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1 Introduction. 

In NMR frequency table there are 118 magnetically active isotopes. Only 
31 of these are spin-1/2 nuclei. The others have spin quantum number greater 
than 1/2 and therefore possess quadrupole moment. NMR spectroscopists 
measuring high resolution spectra in liquids usually try to avoid observing 
quadrupolar nuclei because nuclear spin relaxation of the latter, caused by 
quadrupolar coupling, is often very fast so that the spectral lines are substan­
tially broadened. In many cases, the line broadening can be even so large that 
neither the chemical shift of nor the scalar coupling constants to the nucleus in 
question can be measured - if the signal acquisition can be correctly performed 
at all. 

In my Ph.D. thesis, I shall show that in some cases fast nuclear quadrupolar 
relaxation is an underestimated source of invaluable information about molec­
ular structure and dynamics, which cannot be obtained by other methods. My 
own research is focused on chemical compounds containing in their structure 
spin-1/2 nucleus, further referred to as a "spy" nucleus, scalar coupled to two 
isochronous nuclei of spin-1 . The central element of these studies involves an 
identification and an interpretation of the effects, in the spectra of the spin-
1/2 nucleus, of cross-correlations of fluctuating quadrupolar interactions of 
the spin-1 nuclei. 

All of my own results to be reported in Chapter 3 involve molecules dis­
solved in non-viscous isotropic liquids. A brief exposition of the pertinent 
theoretical background to be presented in Chapter 2 is therefore confined to 
such a case. 
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2 Literature overview. 

2.1 The physical origin of nuclear spin relaxation in 
isotropic fluids. 

A general Hamiltonian of a nuclear spin system placed in an external static 
magnetic field of induction~~ directed along the z axis, reads (see, e.g., Ref. 
[1 ]): 

H(t) =Ho+ H1(t) = fi (- 2;:: wJzi + 27r ~ Jijiiij) + 2:: filiJ-(t) , {1) 
' 1>3 11-

where i and j label the nuclei, and index J-L tags time-dependent, stochastically 
varying interactions in the spin system; t is the spin operator of nucleus i, izi 
is the operator of z component of spin i. The first term in Eq. (1) describes 
Zeeman interactions which are responsible for Larmor precession of the nuclear 
spins in the magnetic field. The second term describes scalar couplings between 
the nuclei in the spin system, which are responsible for the fine structure of the 
resonance lines in NMR spectrum. The only time-dependent term in Eq. (1) 
is the last one. It varies in accord with stochastic molecular reorientation 
and its time-averaged value, (H1 (t)) , vanishes. Therefore, the index 11- labels 
various orientation-dependent interactions such as those due to the chemical 
shift anisotropy, spin-rotation, nuclear quadrupole-electric field gradient and 
dipole-dipole[2] . It should be noted that each nucleus in a given spin system 
can be (and usually is) involved in more than one interaction. All the above 
enumerated interactions are a source of randomly varying perturbations of spin 
energy, which constitute a basis for the processes of nuclear spin relaxation. 
The return of an excited spin system back to thermal equilibrium is called 
T1-type relaxation, and decay of coherences previously created in the sample 
(usually by application of radiofrequency pulses) is called T2-type relaxation. 
The features of these time-dependent interactions leading to relaxation will 
be explained below on the example of the nuclear quadrupole-electric field 
gradient (EFG) [3] interaction. 

As was mentioned above, the quadrupole moment is a property of the 
nuclei possessing spin quantum number greater than 1/2 (c.f., e.g. Ref. [4]). Its 
existence is a direct consequence of non-spherical internal charge distribution 
for nucleus of such a type. This is the reason why the energy of any such 
nucleus is dependent on its orientation relative to an external, non-uniform 
electric field. In a molecule, such a non-uniform field is generated mostly by 
the surrounding electronic cloud. For a single nucleus, the Hamiltonian of the 
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quadrupolar interaction in the laboratory reference frame is as follows [4): 

eQ [ 2 lab A 2 A 2 lab A A A A 

H1q - 41(2! _ 1) v'6 Vo (t)(3Iz- I ) - V+1 (t)(Llz + IzL) (2) 

+ v~~b(t)(i+iz + izi+) + v~~b(t)(LL) + v~~b(t)(i+i+)] , 

where I is the spin quantum number, eQ is the quadrupole moment of the 
nucleus (in units of electron charge per m2

), and f± = le± ify, where lcandiy 
are operators of the corresponding spin components. In Eq. (2), the symbols 
VJab , VJ1b , VJf denote components of a rank-2 irreducible spherical tensor de­
scribing the electric field gradient at the nuclear site. They can be expressed by 
the combinations of products of the Wigner rotation matrix elements D((

2
) ') m,m 

and the EFG tensor components calculated in the system of its principal axes 
(pas) according to [1): 

2 

v.zab(t) = ~ D(2
) (O(t))vvas 

m L...J (m,m') m' (3) 
m'=-2 

where the set of the three Euler angles, O(t) (a(t), f3(t), -y(t)), describes 
an instantaneous orientation of the rapidly rotating molecule in the labora­
tory frame. The quantities V!~s can be directly defined by components of the 
corresponding Cartesian tensor, CPas, namely [1], 

v:pas 
±1 

v:pas 
±2 

- v'6 cpas 
2 zz 

:r-(Cpas ± iCpas) = 0 
1 zx zy 

~ (cpas - cpas) 
2 XX '1/'1/ 

(4) 

where the principal axes of the tensor C are labelled according to the following 
convention [5): 

(5) 

Since C is a traceless tensor, it can be uniquely defined by its principal value, 
c~;s, and asymmetry parameter 

cpas- cpas 
zx '11'11 0 "' /1 

TJ= avas ) ~"'~. 
zz 

(6) 

Equation (3) shows explicitly that the time-dependence of the spherical tensor 
yiab is carried solely by the elements of the Wigner rotation matrix. The 
elements D~~.m') are in turn time-dependent because they are functions of 
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the instantaneous Euler angles O(t). Equation (2) can be rewritten in a more 
compact form 

(7) 

in which the rank-2, irreducible spherical tensor spin operator of quadrupolar 
interaction, T, is defined as follows: 

To - ~[31;- 1(! + 1)] 

t±l - =F(f:J± + j±Jz) (8) 

t±2 
A2 
I±. 

In cases where the random molecular reorientations are rapid compared to the 
energy of quadrupolar interaction, 

e2Qv'las 

Eq = 41(21 ~ 1)' (9) 

expressed in units of angular frequency, the traceless tensor yiab is averaged 
out to zero. Nevertheless, from the point of view of nuclear spin, rapid changes 
of the orientation of the latter, may cause transition between Zeeman energy 
levels and, therefore, both T1 and T2-type relaxation. 

2.2 An outline of Bloch-Wangsness-Redfield (BWR) 
relaxation theory. [6, 7] 

In presence of nuclear spin relaxation, the spin states of individual mole­
cules in the sample cannot be specified. The system as a whole can be treated 
as a statistical mixture of states 1/Jn which form a complete orthonormal basis 
in the spin space of a single molecule. The state of such a system is described 
in terms of spin density operator, p, which is defined as follows [8]: 

(10) 
n 

where Wn is the probability of finding a molecular spin system in state 1/Jn· A 
knowledge of the density operator and its evolution in time, governed by the 
Liouville- von Neumann equation [8] 

dp i A A 

dt = -li[H(t) , p], (11) 
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is sufficient for an exact description of the behaviour of the investigated sample 
in any NMR experiment. Unfortunately, because of its stochastic character, 
time-dependence of the Hamiltonian entering right-hand side of Eq. (11) can­
not be specified exactly. Therefore, this equation cannot be solved accurately, 
and approximate methods of statistical quantum mechanics must be applied. 

It is convenient to represent the above equation in Liouville space [9, 10, 11] 
in which density matrix p becomes a column vector Jp) and the commutator 
with the spin Hamiltonian H(t) is replaced by the Liouville derivation super­
operatort L(t) = kii(t)D = k(fi(t) ® i - i ® H(t)*), where the symbol "®" 
denotes a Kronecker product of the corresponding matrices, thus, 

d~) = -iL(t)Jp). (12) 

The fact that time-dependent part, lh(t), of the Hamiltonian described in 
Eq. (1) is much smaller than its time-independent part, H0 , allows one to solve 
Eq. (12) approximately by applying perturbation calculus of second order to 
its modified version obtained by transformation to the so-called interaction 
representation. On back transformation to the Schrodinger representation, 
and upon putting L = k(H0 ® i- i ® H0), one obtains the BWR equation of 
motion 

dJp) . dt = -~LJp) + R(Jp) -Jpo) ), (13) 

where 

exp(- fiHo) 
~ kBT 

Po = ] 
Tr (exp(- ~:~) 

(14) 

is the thermal equilibrium density operator, with Tr denoting the trace of an 
operator. 

Equation (13) is the central result of the BWR relaxation theory [6, 7]. 
A13 can be seen from it, the relaxation superoperator R acts only on non­
equilibrium density vector, causing return of the excited system back to ther­
mal equilibrium with the reservoir. When the system is already in equilibrium 
with the bath, i.e., when its state is described by the vector Jp0), then the 
term R(Jp) - Jp0)) vanishes, and in absence of any external radiofrequency 
fields, the evolution of the system is stopped. 

Equation (13) is valid only in the so-called extreme narrowing condition, 
i.e. when both an average correlation time Tc of the molecule and Larmor 

t Any operator 6 in Hilbert space can be derivated. The result of this transformation is 
the superoperator 6D = 6 ® i - i ® 6• in Liouville space. 
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frequency w0 of the observed nucleus fulfil the inequality re~ 1/w0 , which is 
a common case for medium size and small molecules in non-viscous isotropic 
fluids . Beyond this regime, some additional effects are non-negligible and must 
be taken into account, which makes Eq. (13) more complicated. 

In Eq. (13), the superoperator R has the following form [11] 

(15) 

with the auto-correlation and the cross-correlation contributions to relaxation 
being described by 

-.X 
_ ~ m ~D ~D 

RJ.£1-1- JI-II-I.L...,.,(-1) TJ.ImTJ.£-m (16a) 
m= .X 

and 

(16b) 

respectively, where .X is the rank of the irreducible spherical tensor spin op­
erators, T, of the corresponding interactions f-L and f-L1

• The spectral densities 
JJ.It-li are integrals 

JJ.£1-1' = 100 

CJ.It-S'(r)dr (17) 

of the ensemble-averaged time correlation functions C t-St-S' ( r) of the correspond­
ing time-dependent functions entering Eq. (2). In Eq. (16b), apart from the 
simplification resulting from the extreme narrowing approximation, two more 
properties of the system are exploited:(i) axial symmetry of the system with 
respect to rotations around z axis of the laboratory frame (which is parallel to 
the direction of external magnetic field), and (ii) the lack of any orientational 
anisotropy of the molecules forming an isotropic fluid. From property (i) it 
follows that in Eq. ( 16b) pairs of spherical tensor components superopera­
tors i'f!m and T/Jm' where m' =/= -m are absent. Hence, the only correlation 
functions that are of relevance are those between the corresponding time de­
pendent functions V~~m and V~~ (c.f. Eqs. (2) and (7)). By virtue of property 
(ii), contributions to relaxation from pairs of time-dependent interactions de­
scribed by tensors of different ranks vanish [12]. Moreover, for any pairs of 
interactions f-L and f-L1 (of the same rank .X), the correlation functions are inde­
pendent of m [12]. Therefore, in calculating the relevant correlation functions, 
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one can confine oneself to the m= 0 components defined in Eq. (3). For rank-2 
interactions p, and p,' one therefore has [13] 

2 2 

Cp.p.'(r) = L L ( D~~~k)(np.(t))D~~~1)(np.'(t + r))) v::sv:,~s, (18a} 
k=-2l=-2 

where np.(t) describes orientation in the laboratory frame of the principal axis 
system of tensor v~as at instant t while np.'(t + r) does the same for tensor 
v;~ at instant t + r. Equation (18a) is valid for any rank-2 tensors v~as and 
V P.~. If asymmetry parameters TJ and r/ of both such tensors are equal to 
zero, Eq. (18a) can be rewritten as follows: 

