to show that if xo E A is a weak solution to (VOP) and not a solution, 
then xo cannot be a global a-weak sharp solution to (VOP). Indeed, if 
xo E WS \ S, then there exists an x E A such that 

f(x) - f (xo) E -JC \ int JC 

and hence 
f(x) - f(xo) E rd(x, S)By - JC. 

Each global a-weak sharp solution is a !ocal weak sharp solution. The 
converse implications will be proved in Proposition 3.3 below. 

Moreover, if xu E A is a global a-weak sharp solution, then x 0 is a 
loca! a-weak sharp solution. The converse implications will be proved in 
Proposition 3.3 below. 
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A function f : X -> Y satisfies the Lipschitz condition on A with 
constant L J > O if 

llf(x) - f(x')II :S L1llx - x'II for all x,x' EA 

Proposition 3.1 Let xo EA be a global a-weak sharp solution to (VOP) 
with constant T > O. 

{i) ff f is Lipschitz on A with constant L1, then 

{ii) The following condition holds: 

(Cl) there exists Eo > O such that for each O :S E :S Eo 

Proof. (i) By assumption, 

f(x) - c, ff. Td(x, So.)By - K. for x EA\ So., 

Suppose on the contr ary that T > L J · Take any x E A\ So. and L J, u < T . 

One can choose E > O and x E So. such that 

and 

d(x, x) < d(x, So.) + E, O < d(x, x) - E 

d(x, x) - E 

L1<u1<T, where u1:=u d(x,x) . 

(ii) Suppose on the contrary that (Cl) does not hold, i.e., there exist 
sequences En -----> o+ and (xn) C A such that 

J(xn) E c, + EnBY - K., n 2: 1, 

and d(xn, Sa) > Enr Hence, for n 2: 1, Xn ff. So., Td(xn, So.) > En and 

J(xn) E c, + Td(x,., So.)By - K., 

which contradicts the fact that xo is a global a-weak sharp solution to 
(VOP). • 

Condition (Cl) of Proposition 3.2 (ii) can be interpreted in the fol­
lowing way: the set-valued mapping Eo. : R+=: X defined in Section 2, 

E0 (E) =An r 1 (a + EBy - K,) 

is upper Lipschitz at any O E dom E, with constant ¾ > O, where a set­
valued mapping I' : X=: Y is upper Lipschitz at xo E dom I' if there exist 
constants L > O and t > O such that 

I'(x) C I'(xo) + Lllx - xollBv for x E B(xo, t). 

Now we define global sharp solutions to (VOP). 
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Definition 3.2 We say that xo EA, f(xo) = a, is a global sharp solution 
to (VOP) if there exist a constant T > O such that 

f(x) - J(xo) lt Tllx - xollBv - K for x EA\ S"'. (9) 

If xo E A, f (xo) = a, is a sharp solution, then xo is a global a-weak sharp 
solution to (VOP). 

Recall that a EE is a global strict efficient point of order 1 to (VOP) 
([4]) if there exists a constant 'Y > Osuch that 

J(x) - a, lć 'Yllf(x) - allBv - K, for x E A J(x) # a. 

If f is Lipschitz on A with constant Lf > O and xo is an a-weak sharp 
solution with constant T > O, then 

and 
f(x) - alt {f IIJ(x) - al/Bv - K, for x EA\ S"', (10) 

i.e. 

f(x) - alt 2...llf(x) - allBv - K for x EA, J(x) -fa. (11) 
LJ 

This means that a E E is a global strict efficient point of order 1 with the 

rate z/. 
In this way we proved the following proposition . 

Proposition 3.2 Let f be Lipschitz on A with constant LJ . ff Xo is a 
global a-weak sharp solution to (VOP) with constant T > O, then a, E E 
is a strict efficient point of order 1 with the rate (,1 . 

Since each global sharp solution xo E A, f(xo) = a, is a global a-weak 
sharp solution, we get the following corollary. 

