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Fundamental equations of continuous structural media
I. General model

S. ZIELINSKI (£ODZ)

THE PAPER is aimed at deriving the complete set of equations of a continuous structural medium
in which, in addition to the force stresses p'/, generalized couple stresses m'/* and higher order
stresses b'/*! appear. Displacements of such a medium is characterized by the linear displacement
vector #' and by two additional tensors ¢/ and v'/*. The fundamental concept of the paper
is the model of structural particle. In the classical continuous medium the particle is identified
with a material point. In the couple stress theory the particle is a rigid body subject to displace-
ments and independent rotations. The structural medium particle is a system consisting of its
geometric center and a set of planes passing through that center, the planes representing the
corresponding cross-sections of the particle considered. It is convenient to assume the planes
to be perpendicular to the directions of the mutual interactions of the neighbouring particles.
It is assumed that, in general, the planes may be displaced together with the geometric center
and, in addition, are subject to mutually independent displacements and deformations; however,
they are assumed to rotate about the lines of their intersections, but they are not allowed to
displace along these lines. The structural model particle has 39 degrees of freedom. In order
to derive the equations governing the medium, Hamilton’s principleis suitably generalized.
The resulting 273 equations and the corresponding boundary conditions allow for unique deter-
mination of all 273 geometric and static unknowns of the model. In the case of a homogeneous,
centrosymmetric structural model, the corresponding set of equations of motion expressed in
terms of displacements is derived.

Celem pracy jest otrzymanie kompletu rownan ciaglego osrodka strukturalnego, w ktoérym
oprocz napieé sitowych p' wystepuja uogoélnione napiecia momentowe m'/* oraz napiecia wyz-
szego rzedu b'/*!, Przemieszczenia tego osrodka okreslane sg przez wektor przemieszczen linio-
wych u' oraz dwa dodatkowe tensory " i y'/*. Podstawowa koncepcja pracy jest zbudowanie
modelu czastki strukturalnej. W klasycznym os$rodku ciagtym czastke osrodka utozsamia sig
z punktem materialnym. W o$rodku momentowym czastka osrodka jest bryla sztywna doznajaca
przemieszczen oraz niezaleznych obrotéw. Modelem czastki strukturalnej jest uklad zbudowany
Z jej oSrodka geometrycznego oraz z plaszczyzn przechodzacych przez ten $rodek przy czym
plaszczyzny reprezentuja odpowiednie przekroje poprzeczne rozwazanej czastki. Najwygodniej
jest przyjaé, ze plaszczyzny te sa prostopadle do kierunkow oddzialywan czastki z sasiadami.
Zakladamy, ze w og6lnym przypadku rozwazane plaszczyzny oprocz przemieszczen wraz ze
$rodkiem geometrycznym doznaja przemieszczen (i odksztalcen) niezaleznie jedna od drugiej.
Dalej ograniczamy si¢ do zalozenia, ze ptaszczyzny wzdluz krawedzi przecigcia nie moga si¢
wzajemnie przemieszczac¢, a jedynie obraca¢ wzgledem siebie. Przedstawiona za pomoca po-
wyzszego modelu czastka strukturalna jest uktadem o 39 stopniach swobody. Do otrzymania
rownan ofrodka cigglego zbudowanego z czastek strukturalnych, wykorzystana zostala odpo-
wiednio uogolniona zasada Hamiltona. Dla omawianego modelu otrzymano 273 réwnania,
ktore wraz z odpowiednimi warunkami brzegowymi pozwalaja wyznaczy¢ 273 niewiadome
statyczne i geometryczne modelu. W przypadku jednorodnego centrosymetrycznego osrodka
strukturalnego otrzymano odpowiedni uklad réwnan przemieszczeniowych.