(18b} 

In the latter case, auto- and cross-correlation spectral density functions can 
be derived easily, whenever both the motional model and the geometry of the 
molecule are known. In the case of non-axially symmetric tensors, calculations 
of the spectral densities in question can also be performed. However, doing 
this in the standard way requires an extensive use of Wigner rotation matri­
ces, which is inconvenient. In such a case, following a method proposed by 
Werbelow [14], any traceless Cartesian tensor C, referred to its own principal 
axis system, can be decomposed into two traceless tensors c~ and c~ both 
having axial symmetry, but with respect to the z and x axes, respectively, of 
the original tensor, namely, 

C = C' + C" Z XI 
(19) 

where 

r-~r 
0 

~le•] C'= _!t::,.C' 
z 3 

0 
(20a} 

and 

[ ~y" 0 
0 ] C" = _!.t::,.C" 0 , X 3 

0 -lt::,.C" 
(20b) 

with 

t::,.C' - cpas- cpas 
zz !IY (21) 

t::,.C" (J1!_a8 - cpas 
zz Ill/ • 
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Now, the auto-correlation function for an axially non-symmetric interaction 
tensor will be given by a sum of two auto-correlation functions for its respec­
tive axially symmetric components plus twice the cross-correlation function 
between the latter. Accordingly, the corresponding spectral density will be 
given by [14, 15): 

lee= le'e' + le"e" + 2Je'e" · ~ % z: .1: 1& .1: 
(22) 

Similarly, the cross-correlation spectral density for two traceless axially non­
symmetric interaction tensors C and D will be given by [14, 15]: 

lev = Je, D' + le"D" + Je, D" + le"D'. %% :CZ %:Z: Z% 
(23) 

In what follows, individual axially symmetric components of the interaction 
tensors will be treated as distinct interactions and, accordingly, will be de­
noted by different labels 1-£, 1-£1 etc. This will not lead to ambiguities. Details 
concerning practical calculations of both auto- and cross-correlation spectral 
densities involving two axially symmetric tensors will be discussed in the next 
chapter. 

2.3 Spectral densities and motional models. 

In the right-hand side of Eq. (18b), an ensemble-averaged product of ele­
ments of Wigner rotation matrices appears. The form in which it is written 
is inconvenient for practical applications since its dependences on both the 
rotational diffusion process and on the molecular geometry parameters are 
not evident. Therefore, the term (D~~~o)(n~S(t))D~~~o)n~S' (t + r))) is normally 
evaluated in the context of an appropriate diffusional rotation model in or­
der to derive its explicit dependence on the parameters of molecular structure 
and dynamics. One of the central points of such an evaluation is the solution 
of the rotational diffusion equation. For this purpose, both the irreducible 
spherical tensors v:as and v::u' entering Eq. (18b) are to be first expressed 
in the system of principal axes of the rotational diffusion tensor which is the 
most natural reference frame in the case discussed currently. This is done by 
simple transformations, mathematically expressed in terms of multiplications 
of V~as and v::u' by appropriate elements of Wigner rotation matrice. The 
latter are defined by the Eulerian angles referring the principal axes of V~-' 

and V ~S' to the principal axes of the diffusion tensor of the molecule. After 
these preliminary transformations, the close analogy between the rotational 
diffusion equation and the Schrodinger equation for the free rotor can be ex­
ploited (16, 17]; this provides a convenient way to solve the former. Finally, 
one obtains formulas in which auto- and cross-correlation (18, 19, 20] spectral 
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z 

relaxation axis 

y 

Figure 1: Definition of the polar angles 0~ and <p~-' of the relaxation axis 1-' with 
respect to the principal axes X, Y, and Z of the diffusion tensor. 

densities are expressed as functions of three diffusion coefficients D x, Dy, and 
Dz describing the molecular motions about X, Y, and Z principal axes of the 
diffusion tensor, respectively, and of two polar angles 0~-' and <p~ (see Fig. 1) for 
each of the interaction tensors involved [17]. These angles define orientations 
of the unique symmetry axis ("relaxation axis") of the given (axially symmet­
ric, see comment following Eq. (23)) interaction tensor in the principal system 
of the diffusion tensor. 

where 

and 

Ao 4Dz+2D+ 
A±l - Dz+5D+±3D_ 

A±2 - 2Dz + 4D+ ± [4(Dz- D+)2 + 12D~FI2 

a0 - (3/4) sin2 0~ sin2 01-'' sin 2<p~ sin 2<p~-'' 

a+l - ( 3/4) sin 20 ~ sin 20 1-1' sin <p ~ sin <p 1-1' 
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with 

a-1 - ( 3/4) sin 20 ~' sin 20 tt' cos 1p tt cos !p tt' 

a±2 12D~
1 + di { (9D:_) sin2 Ott cos 21Ptt sin2 Ott' cos 2ip11,t (26) 

(3D_d±)[sin2 0~-' cos 2ip~-'(1/2)(3 cos2 0~-'' - 1) 

+ (1/2)(3cos2 0~-' -1)sin20tt' cos2fPI-''] 

+ (d!(l/2)(3 cos2 0~'- 1)(1/2)(3 cos2 0~-'' - 1)} 

D± (Dx ± Dv)/2 

d± 2(Dz- D+) =F [4(Dz- D+)2 + 12D:_]
112 

Equation ( 24) is valid for a general case in which all the three diffusion 
coefficients are not equal to one another, i.e., Dx =/= Dy =/= Dz [20]. It is quite 
a common case where the tensor of rotational diffusion is axially symmetric, 
i.e., Dx = Dy =/= Dz. Then, defining effective correlation times r20 , r21, and 
T22 according to 

1/r2o 6Dx 

1jr21 = 5Dx + Dz 

1jr22 = 2Dx + 4Dz, 

one can replace Eq. (24) by the following one: 

2 2 2~ 
Jl-'1-''(w) - (1/2)(3cos 01-' -1)(1/2)(3cos ()~-', -1)

1 2~ +w 20 

(27) 

+ (3/4) sin(291-') sin(O~-'') cos(IPtt- lP~-'') 
1 

2T2~ 2 (28) 
+w T21 

+ (3/4) sin2 
()I-' sin2 

()I-', cos 2(1PI-'- lP!-'') 
1 

2T2~ 2 . +w r22 

Finally, in the simplest case where the molecule undergoes an isotropic reori­
entation, i.e. Dx = Dy = Dz = D, the corresponding spectral densities are 
expressed by the formula: 

(29) 

where a is the angle between the two relevant relaxation axes, and Tc = 1/6D 
is an average correlation time for the whole molecule. 

Spectral densities in Eqs. (24), (28) and (29) are formally functions of w. 
Dependence on the latter variable is obviously negligible when the condition 
of extreme narrowing (i.e., wr ~ 1) is fulfilled . 
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2.4 Experimental observation of cross-correlation 
spectral densities for quadrupolar interactions. 

The first attempt at experimental determination of cross-correlation spec­
tral densities for two quadrupole interactions, preceeded by careful theoretical 
considerations, was reported in 1980 by Void et al.[21, 22] for a solution of 
deuterated dichloromethane CD2Ch in a nematic liquid crystal solvent. At 
variance with the situation in isotropic liquids, which is describable by the 
formalism of the preceeding sections, in such an oriented phase, the deuteron 
relaxation in a CD2 group is described by six different spectral densities: three 
auto-correlation terms, Jt'(O), Jf(w0 ), and Jf(2w0 ), which characterize the 
motion of the EFG tensor of either deuteron; and three cross-correlation terms, 
Jf(O), J.f(w0 ), and Jf(2w0) , which describe cross-correlation between the mo­
tions of the two tensors. This is because relaxation of the deuterons of CD2 

group is governed not only by the reorientation of the dichloromethane mole­
cule itself, but also by coherent fluctuations of the nematic director [23]. These 
fluctuations are slow and as such they render the extreme narrowing condition 
inapplicable. In order to determine all of these parameters, the authors ap­
plied non-selective and semiselective inversion-recovery experiments, as well 
as two-dimensional Fourier transform techniques allowing for measurements 
of transverse decays of both single-quantum and double-quantum spin-echoes. 
It should be emphasized that the existence of the partial order introduced by 
the presence of the liquid crystal molecules is a necessary condition of appli­
cability of these experimental methods. Such methods cannot be successfully 
applied in studies of molecular motion in an isotropic phase, in which both 
the quadrupolar and dipolar coupling constants do not manifest themselves 
as resolved line splittings of sufficiently large magnitudes. From the above 
spectral densities, the anisotropy of reorientation of the investigated molecule 
was estimated to be between 10 and 30. These results are rather qualitative 
than quantitative and concern the molecular motion in a specific environment 
created by the liquid crystal surrounding. 

Recently, Werbelow et al. [24] observed a manifestation of the quadrupolar 
cross-correlation in· NMR spectrum of a spin-1/2 nucleus coupled to a system 
of two spin-1 isochronous nuclei. In the regime of slow quadrupolar relaxation, 
in the 13C multiplets of deuterated ethylene glycol, it was observed that, due 
to differential line broadenings, the heights of the multiplet components do 
not fit the simple pentet pattern. These effects were explained in terms of 
BWR theory as being due to both auto- and cross-correlation effects between 
the two quadrupolar interactions. Unfortunately, because of an incorrect the­
oretical description of the investigated spectra ignoring an earlier analysis of 
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the problem [25], the results presented in the work [24] must be disqualified. 
As the correct expressions for the corresponding signals are derived by myself, 
further detailed discussion of the work of Werbelow et al. [24] is carried out 
in the part presenting my own results. 
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3 Results and discussion. 

The bulk of literature data documenting usefulness of nuclear spin re­
laxation phenomena for structural studies in solutions involves the dipolar 
relaxation mechanism. This is due to an explicit dependence of the dipolar 
relaxation rates on the internuclear distances. Relaxation mechanisms aris­
ing from fluctuating interactions that engage single nuclei, such as nuclear 
quadrupole- electric field gradient and nuclear dipole- external magnetic field 
modulated by chemical shift anisotropy (CSA), may seem to be of limited in­
terest in this context because of a lack of any straightforward dependence on 
the intramolecular distances. However, as was already emphasized that ran­
domly modulated interactions of any sort that lead to relaxation can interfere 
with one another to produce the cross-correlation contributions to relaxation. 
Cross-correlations may even arise between interactions that operate in remote 
parts of the molecule. Thus, despite the fact that they still do not bear any 
functional dependence on the distances, in some cases they may provide crucial 
structural information. According to a recent review on the cross-correlation 
effects (26], in the past the research was predominantly concentrated on the in­
stances where the cross-correlated interactions share one nucleus in common; 
cross-correlation of fluctuating dipolar coupling between a 13C nucleus and an 
adjacent proton, and fluctuating, CSA-mediated interaction of the former is 
a typical example. Little attention was devoted to cross-correlation effects in 
systems of quadrupolar nuclei interacting with the EFG's. To the best of my 
knowledge, the only papers devoted to this problem are those reviewed in Sec­
tion 2.4. The methods of evaluation of such effects that were once developed by 
Void et al.[21, 22], which involve partially ordered systems exhibiting resolved 
quadrupolar splittings, were briefly reviewed in Section 2.4. For isotropic flu­
ids, where such splittings do not occur, an appropriate general methodology 
has not been worked out yet. Elaboration of such a methodology was one of 
main goals of my Ph.D. thesis. In the present chapter, on the example of sev­
eral molecular systems, I shall show that accurate, quantitative determination 
of quadrupolar cross-correlations and a careful analysis thereof in connection 
to other spectral parameters (e.g. relaxation times) can provide a new insight 
into molecular structure and dynamics in isotropic liquids. 