Corollary 3.1 Let f be Lipschitz on A with constant L f . ff xo E A, 
f(x0 ) = a, is a global sharp solution to (VOP) with constant T > O, then 
a E E is a strict efficient point of order 1 with the rate (,1 . 

Recall that f is a K-convex function if for any ).. E [O, l] and x, x' EX 

f(>-.x + (1 - >-.)x') E )..J(x) + (1 - >-.)f(x') - K. 

Note that if A is convex and/ is K-convex, the sets S"', a E E, are convex. 
Indeed, for any x, x' E S"' 

J(>-.x + (1 - >-.)x') E a - K, 

and it must be f (>-.x + (1 - >-.)x') = a since a E E. 

Proposition 3.3 Let A be convex and let f be K-convex. Let a EE and 
xo ES"'. 

(i) xo is a local sharp solution iff xo is a global sharp solution. 

(ii) Let X be refiexive. Let A be closed and f continuous on A. x 0 is a 
local a-weak sharp solution iff xo is a global a-weak sharp solution. 
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Proof. Note that by the assumptions, S°' is closed and convex. 
(i). If xo a global sharp solution, then clearly xa is a !ocal sharp 

solution. To see the converse, suppose on the contrary that xa is not a 
global sharp solution with constant T > O. Then, there exists x E A \ S°' 
such that 

f(x) - J(xo) E Tllx - xollBy - K. 

Let ,\ E [O, 1]. By the convexity assumptions, 

f(,\x + (1 - ,\)xo) E V(x) + (1 - ,\)f(xo) - K, 

and consequently 

f(,\x + (1 - ,\)xo) - f(xo) E ,\(J(x) - f(xo)) - KC ATl!x - xallBy - K . 

Thus, for any p > O there is,\ E [O, 1) such that ,\x + (1- ,\)xo E B(xo, p) 
and 

f(,\x + (1 - ,\)xo) - J(xo) E Tllx - xol!By - K. 

which contradics the fact that xo is a !ocal sharp solution. 
(ii). If xo is a global a-weak sharp solution, then xo is a !ocal a-weak 

sharp solution. To see that converse, suppose on the contrary that xo is 
not a global a-weak sharp solution with constant T. There exist x EA \S°' 
such that 

f(x) - f(xo) E Td(x, S°')By - K.. 

Moreover, there exists x E S°' such that d(x, x) = d(x, S°') . Let ,\ E (O, 1) . 
By convexity assumptions, ,\x + (1 - ,\)x EA\ S0 , and 

f(,\x + (1 - ,\)x) E ,\f(x) + (1 - ,\)f(x) - K. 

Hence, for any p > O one can choose ,\ E [O, l] such that x + (l - ,\)x E 

A n B(S°', p) and 

J(,\x + (1 - ,\)x) - J(x) E ,\(J(x) - f(x)) - K, c Td(x, S°')By - K, 

which contradicts the fact that xo is a !ocal a-weak sharp solution . • 

Recall that a E Eis a global Henig proper efficient point if there exists 
a closed convex pointed cone n CY, int n# 0, such that K, \ {O} c int n 
and 

(J(x) - a) n (-n)= {O} for all x EA\ S°' 

Moreover, xo EA, f(xo) = a, is a global Henig proper solution to (VOP) 
if 

(J(x) - f(xo)) n (-n)= {O} for x EA\ S°', 

i.e. xo E S°' is a global Henig proper solution if and only if a is a global 
Henig proper efficient point. 

Clearly, each global Henig proper solution is a loca! Henig proper so­
lution. As in Proposition 3.3, we can prove that if A is convex and f 
is K-convex, then each !ocal Henig proper solution (efficient point) is a 
global Henig proper solution (efficient point). 

By this and by Proposition 3.3 we obtain the following global coun­
terpart of Proposition 2.4. 
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Proposition 3.4 IC be a closed convex pointed cone with a compact base 
0 . Let A be convex and let f be IC-convex. 

(i) a E E is a global Henig proper efficient point if and only if a is a 
global strict efficient point of order 1. 