Ilenpio paGoTh! ABJISAETCA IIOJIyYEHME CHCTEMbl YPaBHEHUH CIUIOLUIHON CTPYKTYpPHOH Cpenbl,
B KOTOPOil, KpOME CHJIOBBIX Hanpsmxeiuit p'/, BLICTYNaroT 06o6IeHHbIE MOMEHTHbIE Halps-
skerua m'/* u HanpsxeHua Beicero nopagka b'/*!, Tlepemerenus aToit Cpe/Ibl ONPEAETIAIOTCSH
BEKTOPOM JIMHEHHBIX TepeMeIleHnH u' M JBYMA OMONHUTENBHBIMM TeH3opamu @'/ m y'/k.
‘OCHOBHO KOHIIEMIMEH paboThI ABIIACTCA MTOCTPOCHHE MOJE/IH CTPYKTYPHO! YacTHIbl. B Kiac-
CHUECKOH CIUIONIHOM Cpe/ie YAaCTHIA CPEAbl OTOXKIECTBJIACTCA C MaTePHaIbHOM TouKoi. B Mo-
MEHTHON Cpelle YacCTHUA Cpefibl ABJAETCH YKECTKHM TEJIOM HCIBITHIBAIOIIMM IIepEMEIECHHUS
¥ He3aBHCHMbIe BpalieHusi. MoJesIbl0 CTPYKTYPHOH YaCTHIILI ABJIAETCS CHCTEMA IOCTPOEH-
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Hasl U3 €€ FEOMETPHYECKOr0 LEHTPA M U3 IJIOCKOCTEH , MPOXOASIIMX YePe3 3TOT LEHTP, IpHUeM
IIJIOCKOCTH IMPEACTaBJIAIOT COOTBETCTBYIOIIHE IIOIEPEUHBLIC CEUYCHHS paCCManHBaEMOﬁ yac-
THIBI. HBHGOHCC BBII'OJHO NPHHATH, YTO 3TH INIOCKOCTH NEPNCHIUKYJIAPHDbI HanpaBJICHUAM
B3aUMOMEHCTBMI YacTHUBI C COCeOHHMMH uYacTuuamu. Ilpeamosiaraem, urto B oOlIeM ciayuae
paccMaTpHBaeMble IUIOCKOCTH, KPOMeE INepeMelleHHid COBMECTHO C T€OMETPHUECKHMM LIEHTPOM,
MCOBITBIBAIOT TIepeMeleHua (4 medopMaluyi) He3aBUCHMO OfHA OT apyroi. lasee orpanu-
YHMCA NPEAIOIOMKEHHEM, UTO TUIOCKOCTH BMOJb TPAaHH CEUEHHsI He MOTYT B3aUMHO IIepeMe-
IaTBCH, a2 TOJIBKO BPAIAThCA OTHOCHTEIBHO CEOA.

IIpencraBieHHas NMpH ITOMOINM BBHIIEYTIOMAHYTOI MOJEIN CTPYKTYpHAas UacTMNA SABIISA-
ercA cucTeMod ¢ 39 cremeHamu cBoGompl. A monydeHHMA ypaBHEHHH CIUIOIIHOH Cpefbl,
IOCTPOEHHOH H3 CTPYKTYPHBIX YACTHUL], HCIIOIb30BaH, COOTBETCTBEHHO 000BIIEHHBIN, IPUHIIHIT
Tamunerora. A obcyskaaemoit Moesu MoayyeHb! 273 YPaBHEHHS, KOTOPbIE COBMECTHO C CO-
OTBETCTBYIOLLIMMHU I'PAHMUHBIMU YCIIOBUAMH MO3BOJIAKT ONPEAESIUTh 273 CTaTMUECKHE U reome-
TpHYEeCKUE HEH3BECTHBIE MoJeNu. B ciiyyae OAHOPOOHON NEHTPOCMMMETPHUYECKOH CTPYKTY-
PHOH cpefpl NOJyYeHa COOTBETCTBYIOIAA CHCTEMA YPaBHEHWIl B TNEpEMELCHHUAX.

1. Introduction

MECHANICS of continua is usually constructed on the basis of three groups of axioms:

1) dynamical axioms describing the forces acting in the medium,

2) kinematical axioms describing the motion of the medium,

3) constitutive equations describing the properties of the material, independent of the
forces and its motion.