As I mention in the Introduction, my experimental results involve com­
pounds containing in their structure a nucleus whose T1-relaxation is rela­
tively slow, preferably a spin-1/2 nucleus, scalar coupled to two isochronous 
nuclei of spin-1 (i.e., quadrupolar nuclei) . NMR signal of such a spy nucleus 
is in a characteristic way dependent on quadrupolar cross-correlation between 
the isochronous nuclei [25] provided that the quadrupolar relaxation rates are 
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not prohibitively fast compared with the J-coupling between the latter and 
the spy nucleus. Spectra of such compounds dissolved in non-viscous isotropic 
solvents were numerically analysed by me using iterative computer programs 
written by Szymanski [27]. These programs are based on the BWR relaxation 
theory, briefly described in preceeding chapter. The "best fit" theoretical spec­
tra, in the least-squares sense, are obtained by varying the parameters, which 
are the experimental spectra dependent on, according to the Gauss-Newton 
minimisation scheme. Unfortunately, the numerical results obtained using a 
general computer routine, although perfectly correct, do not provide full in­
sight into the physics of the investigated problem. Therefore at the beginning 
of this part of my thesis, I am in a duty to derive explicit formulae describing 
the spin systems of central interest in the present work, using an appropriate 
spin basis. This affords a deeper interpretation of the investigated phenomena. 
As I have already mentioned in Section 2.4, in the literature I have found a 
paper which addresses the above problem under some limiting conditions, but 
does this in an incorrect way [24]. I shall perform a detailed discussion of that 
paper and argue those of its points the inaccuracy of which leads to signifi­
cant, systematic errors in determination of the parameters that are of central 
significance for my research, i.e., the quadrupolar cross-correlation spectral 
densities. Then I consider two experimental examples, some aspects of which 
are of theoretical and/or practical importance for the determination of the 
latter parameters. Finally, the methodology elaborated in the above studies 
I apply to the problem of solution structure of bis(hexamethyldisilylamido )­
mercury(II). 

Some of the results described in this chapter were already published [28, 
29]. 

3.1 Theoretical description ofNMR spectra ofspin-1/2 
nucleus scalar coupled to two equivalent, spin-1 nu­
clei. 

3.1.1 The limit of slow quadrupolar relaxation. 

The spectrum of spin-1 /2 nucleus scalar coupled to a group of magnetically 
equivalent nuclei of spin> 1/2, besides being dependent on quadrupolar cross­
correlation between such nuclei, can also be dependent on the scalar couplings 
between the latter [25]. Such a disturbance of magnetic equivalence can be 
predicted from BWR theory when spin relaxation of the equivalent nuclei is 
non-negligible. When the values of the coupling constants between such nuclei 
are unknown, effects of a broken magnetic equivalence may be a source of 
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systematic distortions in a quantitative analysis of the spectra. In a study 
on quadrupolar cross-correlation in a 13CD2 spin system, Werbelow et al. 
[24] reported an approximate, closed-form expression for the lineshape of the 
spin-1/2 nucleus for the limiting case where quadrupolar relaxation rates of 
the equivalent spin-1 nuclei are small in comparison with the heteronuclear 
J-coupling constant, in which instance the 13C pentet remains well-resolved. 
However, such a simplification was achieved by the authors cited at the cost 
of a neglect of the possible effects of the disturbed magnetic equivalence on 
the lineshape. In this part of my thesis, I specify the range of validity of the 
above approximation and identify the instances where it fails in the description 
of resolved spectra of a general A.X2 {lA = 1/2, Ix = 1). I also present 
explicit expressions for the elements of the matrix entering complete lineshape 
equation, which is valid not only for slow quadrupolar relaxation limit but for 
any relaxation rates (however, as long as the extreme narrowing condition is 
fulfilled) . The discussion involves the case where relaxation mechanisms other 
than quadrupolar can be neglected in the description of spin dynamics of 
subsystem X 2 in the zero-quantum manifold, which is the only relevant one 
for a description of the spectrum of part A (double resonance experiments will 
not be considered in the present work). 

Elements of the Hilbert space basis for X2 subsystem, which are used in 
the following considerations, are listed in Table 3.1. Each state of X 2 can 
be associated with one of the two basic states of spin A, a and /3. This gives 
9 vectors \a)ISM) and 9 vectors \/3)\SM), where la) and I.B) are eigenvec­
tors of iz operator of spin A, and \SM) are simultaneous eigenvectors of 
the squared total X-spin, S2 = (S1 + S2 )

2
, and total X-spin z-component, 

Bz = Bz1 + Bz2 , operators, concerned with eigenvalues S(S + 1)(8 = 0, 1, 2) , 
and M = -28, -28 + 1, . . . , 28, respectively. The vectors h')\lM) are an­
tisymmetric while those h') \2M) and h') \OM) are symmetric under permu­
tation of the X nuclei. In the framework of BWR theory, single quantum 
spectra of nucleus A can be described in terms of time evolution of 11 co­
herences represented by the superkets \1+)\SMS'M), where \I+) = \a)(,B\, 
and \SMS'M) = \SM)(S'M\, with \S- S'l being equal to either 0 or 2. The 
coherences for which IS- S'l = 1 involve spin states of different permutation 
symmetries so that, by virtue of macroscopic conservation of nuclear permu­
tation symmetry, they remain uncoupled from those involving states of the 
same permutation symmetry and effects of their possible occurence are never 
observed [11] . For any relaxation rates, the spectra of A can thus be described 
in terms of a 11 x 11 spectral matrix W presented in the Table 3.2. Its real 
part comprises the zero-quantum symmetric block of the BWR quadrupolar 
relaxation matrix, with the diagonal elements augmented by rate constant 
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Table 3.1: Spin state basis set for X 2 subsystem. Definit ions of quantum num­
bers S and M are given in the text. 

Label Description in terms of product states ISM) 

jl) ill) 122) 

12) (jlO) + IOl) )/v'2 121) 

13) (jlO)- jOl) )/J2 ill) 

14) (11 -1) +I - u) + 2100) )/v'6 120) 

15) (11 -1)- l - 11) )/J2 jlO) 

16) (11 -1) +I - 11) - lOO) )/vl3 lOO) 

17) (I -10)- IO - 1) )/J2 11-1) 

IS) (l-10) + IO -l))/J2 12 - 1) 

19) l-1 -1) 12 -2) 

w = 1/T; which describes an accumulated effect of all 'extraneous' factors 
that contribute to line broadenings in the spectra of A (e.g. external mag­
netic field inhomogeneity). The imaginary part is a diagonal matrix. Nine of 
its elements, those concerned with the superkets II+}ISM SM}, describe the 
individual frequencies of the A pentet, -i(woA + 21rMJAX; for IMI = 0 and 
1 these elements are three- and tw~fold degenerate, respectively. The corre­
sponding coherences, violating conservation of total spin of the X 2 subsystem, 
were once termed 'partly allowed coherences' because for negligible relaxation 
they are factored out of the remaining, 'fully allowed' coherences and become 
undetectable by the NMR receiver coil: as opposite to the latter, the former 
do not contribute to observable magnetization [25]. Nevertheless, even in the 
limit of slow relaxation, i.e when 

(30) 

they can modulate the behaviour of the nine 'magnetic' coherences via the cor­
responding off-diagonal elements of the BWR quadrupolar relaxation matrix. 
The influence of such a modulation on NMR spectra of A can be particularly 
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large in the limit of moderate relaxation, defined by the inequalities 

(31) 

because in such a case the magnitudes of the corresponding off-diagonal ele­
ments of the matrix W will in general become comparable with the differences 
between the diagonal elements. Only in the situation (probably seldom occur­
ing in practice) where \lxxl ~ \JAXI can the non-magnetic coherences (those 
in the last two columns in Table 3.2) be generally discarded. On the other 
hand, for slow relaxation, such effects can be non-negligible only when the 
frequencies of these offending coherences happen to coincide, to withing a few 
quadrupolar relaxation rate constants, with those of the individual magnetic 
coherences. If there are no such coincidencies, in a description of the spectra of 
A one can retain only the 9 x 9 block of the spectral matrix, comprising only 
the nine magnetic coherences. In view ofEq. (30), this retained part undergoes 
a further approximate facto ring into independent sub blocks according to the 
degeneration pattern of its imaginary (diagonal) elements: each of the outer 
components of the pentet will then be described by a 1 x 1 subblock, each of 
the two inner components by a 2 x 2 subblock, and the central component by 
a 3 x 3 subblock. Such a factorization is obviously not possible in the limit 
specified in Eq. (31) because then the relaxation couples all the components 
of the pentet to form one poorly structured cluster. 

In the limit of slow quadrupolar relaxation (Eq. (30)), which was of interest 
for Werbelow et al. [24), these authors found the above mentioned 3 x 3 sub­
block to be further factored into 1 x 1 and 2 x 2 sub-subblocks, which allowed 
these authors to derive closed-form lineshape expressions for each of the indi­
vidual components of the pentet in the limit of slow quadrupolar relaxation. 
Below I give the corresponding lineshape equations, in matrix form, in the 
instances where the frequencies of the non-magnetic coherences coincide with 
the frequencies of (i) the outer components, (ii) the inner components, and 
(iii) the central component. In writting down the lineshape formulae involved 
I exploit the fact that the spectra of the system considered are independent on 
the absolute and relative signs of lAx and Jxx- In these equations the quanti­
ties 271"\JAx\ and 27r\lxxl are denoted a and x, respectively, and the quantity 
WoA- w by 11w. The quadrupolar auto- and cross-correlation spectral densi­
ties, j and k, respectively, expressed in rad s-1 are calibrated according to Ref. 
[30), so that 20j = 1/T1q. The same convention is also used for the expres­
sions in Table 3.2. The spectral submatrices relevant in the slow relaxation 
limit of Eq. (30) , listed below, contain explicit expressions for all of the BWR 
relaxation matrix elements which in the full 11 x 11 spectral matrix describe 
couplings between the two non-magnetic and nine magnetic coherences. 
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Thus, in case (i), each of the outer components will be described by the 
equation 

Yo(w) = [ 1 0 ] x 

i(~w ± 2a) + 
w+24j 

_B'f(j + k) 

-1 

i(~w ± 3x) + 
X [ ~ ] . (32) 

+ (80j+44k) 
w 3 

In the case (ii) , the corresponding equation for each of the inner components 
reads: 

-Yi(w) = [ 1 1 0 ] X 

-1 

i(~w ± a) + -6(j- k) _4'f(j + k) 
w + 26j + 2k 

X -6(j- k) i(~w ± a) + 
0 

X [n (33) 
w+26j -14k 

-¥(j+k) 0 
i(~w ± 3x) + 

+ (80j+44k) 
w 3 

Finally, in the case (iii) , one of the two subcomponents of the central signal 
will be described by the equation 

-Yc,(w) = [ 1 1 0 0] X 

-1 
i6.w + w + 

_1360 + k) 0 0 830(j + k) 

_136(j + k) i6.w+w+24j ~(j +k) ~(j +k) 

X [ ~ ]·34~ X 

0 ¥0+k) 
i(6.w+3x) + 

_136(j+k) w + (80i+44k) 
3 

¥0+k) -~6(j +k) 
i(6.w- 3x) + 
w + (80j+44k} 

3 

while the other will remain unaffected by the non-magnetic coherences, thus 
(c.f., Ref. [24)) 

-Ycu(w) = (i~w + w + 24j- 16k)-1 (34b) 
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However, as was mentioned above, in the case of moderate quadrupolar 
relaxation (Eq. (31)) such a factorization is not possible and, therefore, the 
whole matrix W must be used for the description of the lineshape of A. The 
corresponding equation reads: 

(35) 

where 

_FT= ( 1 1 1 1 1 1 1 1 1 o o] , (36) 

with the superscript T denoting a transpose of vector F . 
When Eqs. (32)-(34b) are to be used in practicallineshape calculations, 

numerical problems may arise when the spectra are calculated using the stan­
dard approach of numerical diagonalization of the spectral matrix. This is 
because, especially for Eq. (34a} when the magnitude of Jxx is much smaller 
than 1/rrT1Q, the matrices to be diagonalized are only in a trivial way differ­
ent from real symmetric matrices. For matrices of such a form, the standard 
numerical routines designed to handle complex matrices usually calculate cor­
rect eigenvalues but incorrect eigenvectors. The numerical calculations leading 
to the curves in Fig. 2 were performed using a numerically stable method of 
matrix inversion [31) . A similar warning pertains to numerical calculations of 
the resolved spectra using the complete 11 x 11 matrix according to Eq. (35). 