(ii) Let f be Lipschitz on A . ff xo E S"' is a global sharp solution, then 
xo is a global Henig proper solution to (VOP). 

Proof. Follows immediately from Proposition 3.3 and Proposition 2.4. • 

4 Lipschitz continuities of efficient points 
Consider now the parametric problem of the form 

(VOP),, 
IC - min f(x) 

subject to x E A(u), 

where the parameter u belongs to a normed space U. 
By E(u) and S(u) we denote the set of efficient points and the solution 

set to (VOP),,, respectively. 
The behaviour of the sets A(u) around a given uo is characterised by 

the behaviour of the feasible set-valued mapping F: u=: X defined as 

F(u) = A(u), F(uo) = A. 

In this section we formulate global results concerning stability properties 
of the whole sets E(u) and S(u) near uo. Loca] results which refer to the 
behaviour of E(u) and S(u) near uo around a given xo ES will be given 
elsewhere (see also [4]). For other types of convergence of efficient points 
see e.g. [11, 12]. 

In Section 3 we gave the definition of the upper Lipschitz set-valued 
mapping. Now we recall that a set-valued mapping r : u=: X is 

lower Lipschitz at (uo, xo) E graph r if there exist constants L > O and 
t > O such that 

xo C r(u) + LIiu - uollBy for u E B(uo, t), 

/ower Lipschitz at uo E dom r if there exist constants L > O and t > O 
such that 

r(uo) C r(u) + LIiu - uo/lBY for u E B(uo, t), 

Lipschitz around uo E dom r if there exist constants L > O and t > O 
such that 

r(u) C r(u') + LIiu - u'IIBy for u, u' E B(uo, t), 

We start with conditions ensuring ]ower Lipschitness of E and S. Recall 
that the domination property (DP) holds for (VOP) if for any x E A 
there exists x ES such that f(x) E f(x) - IC, i.e. each feasible point x is 
dominated by an element x E S. Let us note that when f : X -, R this 
property is authomatically satisfied provided that the solution set S ,f 0. 
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Theorem 4.1 Let f : X __, Y be Lipschitz on X with constant L J > O 
and xo E S 0 , a: EE. Assume that 

(i) the set valued mapping F : U=! X is Lipschitz at uo E dom F with 
constants Le > O, t > O, 

{ii) (DP) holds for all (VOP),, , u E B(uo, t), 

(iii) all x 0 E S(f, A) are global sharp solutions to (VOP) with the same 
constant T > O, i.e. for any a E E(f, A) and xo E S(f, A) 

f(x) - f(xo) </. T/lx - xollBY - K, for x EA\ Sa. 

Then E is lower Lipschitz at uo E dom E, i. e., 

2L2 L 
E(f,A)EE(f,A(u))+(LJLe+-J_e)llu-uollBy for uEB(uo,t). 

T 

Moreover, if instead of (iii) we assume that 

(iv) all z E S(f, A(u)) for u E B(uo, t) are global sharp solutions to (Pu) 
with the same constant T > O, i.e. for any TJ E E(f,A(u)) 

f(z) - f(z) </. Tllz - zllBY - K, for z E A(u) \ S,,(u). 

then S is lower Lipschitz at uo E dom S. Precisely, 

S(f, A) C S(f, A(u)) + (2LfLe + Le)llu - uollBy for u E B(uo, t). 
T 

Proof. We start by proving the !ower Lipschitz continuity of S. Let 
us notice first that by (ii), S(f, A(u)) f 0 for u E B(uo, t) and thus 
uo E intdomS. Take any xo E S(f,A) and u E B(uo,t). By (i), there is 
z E A(u) such that 

llxo - ził ::; Lellu - uoll-
If z E S(f, A(u)), the conclusion follows. Otherwise, by (DP), there 
exists z E S(f, A(u)) such that f(z) E f(z) - K, and f(z) f f(z). If 
llz - ził ::; 2L~Lr Ilu - uoll, then 

llxo - ził ::; (Le+ 2LeLJ )Ilu - uoll 
T 

and the conclusion follows. So, assume that 

liz - ził > 2LeLJ Ilu - uoll- (12) 
T 

By (iv), z E S(f, A(u)) is a global sharp solution to (VOPu)- Since 
f(z) f J(z) we have 

f(z) - f(z) </. Tllz - zllBY - K. 