The existing theory of continua are based on a number of assumptions and make use
of numerous notions defined, for instance, in the monographs by C. TRUESDELL and
R. A. ToupIN [1] or C. TRUESDELL and W. NOLL [2]. Some of them will be discussed in
this paper (for the sake of clarity), the others will be considered as known.

Following C. TrRUEsDELL and R. A. ToupIN [l], the continuous medium is defined
as a three-dimensional differentiable manifold # of particles X. It is assumed that there
exists a one-to-one mapping of the set # onto a fixed domain ¥ of the three-dimensional
reference space E;. If the domain V is parametrized, a radius-vector with components
X% (K =1,2,3) may be ascribed to each particle X € 4. Numbers X¥ are Cartesian
coordinates of a point in V; they are called material coordinates of a particle, or Lagrangean
coordinates.

A point in a three-dimensional Euclidean space E; is denoted by symbol x. Position
of x is determined by curvilinear coordinates x* (k = 1, 2, 3); they are called the spatial
or Eulerian coordinates. The coordinate systems introduced here are discussed in detail
in the book by C. TRUESDELL and R. A. TourIN [l].

Time T is a one-dimensional space each point of which is called an instant. Introducing
a coordinate system in T (in our case it is sufficient to use an orthonormal system, orthogonal
to x*¥), we denote by v the coordinate of the instant. The corresponding measure unit
must be settled and a certain instant must be assumed as original, denoted by the coordinate
=0

The primitive notion of dynamics of continua is the force. It is assumed that at a fixed
time instant v a portion 7 of body # bounded by a smooth surface o= is acted on by a vector
field called stress, defined at the surface oz and referred to a unit of that surface. In the
classical continuous medium the state of stress is described by means of a symmetric
stress tensor (see, e.g., A. C. ERINGEN [3]).
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The primitive notion of kinematics is the particle. A point in the three-dimensional
Euclidean space is ascribed to each particle at each time instant 7. In the classical continuous
medium each particle possesses three degrees of freedom, and a change in its position in
space (motion) is uniquely described by the displacement vector field. This field is a function
of the original position of the particle and time; it is assumed to be continuous and twice
differentiable.

The third group of axioms has the form of constitutive equations and must comply
with the dynamical and kinematical axioms assumed.

The attempted generalization of the foundation of modern mechanics of continua
have resulted in the construction of a theory of media with couple stresses. The generaliza-
tions affected all the three groups of axioms. As far as the dynamics is concerned, external
body couples and couple stresses have been introduced in addition to the classical notions
of external body forces and force stresses. Generalization of kinematics consisted in intro-
ducing the assumption that each particle has more than three degrees of freedom. The
corresponding generalizations were also introduced into the constitutive equations

The generalizations mentioned above lead to the theory of continuous media with
stresses described by a non-symmetric force stress tensor and a couple stress tensor. Depend-
ing on the approach assumed, different theories were obtained: oriented media, media
with microstructure, moment or multipolar media. All these theories will be called couple
stress theories. This paper does not contain the detailed review of the existing literature
dealing with the couple stress theory, except for the most fundamental papers on the
subject.

General foundations of the theory of media with couple stresses are due to E. and
F. COSSERAT [4]. According to their kinematical assumptions, each particle has six degrees
of freedom. The particle is treated as a rigid body which, in the process of deformation,
is subject not only to displacements but also to rotations. Each particle is then characterized
by a position in the space, like in the classical theory, and by the additional orientation
of a set of three orthonormal vectors.

Under such kinematic assumptions, the state of stress in the medium is described by
means of a non-symmetric force stress tensor and a couple stress tensor. Deformation
of the medium is described by the displacement vector field and by an independent field
of rotation vectors.

The original concept of E. F. Cosserat was further developed and presented in a modern
form by J. L. ErickseN and C. TRUESDELL [5]; the theory was also discussed in the mono-
graph by C. TRUSDELL and R. A. TouPIN [1]. Since then a rapid development of the theory
may be observed. However, neither the Cosserat brothers nor Ericksen and Truesdell
dealt with the corresponding constitutive equations.