It should be noted that the relaxation-mediated couplings between the 
magnetic and non-magnetic coherences, entering Eqs. (32)-(35), would vanish 
only in a non-physical situation where the fluctuating quadrupolar interac­
tions at the X nuclei were perfectly anti-correlated, in which instance the cor­
responding cross-correlation factor r = k / j would be equal to -1. It should 
be also noted that for the perfect cross-correlation ( r = 1) the non-magnetic 
coherences will attain a maximum strength in their influence on the bahaviour 
of the magnetic ones. The latter observation brings out the difference, exposed 
in detail in Ref. [25), between the notion of microscopic conservation of nuclear 
permutation symmetry [11] (which does apply to the system considered when 
r = 1) and that of conservation of magnetic equivalence symmetry. Note at 
the end that the coupling between the non-magnetic and the magnetic coher­
ences do survive even when the nuclei X do not 'sense' each other directly, i.e. 
when both Jxx and r happen to vanish. 

The situation to which Eqs. ( 34a)-( 34b) are referred to is likely to be 
encountered in practice, especially for 13CD2 spin groupings, since the corre­
sponding deuterium-deuterium J-coupling constants are generally of the order 
of a fraction of a hertz and therefore fall in the range of deuterium quadru­
polar relaxation rates in liquids of low and moderate viscosity. Experimental 
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studies on quadrupolar cross-correlations in such a system in perdeuterated 
ethylene glycol are reported in the paper already cited Ref. [24] . The observed 
spectra were described in terms of the magnetic coherences only. Within such 
a simplified approach, the authors cited could in a unique way relate the ratios 
of heights of the central and inner peaks of the pentet to those of the outer 
peaks, hc/ho and hi/h0 , respectively, to both the cross-correlation factor, r , 
an the 'extraneous' relaxation rate expressed in the units of j , p = wfj. The 
observed departures of the above lineshape parameters from their respective 
limiting 3:1 and 2:1 values (attainable in the limit of negligible quadrupolar 
relaxation) were proposed as quick measures of r in the instances where the 
magnitudes of p could be determined independently. Below I show that this 
generally usefull approach may be prone to substantial errors when applied to 
system with small or vanishing Jxx coupling constants. In Fig. 2 two pairs of 
he/ h0 curves as a function of r are displayed. In the calculations, the values of 
JAx (21.5 Hz) and wj1r (0.52 Hz) were assumed according to the findings for 
deuterated ethylene glycol reported in Ref. (24]. In each pair, the solid curve 
was calculated according to Eqs. (34a)-(34b) in which the value of Jxx was 
put equal to 0.24 Hz, which is probably a maximum value for the geminal 
deuterium pair in ethylene glycol that could be expected [32]. The dashed 
curve is calculated from from Eq. (17) of Ref. [24) , which gives the same re­
sults as our Eqs. (32) and (34a)-(34b) when a large value (but different from 
2JAx/3) is substituted for Jxx in the latter equations. The bottom pair cor­
responds to the value of j(T = 323K) = 0.217 rad s-1 reported in Ref. (24]. 
The top pair was obtained assuming j = 0.434 rad s-1 . The display in Fig. 2 
is limited to the values of r above -0. 75. A consideration of the predictions 
based on the rotational diffusion model of molecular reorientations allows one 
to conclude that strongly negative values of r are unlikely to be encountered 
in practice. The corresponding pairs of hi/ ho curves are not shown because in 
the case considered (the non-magnetic coherences interfering with the central 
component) our formalism would merely reproduce the results of Ref. [24]. 

Inspection of Fig. 2 reveals that for the system mentioned above the ne­
glect of the non-magnetic coherences may impose a systematic bias on the 
assessment of r based on the lineshape parameter hc/h0 • This is clearly seen 
if one compares the maximum difference between the corresponding values of 
hc/h0 , calculated with and without taking into account the non-magnetic co­
herences, with the range of variations of this parameter in the displayed range 
of r. (Although the maximum difference generally occurs for r approaching 1, 
it is an adequate measure of the effect discussed since for r values above 0.5 
both the curves go nearly parallel to each other.) For the top pair of curves, 
the maximum difference amounts to about 13 per cent of the whole variability 
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range, and it is increased to about 18 per cent when the parameter hc/ho is 
calculated assuming lxx = 0. For the bottom pair, the corresponding figures 
are 12 and 20 per cent. The latter value is close to an upper limit of the dis­
crepancies between the peak height ratios calculated in these two ways. For 
sake of transparency, the hc/ho curves calculated assuming Jxx = 0 are not 
shown in Fig. 2. Because even minor changes in the values of J xx can lead to 
such significant variations of the course of the hc/ho curves, in order to get an 
unbiased estimate of r from the peak height ratio in resolved spectra, a very 
precise knowledge of the magnitude of J xx may be required. 

It can also be seen from the displayed curves that when the true value of 
J xx is comparable with quadrupolar relaxation rate, the assessments based 
on the approximate theory will generally deliver overestimated values of irl. 
A similar conclusion can be drawn regarding the use of the approximate line­
shape equations in iterative analysis of the resolved spectra. Only in the 
instances where the true value of r falls below -0.3, the approximate ap­
proach becomes essentally equivalent to the exact approach, which was already 
anticipated from the form of the pertinent off-diagonal matrix elements in 
Eq. (34a}. 

3.1.2 Numerical simulations of spectrallineshapes. 

One of the obvious conclusions of the preceding section is that, in differ­
ent quadrupolar relaxation limits, the information content about quadrupolar 
cross-correlation, which is conveyed by the spectrum, may be different. As 
relaxation rates in liquids are sensitive to an average correlation time of the 
molecule, one can in some cases switch between different relaxation limits by 
changing experimental conditions such as temperature and solvent. There­
fore, before starting NMR experiments it is worth-while to perform numerical 
simulations in order to learn which conditions should be choosen in order to 
obtain spectra carrying maximum information about the required parame­
ters. I have carried out such simulations for a hypothetic spin system AX2 

using a computer program, similar to that mentioned earlier, written also by 
Szymanski [27]. Selected results of these simulation are shown in Figs. 3-8 be­
low. Columns 1-3 present theoretical dependence of standard spectra of spin 
A on the coupling constant between magnetically equivalent X nuclei, J xx, 
in different quadrupolar relaxation limits, i.e. slow (0.628 rad s-1

, Column 
1), moderate (1.885 rad s-I, Column 2), and fast (3.770 rad s-I, Column 3), 
compared to the coupling constant lAx = 10Hz. The values of Jxx are taken 
as 0.1 (solid lines), 5.0 (dashed lines) and 20.0 Hz (dotted lines). In the case 
of lxx = 0.1 Hz the frequencies WoA ± 3x of the non-magnetic coherences are 
very close to the center of the multiplet of A. When Jxx = 5.0 Hz, they are 
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still in the range of the multiplet frequencies , exactly in the middle between 
outer and inner of its components. For Jxx = 20.0 Hz the frequencies of the 
non-magnetic coherences are far away from the multiplet. For such values of 
lxx the spectrum of A is almost independent of lxx· One can easily see that 
the impact of these coherences on the signal shape reaches a maximum in 
the limit of moderate quadrupolar relaxation, whereas in the other limits it 
remains small or even negligible. Another inference from these simulations is 
that the signal distortions caused by the non-magnetic coherences seem to be 
stronger for high positive values of r. 

Columns 4-6 present theoretical dependence of standard spectra of spin A 
on cross-correlation coefficient, r, in different quadrupolar relaxation regimes, 
for three values of lxx: 0.1 Hz (Column 4), 5.0 Hz (Column 5), and 20.0 Hz 
(Column 6). In each picture, three curves are compared which correspond to 
high (95%, solid lines), low but still positive (30%, dashed lines), and negative 
(-50%, dotted lines) values of r . The dependence of the lineshapes on the 
coefficient r is observed for all assumed values of Jxx and j, but again in the 
limit of moderate quadrupolar relaxat ion it becomes the most significant. 

The impact of both cross-correlation effects and Jxx on the spectra of 
A can be amplified by application of the Hahn-echo instead of the standard 
one-pulse pulse sequence. The Hahn-echo consists of a 90° pulse followed by 
delay T, a 180° pulse, delay T, and acquisition (see e.g. [33]). The spectrum of 
A obtained using this method is described by 

Ye(w) "" pTw(w)-1 exp[W(w0)T] exp(W'(w0)T)F (37) 

where w0 is the spectrometer frequency and matrix W' differs from that W 
of Table (3.2) by substitution of -~w instead of ~w and -IJAxl instead 
of I J AX I· For longer delays T, the overall signal amplitude of Hahn-echo is 
significantly decreased compared to the standard spectrum. This causes a loss 
of experimental sensitivity, but the desired effects are amplified due to different 
T2 relaxation properties of the individual signal components. Simulated Hahn­
echo spectra are displayed in Columns 7-12 of Figs. 6-8. The values of the 
parameters lAx, Jxx, r, and j assumed in these simulations are exactly the 
same as those used in the calculations of the corresponding standard spectra in 
Figs. 3-5. The delay T was assumed to be 50 ms for the spectra with j = 0.628 
rad s-1 , and 20 ms for tha remaining spectra. 

The presented simulations show clearly that quadrupolar cross-correla­
tions significantly influence the spectral lines in both the standard and the 
corresponding Hahn-echo spectra of spin A, in a wide range of quadrupolar 
relaxation rates. The observed differences between the simulated spectra al­
low for a supposition that the cross-correlation spectral densities could under 
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favourable conditions be quite easily determined from spectra by an itera­
tive lineshape analysis. Also, the scalar coupling, J xx , between magnetically 
equivalent quadrupolar nuclei, seems to be derivable from the spectrum of A 
measured in moderate quadrupolar relaxation limit. 

3.2 Practical evaluation of nuclear quadrupolar cross­
correlations. 

In this chapter I use two molecular models, i.e. 2,1,3-benzoselenadiazole 
and azide anion 14N-15N-14N, to demonstrate problems concerned with prac­
tical application of the algorithms of quadrupolar cross-correlations evalua­
tion. Careful analysis of the problems resulting from both low absolute value 
of cross-correlation and lack of knowledge of the value of scalar coupling be­
tween magnetically equivalent nuclei, allows for an elaboration of the method­
ology involved. This is a necessary prerequisite for further application of cross­
correlations in the investigations of molecular structure and dynamics. 

3.2.1 Low cross-correlation. Analysis of 77Se and 14N spectra of 
2,1,3-benzoselenadiazole. 

One-bond scalar spin-spin couplings of 77Se (spin-1/2) to nitrogen are usu­
ally large and can be comparable with quadrupolar relaxation rates of 14N nu­
clei in non-viscous liquids (34, 35] . At room temperature, the 77Se signal in a 
benzene solution of the 2,1,3-benzoselenadiazole 1 is substantially broadened; 
its width-at-half height is equal to 120 Hz while the width of the 14N sig­
nal is about 240 Hz. The characteristics of the relevant electric field gradient 
(EFG) tensors, calculated at a DFT level [36] , are given in Fig. 9. The molec­
ular geometry assumed in the calculations of the EFG 's was optimized using 
TURBOMOLE program with the DFT option [37]. I previously managed to 
determine the 77Se-15N coupling constant of 105 ± 0.2 Hz (for 0.5 mol/liter 
solution of 1 in DMSO at 320 K) from the 77Se satellites (natural abundance 
7.58%) in the natural-abundance 15N spectrum [35] . Using the relationship 

(38) 

(see e.g. Ref. [2]), where .D.W is the broadening of 15N signal and T1q is the 
longitudinal relaxation time of the 14N nucleus, I could also assess the absolute 
magnitude of the 15N-14N coupling constant to be smaller than 7.5 Hz. 

Under the conditions of proton decoupling, the 77Se nucleus coupled to two 
14N nuclei can be together considered as AX2 spin system. Therefore, the 77Se 
spectra of 1 can be described by matrix W (c.f. Table 3.2) and Eq. (35) . For 
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Figure 9: Principal axes of the EFG tensor, calculated at a DFT level, for the 
nitrogen nuclei in 2,1 ,3-benzoselenadiazole, 1. The principal values (MHz) are 
'Vzz = - 3.68, Vyy = 2.40, and Vxx = 1.28 (TJ = 0.304) . 

the analysis of the spectra, or, optionally, the FID functions , of both the 77Se 
and 14N subsystems simultaneously, I used the above-mentioned iterative com­
puter program [27] . In the description of the 14N signals of 1, the contributions 
of both the isotopomers of 1, containing magnetically active and non-active 
selenium isotopes, were accounted for. At ambient and elevated temperatures, 
the proton-decoupled 77Se spectra of 1 can in principle be sensitive to each of 
the NMR parameters entering matrix W. The proton-decoupled 14N spectra, 
on the other hand, are sensitive only to JAx and j in the whole temperature 
range where the extreme narrowing approximation is applicable [25]. Con­
vergence problems in the simultaneous iterative analysis of the 77Se and 14N 
spectra ought therefore to be much less severe than in the case of separate 
analyses. Actually, in the numerical computations described below no such 
problems have occured despite the fact that at each temperature up to 12 
lineshape parameters were varied simultaneously. Eight of them: amplitudes, 
baseline levels, dispersion admixtures, and positions of the resonances at the 
respective frequency axes are of no interest in the present context but they 
are critical for the quality of the fits. 