By (i), there exists x EA such that 

llz - xll::; La Ilu - uoll­
By the Lipschitzness of f, 

IIJ(z) - f(x)II::; LJLallu - uoll and llf(z) - /{xo)II::; LJLallu - uoll 

12 



and hence, in view of (12), 

/lf(xo) - f(x)/1 ~ 11/(z) - f(z)ll - llf(x) - f(z)ll - /lf(z) - f(xo)II 
~ Tllz - ził - 2LaL1llu - uoll > O 

which proves that f(x) =f f(xo). Hence, since xo is a globa] sharp so]ution 
to (VOP), 

f(x) - f(xo) r/. Tllx - xollBy - K. (13) 

On the other hand, 

f(x) - f(xo) = (f(x) - f(z)) + (!(z) - f(z)) + (!(z) - f(xo)) (14) 
E 2L1Lcllu - uollBy - K 

By (13) and (14), 

Consequently 

2L1Lc llx-xoll :'.S --llu-uoll­
T 

2L1La llxo - ził :'.S llxo - xll + llx - ził :'.S (La+ --)Ilu - uoll-
T 

which proves the assertion. 
To prove that [ is !ower Lipschitz at uo E dom [ take any a E E(f, A) 

and u E B(uo, t). There exists x E S(f, A) such that f(x) = a. By (i), 
there exists z E A(u) such that 

llx - ził :'.S Lcllu - uoll 

and by the Lipschitzness of f, 

llf(x) - f(z)II :'.S L1Lcllu - uoll. 

If z E S(f,A(u)), then f(z) E E(f,A(u)) and the conclusion follows. 
Otherwise, there exists z E S(f, A(u)) such that f(z) E /(z) - K, and 
f(z) =f f(z). 

By (i), there exists x E A such that 

llx - ził :'.S Lcllu - uoll and 11/(x) - /(z)II :'.S L1Lcllu - uoll­

If f(x) = f(x), then the conclusion follows. If f(x) =f f(x), by (iii) 
T 

f(x) - f(x) r/. y-llf(x) - f(x)IIBY - K. 
. f 

On the other hand, as before 

f(x) - f(x) = (f(x) - f(z)) + (!(z) - f(z)) + (!(z) - f(x)) 
E 2L1Lallu - uollBy - K. 

This proves that 

2LaL} 
llf(x) - f(x)II :'.S --Ilu - uoll 

T 

and consequently 

llf(x) - f(z)II :'.S 11/(x - /(x)II + 11/(x) - /(z)II 
2L2 L 

:'.S (L1La +~)Ilu - uoll 
which proves the assertion. 
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Theorem 4.2 Let f : X ----+ Y be Lipschitz on X with constant Li > O. 
Assume that 

(i) the set va/ued mapping F : U=! Y is Lipschitz at uo E dom F with 
constants Le > O and t > O, 

(ii) (DP) ho/ds for (VOP), 

(iii) all x E S(u), u E B(uo, t), are sharp with constant T > O. 

Then 

S is upper Lipschitz at uo Edom S, i.e., 

S(u) CS+ (Le+ 2LeLJ )Ilu - uollBx for u E B(uo, t) 
T 

Eis upper Lipschitz at uo E domE, i.e., 

2L L 2 

E(u) CE+ (L1Le + _e_J )Ilu - uollBY for u E B(uo, t). 
T 

Proof. Let z E S(u), u E B(uo, t). By the upper Lipschitzness of F, 
there exists x E A such that 

llx - zl/~Lcllu - uo/1 

and 
1/f(x) - f(z)l/~LJLel/u - uo/1. 