Foundations of the modern theory of media with couple stresses were laid by R. A. Tou-
PIN [6, 7]. In addition to the position in space, a certain internal structure characterized
by a set of Q directional vectors (directors) was ascribed to each material particle of the
medium. In the case when Q = 3 and the vectors form an orthonormal basis, the equations
derived in the papers reduce to those given by E. and F. Cosserat.

Another concept is due to R. P. MINDLIN [8], who attributed a certain “micromedium”
to each material particle. Homogeneous deformation of the “micromedium” reduces the
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model to the oriented medium with deformable directors introduced by J. L. ERICKSEN
and C. TRUESDELL [5]. It follows from the fact that a homogeneous deformation is uniquely
determined by the motion of three linearly independent direction vectors.

By assuming in the body, in addition to the displacement vector, the so-called multi-
polar displacement fields, we obtain also the theory of bodies with additional degrees
of freedom. Such an approach was proposed in the papers by A. E. GREEN and R. S. RIVLIN
[9, 10]. A similar approach was also used by A.C. ERINGEN and E. S. SunusI [11, 12]
and by some other authors.

In the monograph [13] C. WoZNiAK applied the action functional to systematize the
various models of media with couple stresses; his considerations were concerned with
dynamic equations of motion of such media.

S. KaALisk1 [14] applied the theory of media with couple stresses to the analysis of
spatial rod systems. He proved that the transition from a discrete rod system to a con-
tinuous medium yields the equations of the couple stress theory. He was the first to present
the constitutive equations in an explicit form. The same concept was applied in paper
[15] by A. AskArR and A.S. CAKMAK.

A number of interesting applications of the couple stress theory to the analysis of dense
grids consisting of solid bars are presented in the book [16] by C. WOZNIAK.

The first papers dealing with thermoelasticity of the media with couple stresses were
written by W. Nowacki [17] and C. WozZNiaK [18]. The fundamental results of their
research were published in the monographs [19] and [16]. Another trend in the development
-of the couple stress thzory, connzcted with the problem of stress concentrations, is repre-
sented by M. SokoLowskI [20]. An extensive review of the corresponding literature may
be found in the review papers by W. BARANSKI, K. WILMANSKI and C. WozZNIAK [21],
H. ScHAEFER [22] and M. SOKOLOWSKI [20], and also in both monographs [19] and [16]
‘written by W. Nowackl and C. WOZNIAK.

The models of the media with couple stresses mentioned above correspond to a body
with a very simple internal structure and cannot be used to describe the behaviour of more
complicated structures such like, for instance, thin-walled structures (Fig. 1). The basic
element of such structures is a beam (rod) with thin-walled cross-section. Thin-walled (pla-
ne and spatial) giidworks are characterized by considerable load carrying capacity at
relatively low dead load; they are frequently applied in the civil and industrial engineering
practice and in the aircraft and ship-building industry. Such structures are used as bearing
elements in rockets, airplanes and ships, industrial and bridge floors.

Elements of such kind are subject not only to the usual shearing and normal forces,
bending and twisting moments, but also to bimoments [23]. Structures of this type cannot
be described by the simple model of bodies with couple stresses.

The aim of the present paper is to present a more general model of a continuous medium,
which will be called the structural medium, and to derive the fundamental equations
of such a medium. We are going to deal with a general, linear theory of this medium.
“The generalized displacements and deformations willl be assumed to be small, and the
material will be linear elastic, homogeneous and isotropic.

The indices appearing in the paper, lower or upper case Latin letters a, b, ¢, ..., k, [, m
and 4, B, C, ..., K, L, M, assume the values 1, 2, 3. Covariant differentiation with respect
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to space variables is denoted by a comma, (), = -6%’ a dot denotes the time derivative.

Symmetric and skew-symmetric components with respect to a pair of indices are denoted
by the parantheses and brackets, respectively,

(p(kl) = %((Pkl_i_(plk)’

gl = %(w"‘ —¢").

The remaining notations will be explained in the text.

2. Structural medium

In defining the structural medium use will be made of the notion of continuous media
introduced by C. TRUESDELL and R. A. TouPIN [1] quoted in the Introduction.