Keeping in mind the results of my earlier simulations, I performed iterative 
analysis of the pairs of spectra of 1 measured at four different temperatures. 
The unknown a priori value of J xx was kept fixed. At each temperature, the 
calculations were performed for three values: 0, 5 and 40 Hz, of J xx . For 
both 77Se and 14N spectra, the magnitude of lj1rT; was set to 0.2 Hz, which 
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seemed reasonable since the line widths in the 1 H spectra measured for the 
same sample using the same NMR probe never exceeded 1Hz (the contribution 
to the 77Se linewidth of the 77Se T2-processes I assess to be negligible) . For 
the runs with the assumed values 0 and 5 Hz of lxx , the results delivered 
by the fitting algorithm at convergence were practicaly the same, regardless 
of whether the FID functions (including the data from both channels of the 
receiver) or the corresponding absorption spectra were taken as the input 
data. However, such an agreement could be achieved only when (i) at any 
stage of the fitting process the spectra calculated according to Eq. (35) were 
numerically broadened by convolution with the corresponding sine function, 
sin(27rvtma:z:)/vtma:z:, where tma:z: is the acquisition time, and (ii) in the analysis 
of the FID's, the first 4 or 8 points of the experimental FID functions were 
rejected (see caption to Fig. 11). Results ofthe lineshape analysis are collected 
in Table 3.3. The experimental 77Se and 14N spectra with the superimposed 
"best fit" theoretical spectra are displayed in Fig. 10, and for the experiment 
at 393 K, the corresponding 77Se FID functions are shown in Fig. 11. In a 
related context, it was found advantageous to use in the lineshape analysis 
the FID's instead of the spectra [38]. This opinion is not supported by the 

Table 3.3: Results of lineshape analysis of the 77Se and 14N spectra of 1. 
Numbers without and within parentheses were obtained under assumption of 
IJxxl ~5Hz and IJxxl =40Hz, respectively; standard errors are given. 

T(K) JAx(Hz) j(rad s-1) k(rad s-1) r = kfj 

303a 78.0± 0.3 124.5 ±0.5 37.4 ± 22.0 0.30 ± 0.18 

(78.3 ± 0.3) (125.2 ± 0.4) (67.2 ± 7.0) (0.54 ± 0.06) 

343a 76.7 ± 0.3 73.4 ± 0.3 11.0 ± 8.6 0.15 ± 0.12 

(77.2 ± 0.3) (73.2 ± 0.3) (39.2 ± 2.4) (0.54 ± 0.03) 

383a 76.6 ± 0.2 50.6 ± 0.2 1.0 ± 40.4 0.0 ± 0.8 

(76.9 ± 0.2) (50.6 ± 0.2) (25.2 ± 1.4) (0.50 ± 0.03) 

393b 76.3 ± 0.2 53.4 ± 0.3 5.1 ± 11.1 0.10 ± 0.21 

(76.7 ± 0.2) (53.6 ± 0.2) (27.8 ± 0.9) (0.52 ± 0.02) 

a Benzene solution. 

b Toluene solution. 
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results reported presently. As can be seen from the data in Table 3.3, the 
results for J AX, and j are essentially independent on the assumed value of J x x . 
The estimated J AX does not differ much from the value of 75.5 Hz calculated 
from the value of 77Se-15N coupling constant measured directly [35]. The most 
accurate are preasumably the estimates of J AX extracted from the spectra at 
383 and 393 K, in which outlines of the fine structure start to emerge. For 
the reasons to be clarified later on, as the most reliable I consider the results 
obtained under assumption of IJ x xI ~ 5 Hz. Therefore, I take the value of 
76.5 ± 0.2 Hz as the result for the 77Se-14N coupling constant; the discrepancy 
of 1 Hz relative to the value derived from 77Se-15N coupling constant may 
be due to a primary 14Njl5N isotope effect. The values of k obtained under 
the assumption of IJ xx I ~ 5 Hz point to a low degree of quadrupolar cross­
correlations in the systems considered (benzene and toluene solutions of 1) in 
the whole temperature range. These values come with large standard errors, 
which is not surprising in the case of the spectra measured at 303 and 343 
K, because such are the expectations from the spectral simulations mentioned 
earlier. However, the large standard error of kat 383 K is in a striking contrast 
to the expectations. I first blamed for this the relatively low signal-to-noise 
ratio in the 77Se spectrum at 383 K. The high-temperature experiment was 
therefore repeated for a toluene solution of 1 in which experiment a significant 
improvement of the quality of the spectrum was achieved. This however did not 
reduce the magnitude of the standard error of k at a satisfactory level. Then 
I found out that for small values of lrl the lineshape functions calculated for 
k and -k are practically non-differentiable. Accordingly, for the values of lrl 
approaching 0 the two equivalent minima at the sum-of-squares hypersurface, 
those at k and -k, may merge into a single, broad minimum, the exact position 
of which may strongly react to even a slight perturbation by the random noise. 
In the limit of slow quadrupolar relaxation, similar conclusion as to the limited 
sensitivity of the signal shape to the values of r varying around zero can also be 
drawn from inspection on the curves in Fig. 2. Thus, the results obtained fork 
can only be interpreted semiquantitatively. Nevertheless, the conclusion that 
in the high temperature limit the quadrupolar cross-correlations are very low 
for the benzene and toluene solutions of 1 seems fully justified. It is interesting 
to note that for the calculated electric field gradient tensors (see caption to 
Fig. 9) and under assumption of an anisotropic rotational diffusion, described 
by the ratio of the diffusion coefficients Dz : Dy : Dx = 5.33 : 1.00 : 1.23t, 
the theoretical value of r calculated according to Eq. (24) amounts to -0.111. 

tFollowing Ref. (39], these three values are taken to be proportional to the reciprocals 
of the corresponding principal values of the moment of inertia tensor of l .Axis Z is the 
symmetry axis of the molecule and axis Y is perpendicular to the plane of the molecule 
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This is in a fair correspondence with our estimate. As far as I know, this 
is the first successful attempt to determine quadrupolar cross-correlations in 
isotropic fluids. 

The results for k obtained under assumption of Jxx=40 Hz differ signif­
icantly from zero (note their small standard errors) , which is a clear confir­
mation of the fact already predicted theoretically [25] that in the spectrum 
of spin-1/2 nucleus scalar coupled to two equivalent quadrupolar nuclei the 
estimates of Jxx and r will show up substantial statistical correlation. In the 
present case, the results obtained under assumption of IJxxl > 5 Hz can be 
rejected on the basis of the already mentioned data obtained for the DMSO 
solution of 1. The observed statistical correlation provides an indirect proof 
of the spectroscopic relevance of J-couplings between magnetically equivalent 
quadrupolar nuclei. Studies on a related system in which lrl is close to unity 
provide a more direct evidence of this property. Such studies are described in 
the next chapter. 

Experimental. Compound 1 was synthesized by Bj~rlo and M~rkved 
from the University of Trondheim according to a published procedure [40] . 
Proton-decoupled NMR spectra of 77Se and 14N in 1 were measured using 
Bruker Avance DRX 500 MHz spectrometer, equipped with a BVT 3000 tem­
perature unit and a broadband probe, in the temperature range of 303-393 
K. The samples containing c.a. 0.2 mol/liter and 0.3 mol/liter solutions of 1 
in benzene-d6 and toluene-d8, respectively, were degassed and sealed under 
vacuum of about 0.1 torr in NMR tubes (WILMAD, o.d. 5mm, i.d. 3.44mm). 
The 77Se spectra were recorded by applying a 20-degree pulse with repetition 
time between 117 and 225 ms, depending on the signal width. Up to 350,000 
scans (11 hours) were recorded. Possible distortions of the 77Se lineshapes due 
to incomplete recovery of the system between the pulses seem negligible; no 
interference T1-relaxation mechanisms that might cause a multiexponential 
recovery can be identified for the 77Se nucleus in 1. 

At high temperatures, problems with unexpected, uncontrolled and very 
rapid solvent boiling occured, which could lead to a peril of sample damage 
inside the spectrometer magnet. This effect was probably a result of tem­
perature gradient in the sample which is small at room and slightly elevated 
temperatures, but is significantly increased at 363-393 K. My further experi­
ence, gained in the measurements on the azide anion described below, is that 
such an effect can be avoided by using samples sealed without degassing. 
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3.2.2 The significance of J-coupling between magnetically equiva­
lent nuclei. Analysis of NMR spectra of the azide 14N-15N-14N 
anion. 

From an earlier study it follows that azide ion N3 of sodium azide NaN3 

can be assumed to have at least a C2v symmetry on NMR time scale [41]. If this 
anion was linear (symmetry Dooh) on the time scale of molecular tumbling, 
then one could expect rather high value of quadrupolar cross-correlations be­
tween the two terminal, magnetically equivalent 14N nuclei. For high values 
of r, from the lineshape simulations described in Section 3.1.2, a substan­
tial dependence of spectra of the central nitrogen atom on r and 2 J x x can 
be expected. Comercially available sodium azide consists of three 14N atoms. 
Lineshape simulations performed by me have proved that the effects in ques­
tion can in principle be observed in spectra of such a molecule. However, due 
to a small value of the couplings 1 J(14 N-14 N) between the central and ter­
minal nuclei and relatively fast quadrupolar relaxation causing undesired line 
broadening of the central 14 N nucleus, they may be not large enough to al­
low for an accurate evaluation of the required parameters. In order to have 
these effects amplified, I have synthesized sodium azide 2 95% 15 N-selectively 
labelled in the central position. In the labelled compound, the value of one­
bond coupling constant between the central and terminal nitrogen nuclei is 
increased by a factor of 1.4 (the magnetogyric ratio of 15N is 1.4 times greater 
than that of 14N) , and the line broadening of the central nucleus is greatly 
reduced(15 N is a spin-1/2 nucleus) . For 2 dissolved in D20, upon increasing 
the temperature up to 383 K, I have managed to reach the regime in which 
the 1 J(15 N-14 N) = 11.59 Hzt was of the same order of magnitude as the 
quadrupolar relaxation rate of the terminal 14N nuclei. At this temperature, 
and also at 353 K, I have measured standard spectra of the 15N and 14N nu­
clei; for the latter nucleus, also T1-relaxation time at 383 K was determined. 
Unfortunately, despite of very long acquisition runs, lasting almost 70 hours 
at each temperature, the signal-to-noise ratio in 15N spectra was rather poor 
(see Fig. 12). The main reason of this problem was extremely long T1 relax­
ation time of the 15N nucleus, extrapolated from the T1 values obtained at 
lower temperatures, to be about 60 seconds at 383 K and about 65 seconds at 
353 K (the unexpected increase of relaxation rate at the higher termperature 
is probably caused by spin-rotation relaxation mechanism, which seems to by 
quite important for the discussed molecule). The painful but unavoidable con­
sequence of the poor quality of the 15N spectra was low accuracy of the fits, 

tThis value, determined by me at T= 353 K, favourably compares with that of 11.32 Hz 
obtained in Ref. (42] for 15N-15N-15N azide. 
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Figure 12: Experimental 15N spectra of azide ion selectively 15N-labelled in 
central position 2 superimposed with the "best fit" calculated spectra. The 
fits displayed were obtained under assumption of 2 lxx = 0.1 Hz (see text) . 