By (DP), there exists x E S such that f(x) E f(x) - JC. By !ower 
Lipschitzness of F, there exists z E F(u) such that 

and consequently, /1/(x) - f(z)ll~LJLel/u - uoll- Hence, 

f(z) - f(z) E 2L1Lellu - uol/By - JC. 

On the other hand, since z E S(u) is a sharp solution to (VOP),, 

f(z) - f(z) ~ Tl/z - zl/By - JC 

and /Iz - z/I~ 2L!Lc /lu - uo/1. Hence, 

2L1L 
/Iz- x/1<1/z - ził+ liz - xl/<(Le + __ e)l/u - uo/1. 

- - T 

(15) 

To see the second assertion, since x E S(u) is a sharp solution to (VOP),,, 

T 
f(z) - f(z) ~ Li 1/f(z) - f(z)I/By - JC 

and 

2L2 L 
f(x)- f(z) = (f(x)- f(z))+ (f(z)- f(z)) E (L1Le+ _f _ e )1/u-uol/By. 

T 

• 
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Theorem 4.3 Let f : X -> Y be Lipschitz on X with constant Li > O. 
Assume that 

(i) the set valued mapping F : U=t Y is Lipschitz at uo E dom F with 
constants Le > O and t > O, 

(ii) (DP) holds for (VOP)u, u E B(uo, t), 

{iii) for u E B(uo, t) and a E E(u) the solutions x E S(u) to (VOP)u, 
are a-weakly sharp with constant T > O. 

Then S is lower Lipschitz at uo E dom S. Precisely, for any u E B( u0 , t), 

2LeLJ) SC S(u) + (3L1Le + -- /lu - uol/Bx. 
T 

Proof. Let x E S. By Proposition 3.2 and Theorem ??, there exists 
z E S(u), u E B(uo, t) such that 

2LcL} 
f(x) - f(z) E (LeLJ + --)Ilu - uollBy. 

T 

By the ]ower Lipschitzness of F, there exists z E A(u) such that 

llx - zlls:.Lcllu - uoll 
and by the Lipschitzness of F, 

Hence, 

2LcL} 
f(z)-f(z) = (f(z)-f(x))+(f(x)-f(z) E (2L1Lc+--)llu-uoł1By. 

T 

On the other hand, since z E S(u), f(z) = a, is a global a-weak sharp 
solution, 

f(z) - f(z) {/. Td(z, S"'(u))By - K, 

where S"'(u) = {x E S(u) · : f(x) = a}, and consequently, 

2L L2 

d(x, S(u))~d(x, Sa(u))~d(x, z)+ d(z, S"'(u)~3LJLe + _e - 1 )Ilu - u0 1/ . 
T 

• 

Theorem 4.4 Let f: X-, Y be Lipschitz on X with constant LJ > O. 
Assume that 

{i) the set valued mapping F : U=; Y is Lipschitz at u0 E dom F with 
constants Le > O and t > O, 

(ii) (DP) holds for (VOP)u, u E B(uo, t), 

{iii) for any a EE, the solutions x ES" to (VOP), are a-weakly sharp 
with constant T > O. 

Then S is upper Lipschitz at uo E dom S, i. e. for any u E B ( u0 , t), 

S(u) CS+ (3LJLe + 2L~LJ )Ilu - uollBx. 
T 
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Proof. Let z E S(u), u E Uo. By Proposition 3.2 and Theorem 4.2, there 
exists x E S such that 

2LcLJ 
f(z) - f(x) E (LcLJ + --)Ilu - uollBv. 

T 

By the upper Lipschitzness of F, there exists x E A such that 

liz - xllsLcllu - uall 

and 
llf(z) - f(x)IISLJLcl/u - uoll-

Hence, 

2LcL2 
f(x)-f(x) = (f(x)-f(z))+(f(z)-f(z) E (2LJLc+--f)llu-uollBv. 