A structural medium is the continuous medium with particles X to which a certain
special internal structure is ascribed, independent of the manifold 4. Each particle X € #
is assumed to contain a set of microelements Y forming a differentiable manifold 2.
Let us map the set & onto a fixed domain £ of a three-dimensional Euclidean space. In
such a way, each microelement Y of 2 corresponds to three numbers Y4; they are the
Cartesian coordinates from domain 2 and they will be called material micro-coordinates.
The structural medium is then the Cartesian product % x 2, or an ordered set of pairs
(Y, X) with material coordinates (Y4, XX).
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2.1. Kinematics of a structural medium

Let us assume the material macro-coordinates X* of particle X to coincide with the
spatial coordinates of the reference configuration at the initial time instant 7 = 7,
2.1 X* = XX, 7t = 1)).
In order to present the following relations in the simplest possible form, let us assume
that the material micro-coordinates Y satisfy also the relation
(2.2) ¥ = PN, X = X = Ty)s

Components of the displacement vector of the material particle X are the differences
of the final and initial position of the particle (Fig. 2),

2.3) (XY, 7) = X, D) — kXK, kK =1,2,3.

FiG. 2.

For all micro-elements (Y, X) of particle X the displacement #* is constant and independ-
ent of the position of the micro-element Y, and hence independent of Y4, It represents
the rigid body displacement of the particle. Moreover, the origin of the micro-coordinate
system y“ is attached to the particle X with spatial coordinates x* and is subject to displace-
ment u defined by Eq. (2.3). The micro-displacement vector u of an arbitrary element
(Y, X) is given by the difference

24 a“ (Y, X!, 1) = y(YL X!, 7)—Y*,

It describes the relative displacement of particle Y measured with respect to the micro-
coordinate {y*} origin attached to particle X with spatial coordinates x*.

The structural medium considered in this paper consists of such particles which interact
with the neighbouring particles in certain definite directions; it is demonstrated in Fig. 3.
The interaction takes place in the directions I, II, III only. In this sense the particles are-
called oriented particles. In addition, the interaction may take place not across the entire:
cross-section of the particle, but through the shaded areas shown in the figure. The internali
structure of the particle is another fundamental problem.
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If particle X is treated as a set of micro-elements Y and no additional assumptions are
made, determination of the relative displacements u of each particle requires the solution
of a corresponding three-dimensional boundary value problem of elasticity. This task
may be, even in the case of a small number of particles, extremely difficult. Each particle
of such a medium represents (dynamically) a system with an infinite number of degrees
of freedom.

The structural medium is defined so that each particle constituting a set of micro-
elements Y should represent a system with a corresponding, finite number of degrees of
freedom.

To this end let us make an additional kinematic assumption. Namely, the relative
displacement of a structural particle consists of two mutually independent components

(2.5) B = W',

Assume, as it is done in the usual couple stress theories, that the first component #’* describes
the homogeneous displacement of the particle considered, occupying at the actual instant
the domain w. It follows that the gradient

ou'*
2.6 —— = g*
( ) ayl ¥
is constant for the particle considered, that is inside the domain w. Displacement u'* may

then be represented by the relation

ou'*

an w (Y, X', 1) = 25

and, making use of Eq. (2.6), we obtain

(2.8) T WYL XL ) = oM, Dn(Y).

Displacement vector u’* is then a linear function of microcoordinates y,, and tensor ¢'* —

a function of macrocoordinates X* and time 7, but independent of the microcoordinates
Y4,
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In order to illustrate the relations derived, a typical displacement connected with the
various tensor components ¢'* is shown in Fig. 4. Their variation inside the particle is
linear, what follows from Eq. (2.8).

T
SO

The second independent component #'’* of the relative displacement (micro-displace-
ment) (2.5) describes the nonhomogeneous displacement of the microstructure (Y, X).
We assume that it may be represented by the following tensor formula:

(29) u:c’(YA’ XK, T) = Wimk(XK, T)QIM(YA)'

The third rank tensor . is independent of the micro-coordinates Y4, while '™ is a
known, prescribed function of Y4. It should be stressed that the form of tensor function
Q'™ depends on the internal structure of particle X. On the other hand, knowledge of the
function 2" makes it possible to describe the displacement of particles of a definite internal
structure.