what was disappointing from the point of view of my main goal. Namely, my 
primary aim was a simultaneous determination of both 2lxx and r. Despite 
of the use of different fitting strategies (see below), I was not successful. The 
value of 2 lxx = 4.3 ± 1.5 Hz delivered by the fitting program at convergence, 
was accompanied by the estimate of r exceeding 100%, which is non-physical. 
I can only estimate that in order to quantitatively measure the value of 2 lxx 
from the spectra of the central nitrogen nucleus, I would have to perform the 
signal acquisition for at least 200 hours. Such experiments were not possible 
because of technical reasons. Therefore, I decided to focus my effort on the 
possibly most exact determination of coefficient r, whose overall impact on 
the spectra is stronger than that of 2 J x x. The quality of 15 N spectra has fi­
nally appeared to be good enough for such a purpose. From line broadening 
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Table 3.4: Results of lineshape analysis of the 15N and 14N spectra of 2. Num­
bers without parentheses, within curly brackets and within parentheses were 
obtained under assumption of ll x xl = 0.1, 5.0, and 10.0 Hz, respectively; 
standard errors are given. 

w(14 N}/27r w(15 N}/27r j(rad s-1) k(rad s-1) r = kfj 

T=383K 

0.79 ± 0.20 0.41 ± 0.13 2.36±0.06 2.27 ± 0.10 0.962 ±0.04 
{0.60 ± 0.21} {0.57 ± 0.14} {2.41 ± 0.06} {2.60 ± 0.10} {1.079 ± 0.04} 
(0.06 ± 0.24} (0.82 ± 0.15} (2.58 ± 0.07} (2.92 ± 0.11) (1.132±0.04} 

T= 353K 

1.26 ± 0.23 0.41 ± 0.12 3.22 ± 0.07 3.07 ± 0.11 0.953± 0.03 
{1.07 ± 0.26} {0.48 ± 0.13} {3.28 ± 0.08} {3.34±0.11} {1.018 ± 0.03} 
(0.12 ± 0.32} (0.60 ± 0.14} (3.58 ± 0.10} (3.77 ± 0.13} (1.050 ± 0.04} 

of the signals of the terminal 15N nucleus in the azide ion labelled with 15N in 
central and one of the terminal positions, which I also synthesized, using the 
relationship in Eq. (38) , I managed to determine the upper limit for the value 
of the critical parameter 2 Jxx to be 0.1 Hz. 

For each of the mentioned temperatures, both the 15N and 14N spectra 
of 2 were analysed simultaneously, similarly as was done for 1. The fits were 
performed for three fixed values of 2Jxx, 0.1, 5.0 and 10.0 Hz. Calculations for 
the values of 2 J xx = 5.0 and 10.0 Hz were performed for sake of a comparison. 
Results of these iterative analyses are given in Table 3.4. For the realistic 
value of 2Jxx = 0.1 Hz the cross-correlation coefficient r determined from the 
analysis is very close to unity, but still falls below it. When 2Jxx is increased 
to 5.0 Hz, for both temperatures the obtained values of r exceed 100% and 
become thus non-physical. For 2 lxx = 10.0 Hz, the "best fit" value of r at 
T = 383 K exceeds lOO% by more than three standard errors. Despite of 
the fact that it was obtained in an indirect way, this seems to be the first 
unquestionable experimental evidence of the dependence of the spectra on the 
scalar coupling constant between magnetically equivalent nuclei. 

In the left-hand column of Table 3.4 one can follow variations of the "best 
fit" values of we4N) . They seem to be overestimated in the case of small 
2 J x x , but are significantly decreased in the remaining cases. To eliminate the 
possible impact of this artificial degree of freedom on the estimates of r , for 
the experiment at 383 K I decided to apply another fitting strategy in which 
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Table 3.5: Refined results of lineshape analysis of the 15N spectra of 2 . Num­
bers without parentheses, within curly brackets, and within parentheses were 
obtained under assumption of llxxl = 0.1, 5.0, and 10.0 Hz, respectively; 
standard errors are given. Spectral density j calculated from 14N T1 relax­
ation times was 2.375 rad s-1 for temperature 383 K. The value of j = 3.399 
rad s-1 was used for temperature 353 K (see text for explanation). 

w(l5 N)/27r(Hz) k(rad s-1 ) r=kfj 

T=383K 

0.45 ± 0.14 2.30 ± 0.08 0.968 ± 0.034 
{0.50 ± 0.14} {2.54 ± 0.06} {1.069 ± 0.025} 
(0.50 ± 0.14) (2.62 ± 0.06) (1.103 ± 0.025) 

T=353K 

0.66 ± 0.08 3.33 ± 0.07 0.980 ± 0.021 
{0.65 ± 0.07} {3.49 ± 0.05} {1.027 ± 0.015} 
(0.56 ± 0.08) (3.55 ± 0.04) (1.044 ± 0.012) 

the value of j was derived from T1 relaxation time of the 14N nuclei instead 
of extracting it from the 14N spectrum. At 353 K, T1 (14N) relaxation time 
was unfortunately not measured. In order to obtain an estimate of j at 353 K 
unbiased by the lack of knowledge of w(l4N) , I fitted "extraneous" line broad­
ening of the 14N line at temperature 383 K under assumption of fixed spectral 
density j taken from the 14N T1 measurement in this temperature. Then this 
value of w(l4N) was used for fitting of the spectral density j from the 14N 
spectrum measured at 353 K. The result of this procedure, j = 3.399 rad s-1 , 

was used in further iterative analysis of spectra of 15N at 353 K. The fitted 
15N spectra for both temperatures are shown in Fig. 12. Numerical results of 
the modified fitting procedure are reported in Table 3.5. In contrast to the 
results of the previous fitting strategy, these refined estimates of the "extrane­
ous" line broadening w(15 N)/271' seem to be essentially identical for all six fits . 
This is reasonable if one takes into account that both the 15N spectra were 
recorded in the same magnet using the same probehead. Therefore, stability 
of the value of w(15 N) can be probably treated as a good test of reliability of 
the above results. It is worth to note that for large (compared to w) values of 
j and 1JAx in an investigated system, the discussed uncertainty of the value 
of w is immaterial. 
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In view of the results of the modified strategy, the main conclusions de­
rived from analysis of the data in Table 3.4 remain still valid, i.e. correlation 
coefficient r is very high (at least 96.8%) in the investigated case, and the 15N 
spectrum of the central nitrogen atom is dependent on the coupling constant 
between magnetically equivalent nuclei, 2 Jxx - The high value of r confirms 
that in the solution studied, the azide anion retains Dooh symmetry not only 
on the NMR time scale but also on the timescale of molecular tumbling. 

Experimental. Both sodium azides, 14N-15N-14NNa 2 and 14N-15N-15NNa, 
were synthesized by me according to a published procedure [43]. NMR spectra 
of 14N and 15N in 2 were measured using Bruker Avance DRX spectrometer, 
equipped with a BVT 3000 temperature unit and a broadband probe, at two 
temperatures of 353 and 383 K. The sample containing c. a. 100 mg of sodium 
azide 2 and 100 mg of sodium carbonate in 1.5 ml of 0 20 was sealed under 
ambient pressure in NMR tubes (WILMAD, o.d. 10mm, i.d. 7.12mm). The 
15N spectra were recorded by applying 90-degree pulse with repetition time 
350 s. (longer than fivefolded T1 relaxation time of the pulsed nucleus). Up 
to 705 scans (69 hours) were recorded. The 14N spectra were recorded by ap­
plying 90-degree pulse with repetition 310 ms. Up to 4000 scans (20 minutes) 
were recorded. Approximate T1 relaxation times for 15N nucleus at T=303, 
343, and 373 K were measured to be 53, 65, and 60s., respectively. T1 relax­
ation time of 14N nucleus was measured at 383 K to be 21.0 ms. The coupling 
constant 1 J(15N-14N) was determined from line splitting in 15N spectrum of 
the 14N-15N-15N isotopomer at T=353 K to be 11.59 Hz. 

3.3 Application of nuclear quadrupolar cross-correla­
tions in the studies on the solution structure of 
bis(hexamethyldisilylamido )mercury(II). 

In the present section, the approach similar to that used in the studies 
on 1 (see Section 3.1 and Ref. [28]), augmented with standard NMR relax­
ation measurements, will be applied to the problem of solution structure of 
bis(hexamethyldisilylamido)mercury(II) 3. In neat liquids, the structure of 3 
and its cadmium, and zinc analogs were once investigated using IR/Raman 
spectroscopy [44] . For all these compounds, it was concluded that the N-M-N 
chains are linear, and the MNSi2 fragments are planar. Regarding the relative 
orientation of the MNSi2 ligands, the IR/Raman mutual exclusion principle 
did not allow to discriminate between the eclipsed (D2h symmetry) and stag­
gered (D2d symmetry) conformations (see Fig. 13) . In gas phase, of the models 
with assumed D2h and D2d geometries of the Si2NMNSi2 skeleton only the 
latter could be satisfactorily brought into agreement with the experimental 
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Figure 13: D 2h and Du conformations of 3. Inset: Principal axes of the EFG 
tensors of the 14N nuclei. 

electron diffraction (ED) data for 3 (45] and its Zn (46] and Cd (47] analogs. 
However, in the final structure refinements it had proven advantageous to 
postulate the occurence of large amplitude librations around the N-M-N axis. 
The estimated librational energy barriers were low, about 8 ± 4 kJ mol-l, 
and their origin was attributed to intramolecular steric rather than electronic 
effects (48]. In view of these findings, a straightforward extension of the above 
conclusions to the solution structures of the compounds in question did not 
seem justified. This was one of my motivations to undertake the present study 
on the solution structure of 3. 

3.3.1 Evaluation of quadrupolar cross-correlations. 

In the molecule of 3, the 199Hg nucleus is the only candidate for the spy 
nucleus whose resonance lineshape is to provide information on the quadru­
polar cross-correlation coefficient, r, for the pair of isochronous 14N nuclei. 
Above room temperature, longitudinal relaxation times of the latter become 
long enough, compared with the magnitude of 1J(199Hg-14N)=226 Hz calcu­
lated from the corresponding quantity in Table 3.6, for the lineshapes of 199Hg 
to become increasingly informative, along with further temperature increase, 
about the magnitudes of r at the individual temperatures. The computer 
routine to iterative lineshape analysis, based on BWR theory, mentioned pre-
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Table 3.6: Values of selected scalar nuclear spin-spin coupling constants in 3 . 

Constant 

J(199Hg-lsN)a 
2 
J (199Hg-29Si)b 

3 J(199Hg-13C)c 

1J(29sPsN)a 
1 
J(29Si-13C)c 

2 J(lsN_14N)d 

Absolute value (Hz) 

316.2 

32.8 

33.6 

9.4 

55.7 

<9 

a Measured directly from the 199Hg and 29Si satellites, respectively, in the natural 

abundance 15N NMR spectrum (±0.2 Hz), recorded by the refocused INEPT pulse 

sequence (based on 3 J(15N,Si,C,lH)~ 1.8 Hz) with 1H decoupling. 

b Measured directly from the 199Hg satellites in the 29Si NMR spectrum (±0.2 Hz), 

recorded by the refocused INEPT pulse sequence (based on 2J(29Si,C,1 H) = 7Hz), with 
1 H decoupling. 

c Measured directly from the 199Hg and 29Si satellites, respectively, in 13Ce H} NMR 

spectrum (±0.2 Hz). 

d Determined from the spectrum at T=353 K using Eq. (38). 

viously [27), is not applicable at hand to the present problem. This is because 
both 199Hg and 14N resonances in 3 are superpositions of contributions from a 
number of isotopomers in which these nuclei, beyond their mutual couplings, 
suffer additional scalar couplings to the 29Si and 13C nuclei. The relevant 
natural-abundance isotopomers of 3, grouped into classes of the same spin 
coupling patterns to the 199Hg and 14N nuclei, are listed in Table 3. 7. The 
above-mentioned computer routine was rendered capable of fitting a weighted 
sum of theoretical spectra, all of which are dependent on the same adjustable 
parameters, to the given experimental spectrum. Its capabilities were also 
extended to handle the spectra measured using the Hahn-echo technique. 
My earlier experience, gained from lineshape simulations described in Sec­
tion 3.1.2, is that some lineshape details that are poorly marked in standard 
spectra usually undergo amplification when one uses such an experimental 
technique in which signal acquisition is delayed. In the present studies, due to 
accelerated quadrupolar relaxation, at temperatures below 333 K, the 199Hg 
resonances gradually lack nontrivial features reflecting the degree of the qua-
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Table 3. 7: Natural-abundance isotopomers of 3 contributing to the observed 
199Hg and 14N signals; spin-1/2 isotopes of Hg, Si and C are denoted by 
asterisksa,b. 