T 

On the other hand, since x E So,, is a global a-weak sharp solution, 

f(x) - f(x) (j_ Td(x, So,(u))Bv - K., 

and conseąuently, 

2LcL2 

d(z, S(u))<d(z, S°'(u))<d(z, x) + d(x, S°'(u))<3LJLc + __ f )Ilu - uoll-
- - - T 

• 

Remark 4.1 By examining the proof of Theorem 4.3 we observe that 
the /ower Lipschitzness of E follows immediately from the assumptions. 
Similarily, the assumptions of Theorem 4-4 yield the upper Lipschitzness 
of E. Moreover, for the proofs of Theorem 4.3 and Theorem 4-4 instead 
of the a-weak sharp condition the following (weaker) condition 

f(x) - f(x) (j_ Td(x, S°')Bv 

for x E S°' ( x E So,(u)) is sufficient. This observation will be used in 
Section 5. 

5 Linear multicriteria problems 
Let us consider now the linear multicriteria problem of the form 

(LMP) 
K,- minCx 

subject to x E A, 

where C is an k x n matrix, k < n, A C Rn is a nonempty polyhedral 
convex set and K, C Rk is a polyhedral cone. 

The parametric linear multicriteria problem takes the form 

(LMP)u 
K- minCx 

subject to x E A(u), 

where A(u) C Rn is a nonempty polyhedral convex set. 
Basing on Proposition 3.4, each solution to (LM P) is sharp. The 

following fact holds true. 
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Proposition 5.1 Let xo E A be a solution to (Llvf P). xo is a global 
H enig proper solution iff xo is a global sharp solution to ( V OP). 

Proof. In view of Proposition 3.4 , we need to show that any Henig 
proper solution x 0 to (LM P) is a global sharp solution. 

Suppose that xo is not a sharp solution. For each n 2': 1 there exists 
Xn E A \ Sa such that 

for same bn E By, 0n E 0 and An > O. Since Vn := 11:~ =:g li -, v -/- o, it 
must be 

An -, Ao-/- O 
llx,, - xoll 

and by putting c := .!. 11,,,.-,,,ull -, O we get 
n n >..u 

which contradicts the fact that xo is a global Henig proper efficient solu­
tion. • 

In linear vector optimization each solution is a global Henig proper 
solution. 

By Theorem 2.2 of [9], if A is convex and fis K:-convex, the domination 
property (DP) holds for (VOP) if and and only if E-/- 0. 

Basing on Theorem 4.2 we obtain the following stability result. 

Theorem 5.1 Assume that a EE and 

(i) the set valued mapping F : U=! Y is Lipschitz at uo E dom F with 
constants Le > O and t > O, 

{ii) E(u)-/- 0 for u E B(uo, t). 

Then E to (LMP),, is lower Lipschitz at (uo,a) E graphE and S to 
(LMP),, is lower Lipschitz at (uo,xo) E domS. 

Moreover, xo E S if and only if there exists strictly positive vector a of 
weights a= [a1 , ... , ak], a, > O, such that xo solves the linear programming 
problem 

(LP) min I:;~=l a,C,x, 
subject to x E A, 

where C; are rows of the matrix C. 
Moreover, according to Theorem 5.4 of [8], there exist finitely many 

vectors a(r) = [a~,,, a;;], 1 ~ r ~ p, a; > O for 1 ~ j ~ k, 1 ~ r ~ p, 

:z::;7= 1 a; ~ 1, 1 ~ r ~ p such that the solution set S can be represented 
as 

p 

s = L sr, where sr = argmin{a(r? C(x) : XE A}. 
r=l 

Hence, by the the same arguments as in [7], there exists a constant T > O 
such that for any a E E 

f(x) - ar/. Td(x, Sa)By. 

According to Remark 4.1, together with Theorem 4.4 we obtain the fol­
lowing result. 
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Theorem 5.2 Assume that 

(i) the set va/ued mapping F : U=! Y is Lipschitz at uo E dom F with 
constants Le > O and t > O, 

{ii) E(u) =/ 0 Jor u E B(uo, t). 

Then E to (LM P)u is upper Lipschitz and S to (LM P)u is upper Lips­
chitz at uo E dom S. 
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