In order to illustrate the assumption made let us consider the elementary example.
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Without going into the internal structure of the particle, assume the tensor '™ in the
simplest form of a tensor product of two vectors @ and 8,

(2.10)

le - alﬁm‘

Such a tensor is called a dyad. In the matrix notation it assumes the form

a'fl, o', o'f?

2.11) (@ = | B @27 o
alﬁl, a2ﬂ2, a253
a 93
=
= £
£33 =
£ E== 2
E = = 3 |
= b/“/ ug = Vg Q"= Vg anbr 4y’
- \ ))_ d 2
g’/ U2=Wr1251b1(‘2_7)
3
b y
[
3
pee
=5 y?
R =
- == =
& — » 12 1,2
5 = k/ up=Ygp Q" =Vizz arb24'y
,/ / = > ‘
]
r/
/ i d1 dz
y'p w3 =¥z aibe (7)(7)
‘70‘4?
C

; 3 2
uy= Vs R = Yi3zarb3y’y

&

U;= V132 a1 b3 (%)[%)

FiG. 5.
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The rows of the matrix are seen to be proportional to each other and, hence, it is a tensor
of the simplest type.

Assume the corresponding vector components of & and B to be linear functions of the
corresponding micro-coordinates y'. We obtain the relations

(2.12) o = q;)', ¥ = by* (no summation)

where a; and b, (i, k = 1, 2, 3) are constants. Substitution of the corresponding compo-
nents of (2.12) into (2.11) yields the matrix of components of € in the final form

a b y'y's aibyy'y?, a byy'y?
(2.13) [ = | @2bi ¥ ¥?, a:byy?y?, abiy?y®|.
asb, y'y?, asb,y*y?, a3bsy*y?

Let us return to the formulae (2.9) for the nonhomogeneous displacements u;’. Some
typical displacements corresponding to various components of tensor components Yy
and tensor Q given in Eq. (2.13) are shown in Fig. 5.

The vector of total displacement w of micro-element Y is a sum of macro-displacement
u and the relative displacement (micro-displacement) u,

(214) wk(YA: XK’ 1’) = uk(XK) r)+ﬁk(YA, XK, t)’
as shown in Fig. 2.

In view of relations (2.5), (2.7), (2.9), the total displacement (2.14) is expressed by the
formula

(2.15) we(Y4, X5, 1) = u(X¥, D)+ @u(X5, DY (X)) + (X, 7) Q(Y4).
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This displacement consists of three components: displacement u;, constant for all micro-
elements Y of particle X; homogeneous displacement expressed by tensor ¢ ; and non-
homogeneous displacement expressed by tensor .. The set of micro-elements Y the
displacements of which satisfy the relation (2.15) will be called a structural particle. The
continuous medium constructed from such particles will be called a structural medium.
If all components of v, vanish, relation (2.15) represents the displacement of a medium
with couple stresses.

A model of a structural particle is shown in Fig. 6. It consists of the geometric center
of the particle in which the origin of the coordinate system {y*} is located, and of non-
parallel planes passing through the geometric center and attached to it. It is convenient
to assume the planes to be perpendicular to the directions of interaction with the neigh-
bouring particles. In general, the planes are not interconnected along the lines of their
intersection and are free to displace and rotate with respect to each other.

In order to simplify the diagram, cross-sections of the particles by the planes perpen-
dicular to the interaction directions are assumed to be rectangular.

Each plane, in addition to the rigid body displacements, may also be displaced in tan-
gential and normal directions; displacements of the planes are mutually independent.

a

FiG. 7.