199Hg signal 

(C3Si)2N Hg* N(Si*C2C*)(SiC3 ) 

( C3Si)2N H g* N(SiC2C*) (Si*C3) 
(C3Si)(C3Si*)N Hg* N(SiC2C*)(SiC3) 
14N signal 

statistical weight (%) 
72.16 
14.23 
9.70 

2.61 

statistical weight (%) 
68.07 
13.43 
12.82 
2.4 

a The 201 Hg isotope is treated as magnetically nonactive because of its large quadrupole 

moment and, accordingly, extremely rapid quadrupolar relaxation in compounds with non­

spherical electric field symmetry at the nuclear site. 

b Contributions from isotopomers whose relative abundances are below 1 per cent are ne­

glected 

drupolar cross-correlations while such features can still be discerned in the 
Hahn-echo spectra measured for appropriately long echo times. However, this 
gain in the information content is at the cost of a substantial enlongation of 
the experiment time, which is needed in order to achieve satisfactory signal­
to-noise ratio. Therefore, under conditions where standard spectra contain 
enough information about r, there is no essential need to measure Hahn-echo 
spectra, unless the value of r is to be known with high accuracy. 

In order to compare these two experimental approaches, at temperatures 
383 and 403 K I measured both standard and Hahn-echo 199Hg spectra. The 
latter were measured with r delays of the lengths of 0.7 and 1.0 ms, respec­
tively. The fitted values of r (the fits achieved are shown in Fig. 14) at 383 K 
are 0.761 ±0.004, and 0.738±0.007 for Hahn-echo and spectrum, respectively. 
At 403 K, the corresponding values are 0.740 ± 0.004 and 0.721 ± 0.006. How­
ever, it is remarkable that the estimates of r obtained from the Hahn-echo 
spectra come with the significantly smaller standard errors. 

Actually, I was able to determine r with relatively high accuracy in the 
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T=383K 

Spectrum 

T=383K 

Hahn-echo 

500Hz 

T=403K 

Spectrum 

500Hz 

Figure 14: Standard and Hahn-echo spectra of 3 at temperatures 383 and 
403 K. Delays r were 0. 7 and 1.0 ms, respectively. The theoretical "best fit" 
spectra are depicted by solid lines (see text for further comments) . 

range of 313 to 403 K, where the estimates of r at T < 333 K were obtained 
from Hahn-echo spectra. Results of the lineshape analyses are given in Table 
3.8. My present way of proceeding was as follows: At each temperature, I first 
performed lineshape fits of the 14N signal (the measurements of 199Hz and 
14N spectra could be performed at exactly the same temperature because the 
same NMR probehead was used in each case). In these fits, the magnitudes 
of the relevant coupling constants were kept fixed; the only nontrivial param­
eter which was to be adjusted was the quadrupolar autocorrelation spectral 
density, j . From the theoretical considerations confirmed by numerical simu­
lations it is known that in systems like that considered presently the signal 
of the quadrupolar nuclei is independent on the quadrupolar cross-correlation 
spectral density, k. The value of j was then used as a nonadjustable parame-
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Table 3.8: Auto- and cross-correlation quadrupolar spectral densities obtained 
from lineshape fits of NMR spectra of 14N and 199Hg nuclei in 3. 

T(K) j(s-1) k(s-1 ) r 

313 169.46 ± 0.31 126.9 ± 1.3 0.749 ± 0.007 
323 146.27 ± 0.25 111.8 ± 0.6 0.764 ± 0.004 

333 128.55 ± 0.31 94.2 ± 0.6 0.733 ± 0.005 

343 108.32 ± 0.25 84.2 ± 0.6 0.777 ± 0.006 

363 85.07 ± 0.19 66.6 ± 0.6 0.783 ± 0.008 
383a 67.92 ± 0.19 54.0 ± 0.6 0. 795 ± 0.010 
403a 54.73 ± 0.19 42.1 ± 0.6 0.769 ± 0.011 

a The values obtained from standard spectra with considerably lower signal­
to-noise ratios than those depicted in Fig. 14; note that these values are close 
to the corresponding values obtained from Hahn-echo spectra exhibiting a 
rather poor signal-to-noise ratio (see discussion on page 46) 

ter in the lineshape fit of the 199Hg signal. Here the only nontrivial adjustable 
parameter was k. 

As was once deduced from the theoretical considerations [25], which were 
confirmed by my own theoretical (Section 3.1) and experimental findings de­
scribed in Sections 3.2.1 and 3.2.2, the estimate of k delivered at convergence 
can be critically dependent on the absolute value of the J-coupling constant 
between the quadrupolar nuclei, especially in the instance where the latter are 
magnetically equivalent. In the present studies, I could only asses the absolute 
value of J(14N-14N) to be smaller than 6Hz (see Table 3.6) . My estimates of k 
obtained assuming various values of J(14N-14N) from the range 0-6 Hz did not 
differ among themselves by more than 0.5 per cent. However, assuming a un­
realistic value of J (14N-14N) to be greater than 30 Hz succeeds in an increase 
of the estimated value of k by more than 7 per cent. One more point that 
needs to be commented upon in the present context involves the impact on 
the estimated values of j and k of the line broadenings caused by factors other 
than quadrupolar relaxation. While the field inhomogeneity broadenings, the 
magnitudes of which I can asses to be smaller than 0.5 Hz, are of little sig­
nificance, those originating from relatively fast 199Hg relaxation, dominated 
by the CSA mechanism are non-negligible, especially at low temperatures. 
In order to make a proper account of these CSA-relaxation broadenings in 
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my lineshape fits, I performed independent measurements of the longitudi­
nal relaxation times of 199Hg, which are described below. In the lineshape 
fits, the CSA-relaxation effects on the 199Hg resonances were accounted for 
as Lorentzian broadenings w /2rr(Hz) = 7/ ( 6rrTl) [2] . For selected tempera­
tures , the experimental 199Hg and 14N spectra with the superimposed best fi t 
theoretical spectra are displayed in Fig. 15. 

It must be added that these solutions of the least-squares problems for 
the 199Hg spetra are not unique. When negative values of k are assumed at 
the start, the corresponding values delivered at convergence are also negative, 
and their absolute magnitudes are nearly the same as those obtained from 
positive starting values. These negative solutions have been rejected since the 
corresponding rms errors were consistently larger, by 1 to 7 per cent , than 
those achieved for the respective positive solutions. 

3.3.2 Longitudinal relaxation times. 

T1 relaxation times of 199Hg in 3 were measured in temperature range of 
243 to 403 K using the standard inversion recovery technique. In 3, as in 
other covalent compounds of 199Hg, the relaxation behavior of this nucleus is 
dominated by the CSA mechanism [49] . An Arrhenius plot of the observed 
199Hg relaxation rates is shown in Fig. 16. The deviations of the experimental 
relaxation rates from the least-squares straight line (described in the caption 
to Fig. 16) do not seem to bear a systematic character. They can be attributed 
to random errors in determining the integral intensities of the relatively broad 
199Hg resonances for the recovery times at which the magnetization recovery 
curves cross zero. At temperatures below the room temperature, the relaxation 
times of the 14N nuclei become too short to be measured with reasonable ac­
curacy using either the inversion recovery or the lineshape analysis technique. 
In this temperature range, the longitudinal relaxation times (and, in fact, the 
j parameters) were determined indirectly from lineshape fits of the 199Hg sig­
nals. In these fits, the parameter j was varied while the values k were set 
equal to rj, where r is an arithmetic average of the estimates of r obtained at 
temperatures above the room temperature. As in the lineshape fits carried out 
to determiner, the broadening of the 199Hg spectra due to the CSA relaxation 
was calculated from the independently measured longitudinal relaxation times 
of the 199Hg nucleus. The bias of the estimated values of j caused by fixing 
the magnitude of r is negligible since in the temperature range considered 
lineshapes of the 199Hg spectra measured in the standard way are esentially 
insensitive to r. An Arrhenius plot of the longitudinal relaxation rates of the 
14N nuclei is shown in Fig. 16. As can be seen in Fig. 16, the experimental 
points are nearly perfectly aligned along a straight line. It is noteworthy that 
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T(K) 
403 

1000Hz 2000Hz 

Figure 15: Experimental 199Hg (left side) and 14N (right side) spectra of 
toluene solution of 3 for selected temperatures, and the superimposed best 
fit theoretical spectra. The 199Hg spectrum at T = 313 K is the Hahn echo 
spectrum (see text) . Lorentzian lineshape was assumed for the narrow impu­
rity signal (originating from admixture of the free ligand) in the 14N spectra. 
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Figure 16: Arrhenius plots of the 199Hg (solid circles) and 14N (squares) re­
laxation rates 1/T1 (s-1) . The corresponding least-squares regression lines 
are : ln(Tt) = -(13.41 ± 0.25 kJ mol-1)/RT + (1.66 ± 0.11) and ln(T1) = 
-(13.49 ± 0.13 kJ mol-1)/RT- (2.96 ± 0.06). Open and solid squares desig­
nate data obtained from lineshape fits of 14N and 199Hg spectra, respectively 
(see text) . 

the slope of the latter is practically identical with that of corresponding line 
for the 199Hg relaxation rates (see caption to Fig. 16). 

3.3.3 The 29Si and 13C spectra. 

In both 29Si and 13C spectra, the satellite lines due to coupling with the 
199Hg nucleus do not show any extra broadening beyond that caused by rel­
atively rapid longitudinal relaxation of 199Hg. This holds true even for the 
highest temperature, T=403 K, at which such spectra were measured. These 
observations allow me to exclude the occurence of intermolecular ligand ex­
change; in the cadmium analog of 3, such process does occur in toluene solu­
tions of comparable molecular concentration, causing significant broadenings 
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and, at elevated temperatures, collapses of the corresponding 13C and 29Si 
doublets into singlets. 

3.3.4 Discussion. 

For a molecule whose structure is rigid on the timescale of molecular tum­
bling, cross-correlations between various time-dependent intramolecular in­
teractions that contribute to nuclear spin relaxation are in general dependent 
on both geometrical and dynamic factors. These include orientations of the 
corresponding interaction tensors relative to the principal axis system of the 
rotational diffusion tensor, and the anisotropy of the latter. In the specific 
instance where such a molecule possesses symmetry center, the pairs of in­
teractions whose respective tensors are transformed into each other under 
inversion in the center remain perfectly cross-correlated, regardless of what 
is the microscopic mechanism of rotational diffusion [11]. Such perfect cross­
correlations will be maintained even in presence of intramolecular motions 
provided that the latter are sufficiently fast compared with the overall tum­
bling. In typical situations, upon changing the temperature the rates of the 
overall reorientation will be affected more substantially than those of the fast 
intramolecular processes. By an increase of temperature, the original disparity 
between the corresponding timescales may be diminished, which could mani­
fest itself in a gradual decorrelation of the symmetry-related interactions. For 
the compound investigated presently, I was able to evaluate the quadrupolar 
cross-correlation coefficient, r, in the temperature range over which the overall 
tumbling, monitored by the 199Hg relaxation rate (see below) is accellerated 
by more than a factor of 3. However, the estimated values of r, all of which 
fall below 0.8, do not show any systematic increase toward the limiting value 
1 along with decreasing the temperature from 403 down to 313 K. Actually, 
to within the corresponding triple standard errors they remain independent of 
temperature. These observations can be rationalized if one assumes that the 
ShNHgNSi2 skeleton behaves like a rigid body on the timescale of the molec­
ular reorientations that are relevant for quadrupolar relaxation. In agreement 
with the inferences from the ED data for gas phase, the possibility that it 
exists in D2h conformation ought to be excluded because the values of r are 
substantially different from 1. Moreover, regardless of what is the true con­
formation of 3, the possibility that the EFG tensors for the 14N nuclei are 
axially symmetric around the N-Hg-N axis should also be excluded since oth­
erwise the values of r would be close to unity. However, the above conclusions 
are rather critically dependent on how realistic is the assumption about an 
essential rigidity of the ShNHgNSi2 skeleton. In order to verify it further, I 
measured longitudinal relaxation times for the 14N and 199Hg nuclei, which 
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could be done over much broader temperature range, i.e. 243 to 403 K, than 
for r . Over the whole range, a perfect parallelism between the dependences on 
temperature of the 14N and 199Hg relaxation rates is maintained (see Fig. 16). 
As is pointed out below, this observation provides another essential argument 
against a flexibility of the Si2NHgNSh fragment (anticipated in view of the 
occurence oflarge-amplitude librations in gas phase) [45, 46, 47] on a timescale 
commensurable with that of molecular tumbling. Let me note that, due to the 
fact that the N-Hg bond is essentially a single bond [44, 48], the CSA tensor 
of the 199Hg nucleus can to a good approximation be regarded as axially sym­
metric around the N-Hg-N axis, regardless of what is the true conformation of 
3 (for D2d conformation, this would be an exact symmetry) . For any mutual 
orientation of the HgNSi2 groups, the latter, which will further be referred 
to as Z axis, will remain an effective symmetry axis of the whole molecule. 
Hence, the relaxation behaviour of the 199Hg nucleus will be controlled by 
reorientations around axes perpendicular to Z axis and will be insensitive 
to any motions around it . On the other hand, reorientations around Z must 
contribute to the relaxation rates of the 14N nuclei, since the possibility for 
the EFG tensors to be axially symmetric with respect to the latter must be 
rejected (see above) . Therefore, the parallelism between the 199Hg and 14N re­
laxation behaviours could be rationalized when reorientations around Z and 
around the axes perpendicular to it were controlled by the same microscopic 
mechanism. My experimental findings seem to confirm the occurence of such 
a single mechanism. Its temperature behaviour follows Arrhenius law rather 
closely, what can be seen from the Arrhenius plots of the 14N and 199Hg re­
laxation rates shown in Fig. 16, revealing the same activation energy of 13.4 
kJ mol-1 . This points to an essential irrelevance for the observed relaxation 
effects of the possible large-amplitude librations around Z. In liquid phase, 
such librations can be considered in terms of some large-angle, rotational 
jumps modulating the small-angle, diffusional reorientations around Z . Such 
jumps would affect the 14N relaxation rates only, via the asymmetries of the 
corresponding EFG tensors; because of axial symmetry around Z of the CSA 
tensor, they would not be reflected in relaxation rates of the 199Hg nucleus. It 
is highly unlikely that the temperature dependence of such jumps be exactly 
the same as for diffusional reorientations. Thus, the temperature behaviour of 
the 14N and 199Hg relaxation rates discussed above, observed over temperature 
range exceeding 150 K, can be rationalized if the mean lifetime of the mole­
cules of 3 between the possible large-angle jumps happens to be much longer 
than the orientational correlation time for the small-angle diffusion. This may 
mean that the relatively low, ea 8 kJ mol- l, librational barrier found in gas 
phase (45] is substantially increased in liquid phase due to intermolecular in-
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teractions. In conclusion, in the observed relaxation behaviour of the system 
discussed there are no such features that would necessitate going beyond the 
standard interpretation in terms of rotational diffusion. Moreover, the data 
collected reveal no flexibility of the Si2NHgNSi2 fragment on the timescale of 
the overall molecular tumbling. In view of what was pointed out at the begin­
ning of this section, and of the fact that structures with the two NSi2 groups 
permanently twisted relative to each other by angles different from 90 deg are 
highly improbable, one is left with the D 2d geometry as the only possibility for 
the conformation of the Si2NHgNSi2 skeleton. This is in agreement with the 
inferences from the gas phase studies [45, 46, 47]. Detailed questions regarding 
the nature of the reoriantational diffusion mechanism of the molecules of 3 
and, more specifically, whether it is dominated by purely inertial[50, 39] or 
microviscosity effects[51, 52], must be left open. Nevertheles, in accord with 
D2d geometry, axial symmetry around Z axis is to be assumed for the relevant 
rotational diffusion (RD) tensor; in what follows the two diffusion constants 
characterizing reorientations around Z, and around axes perpendicular to Z , 
will be denoted by Du and D.1., respectively. Now, for each of the 14N nuclei, 
one of the principal axes of its EFG tensor will be directed along Z while the 
two remaining axes, perpendicular to Z, will lie in the symmetry planes of 
the corresponding NSi2 groups (see inset in Fig. 13). The system of the two 
principal axes perpendicular to Z of each EFG tensor is twisted by the angle 
of 90 deg relative to the corresponding system of the other. Using the expres­
sions for auto- and cross-correlation spectral densities that are applicable to 
interaction tensors without axial symmetry (see Section 2.3) [15, 14], one can 
derive relationships connecting the observed values of r with both the RD 
anisotropy parameter ~ = Du/ D .1. and the characteristics of the EFG tensors. 
For any such tensor, it is customary to label its principal axes in such a way 
that the absolute magnitudes of the corresponding principal values be ordered 
according Eq. (5) [5]. Then, the corresponding EFG asymmetry parameter TJ 
defined in Eq. (5) is nonnegative and never exceeds 1. Depending on which of 
the three principal EFG axes, x, y, and z, whose associated principal values 
obey Eq. (5), happens to coincide with the Z axis of the RD tensor, a different 
functonal dependence of r on TJ and € is obtained. All these three relationships 
can be described by a single expression 

1- Au(TJ)/(1 + 2€) r = ----=--'-'-'--..:._---=-
1 + Au(TJ)/(1 + 2€) 

(39) 

where for the orientations of x 11 Z, y 11 Z and z 11 Z , the corresponding 
functions Az, A11 , and Az, are [(3 + "1)/(1 - "1)]2

, [(3 - "1)/(1 + "1)]2 and T/2 , 

respectively. My experimental results, combined with an assesment of the 
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probable magnitudes of the motional anisotropy parameter e, allow one to 
discriminate between these three orientations. Namely, if the gradient of the 
smallest magnitude was along Z axis (i.e. , x 11 Z), then only for the values 
of e exceeding 40 Eq. (39) would deliver physically sensible values of 'T/ (i.e., 
ones fulfilling 0 ~ , ~ 1). It is worth noting that the smallest value of e, 
that is, ea. 40, would correspond to the limiting situation where each of the 
EFG tensors was axially symmetric (ry = 0) around an axis perpendicular to 
Z (with the axes of the individual tensors subtending a dihedral angle of 90 
deg, see above) ; for the values of 'T/ approaching 1 the corresponding values of 
e would tend to infinity. AB is pointed out below, such an extent of rotational 
asymmetry for the molecules of 3 is extremely unlikely, so that the possibility 
of x being parallel to Z can be excluded. For the hypothetic orientation of 
y 11 Z, the limiting values of e are about 4 (for 'T/ = 1) and about 40 (for 
'T/ = 0, in which instance the orientations y 11 Z and x 11 Z become nondif­
ferentiable by definition). It is illuminating to compare these estimates of e 
with the predictions derived from the two already invoked theoretical models 
of anisotropic rotational diffusion in liquids, the extended rotational diffu­
sion (ERD) in the limit of small angle displacements[39], and hydrodynamic 
(HD)[51, 52) models. In the former, the anisotropy parameter e is given by 
the ratio of the corresponding principal values of the molecular inertia tensor 
I X I I z ( = I y I I z); for the gas-phase geometry of 3, the value of e calculated in 
this way amounts to ea. 2.5. In various versions of the HD model, the motional 
anisotropy is related to the anisotropy of the molecular shape; for molecules of 
approximately spherical shape isotropic reorientation is predicted, regardless 
of the properties of the molecular inertia tensor. In the Du conformation, the 
molecules of 3 are approximately spherical. Moreover, they do not contain any 
peripheral functional groups that might engage in specific interactions with 
the solvent molecules, which would render the HD approach inapplicable. In 
any case, it seems reasonable to assume that the value of e falls somewhere 
between 1 (isotropic reorientation) and 2.5. Therefore, the possibility of y 11 Z 
can also be excluded and, accordingly, the most likely orientation of the EFG 
tensor for each of the 14N nuclei is such that the axis of maximum gradient 
is directed along the N-Hg bond (z 11 Z). Putting for r in Eq. (39) the arith­
metic average of the corresponding values from Table 3.8., 0.77, the values 
of , falling in the range of 0.62 (for isotropic reorientation, e = 1) to 0.88 
(for e = 2.5) are obtained. Thus, even such a non precise assessment of the 
reorientational asymmetry can yield reasonable estimates of 'TI· To the best of 
my knowledge, this is the first attempt of determining the properties of an 
EFG tensor from quadrupolar cross-correlation effects in an isotropic liquid. 
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3.3.5 Concluding remarks. 

The data on temperature dependences of both the quadrupolar cross­
correlation and longitudinal relaxation of 14N and 199Hg nuclei for a toluene 
solution of 3 are shown to be consistent with the structure in which the Si2N­
Hg-NSi2 skeleton maintains D2d geometry on the time scale of overall molecu­
lar reorientation. The extent of the possible anisotropy of the latter, described 
by the ratio e = Du/ D .1 of the relevant rotational diffusion constants, must 
be confined to relatively narrow limits: from isotropic reorientation (e = 1) 
expected from hydrodynamic models to the anisotropy controlled by the prop­
erties of the moment of inertia tensor, in which case e ought not to exceed 2.5. 
Accordingly, the principal axes of the 14N EFG tensors, concerned with gradi­
ents of maximum absolute values, can uniquely be located along the direction 
of the N-Hg-N chain. The value of the EFG asymmetry parameter, calcu­
lated from the experimental data assuming isotropic reorientation, amounts 
to 0.62. The present work seems to provide the first evidence of the utility of 
quadrupolar cross-correlaion effects for structural studies in isotropic liquids. 

3.3.6 Experimental. 

The compound 3, which is a non-volatile liquid under ambient conditions 
(m.p. 12°C), was synthesized and purified according to a published procedure 
(44] . All of the NMR data referred to in the present work were obtained for a 
1 mol/liter solution of 3 in toluene-dB, sealed in NMR tube (o.d. 5 mm) under 
argon at ambient pressure. NMR measurements were performed on a Bruker 
DRX 250 and Bruker DRX 500 MHz spectrometers. All variable temperature 
measurements were performed on the latter machine equipped with temper­
ature control unit BVT 3000. The sample temperature was determined from 
reads of a thermocouple placed within the NMR probehead which were cali­
brated against the methanol (for T < 303 K) and ethylene glycol (T > 303 K) 
chemical shift thermometers. The 199Hg and 14N spectra to be subject to iter­
ative lineshape analysis were obtained by collecting data from 100000-400000 
and 4000-10000 scans, respectively. The spectra of 15N at natural abundance, 
measured to determine scalar couplings (J-couplings) to the nitrogen atoms, 
were obtained by collecting 10000 scans. Values of the scalar coupling con­
stants that are relevant for the lineshape analysis are listed in Table 3.6. 
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4 Conclusions. 

The investigations performed by me state a basis to draw the following general 
conclusions: 

• Scalar coupling between magnetically equivalent nuclei can in certain 
conditions significantly influence the NMR spectra. 

• Cross-correlation spectral densities of quadrupolar interactions can be 
determined in the investigated type of systems, with good accuracy, from 
spectra of an appropriate "spy nucleus". 

• Nuclear quadrupolar cross-correlations can be a very useful tool in stud­
ies on molecular structure and dynamics in isotropic solvents. 

• In cases where standard spectra do not carry enough information about 
the investigated quantities such as the coefficient r, the Hahn-echo pulse 
sequence can be applied in order to amplify the impact of these quantities 
on the observed signal. 

Of the detailed results obtained in this thesis, it is worth to emphasize the 
following: 

• The azide anion 14N-15N-14N retains a Dooh symmetry not only on the 
NMR time scale, but also on the time scale of molecular tumbling. 

• In toluene solution, on the time scale of molecular tumbling, the molecule 
of bis(hexamethyldisilylamido )mercury(II) has a Du symmetry rather 
than that D2h · 

• The determined asymmetry, TJ, of the EFG tensor of the nitrogen atom 
in bis(hexamethyldisilylamido)mercury(II) is found to fall between 0.62 
and 0.88; the direction of the z axis of this tensor lies along the N-Hg 
bond. 

• A very good agreement was found between both the measured and the­
oretically calculated values of the quadrupolar cross-correlation coef­
ficient, r, for the pair of magnetically equivalent 14N nuclei in 2,1,3-
benzoselenadiazole dissolved in toluene and benzene. 
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