11 Arch. Mech. Stos. nr 1—2/86
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Additional kinematic assumptions may constrain the independent motions of individual
planes. For instance, from the assumption of plane cross-sections of a particle it follows
that the intersecting planes cannot be displaced along their common lines but are allowed
to rotate about the lines of intersection. It is easily verified that displacements of the particle
shown in Figs. 4 and 5 may be replaced by displacements of the planes passing through
the origin and perpendicular to the individual axes {y*}; it is shown in Figs. 7 and 8. In
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Fig. 7 are shown the displacements of planes corresponding to the displacement of the
entire particle presented in Fig. 4. Figure 8 illustrates the displacement of planes resulting
from the particle displacements shown in Fig. 5.

The structural medium will be considered in the time interval [z, 7,], 7, and 7,
denoting the initial and actual time instants, respectively. All possible motions are taken
into account, that is the kinematically admissible motions which carry the system from
its initial position occupied at time 7, to the final position occupied at time 7,. The motion
of the structural system is described by two independent systems of equations. Motion
of particles X, that is the macro-motion, is governed by the equations '

(2.16) x*° = xMXE 1),

The relative motion of elements Y localized at particle X, that fs the micro-motion,
is expressed by the formulae

(2.17) ¥ =)y (Y4, X%, 7).

The motion may also be described by means of the displacement vectors. From the relations
(2.3), (2.4) it follows that
XXX, 1) = LXK +uk (XK, 1),

2.1
(2.18) P, X5, 1) = 05 4+ (YA, X5, 7).

Here, as before, #* denotes the macro-displacement of particle X, and @* is the relative
displacement of element Y localized at X.
Substitution of the corresponding expressions from Eq. (2.5), (2.8), (2.9) into (2.18)
yields
(XK, 7) = BEXK+u (XK, ),

@I jara, XK, 1) = s s X, D (Y4)+ S KR, DY),

whence it follows that the motion of structural medium is described by the tensor functions

k= (X%, 1),
(2.20) ¢l = ¢(X%, 1),

tplmk = wlmk(XK, ‘l’),

independent of the micro-coordinates Y4. The knowledge of all 39 components of these
functions makes it possible to determine the position of each particle of the structural
medium at each time instant 7; from the dynamical point of view, each particle of the
medium represents a system with 39 degrees of freedom.

Let us define the strain tensors of the structural medium. They will be expressed in
terms of the tensor functions u*, ¢'*, y™* and their derivatives. Assume the following
relations to hold true in the structural medium:

u(X5, 1) = wy,i— @1 )
(221 ”ku(XK, ) = @iy~ Prijo
Nty (X5, ) = Yy

11*
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The non-symmetric strain tensors 9y, *xij, Ni; are independent of micro-coordinates
Y4. The geometric relations shown above constitute one of the basic groups of equations
characterizing the structural medium. In the case when .y = ¥y, = 0, they define the
strain tensors of media with couple stresses [8, 19].

2.2, Generalized Hamilton’s principle

Dynamic equations of motion of a structural medium may be derived from the principle
of stationary action functional [24]. One has to assume a suitable number of dynamic
variables in the expression for the action density and give their physical interpretation.
This approach was extensively discussed in Chapter 1 of the paper [25] and will not be
dealt with here.

As it was shown in the preceding section of this paper, the motion of structural media
is described by three tensors u* (x%, 7), ¢*(x%, T) and p*'™(x%, 7). Let us compare them
with the corresponding expressions u* + du*, ¢* + d¢g*' and y*™ + Sy*™. Here (and later)
symbol 8(-) denotes the principal, linear component of the variation and, when speaking
of variations, we shall have in mind their linear components only. The independent varia-
tions 8u*, dp*, dy*™ vanish at the ends of the time interval considered [7,, 7,]. Hence,
it is a variational problem with a fixed boundary [26, 27], and

ok (x!, 1)) = ok (X!, 7,) = 0,
(2.22) SpM(xt, 7)) = dgM(x, 1,) = 0,
dptm(xd, v) = P (xt, 1,) = 0.

Our considerations will be based on Hamilton’s principle [28] subject to a suitable
generalization. The principle may be written in the general form

(2.23) 3 [ 2 (A —&)dr+ fz.sz/dr =10,

Here " denotes the kinetic energy of the system, and symbols & and & are the virtual
work done by internal and external forces, respectively. The equation holds true in the case
when the forces have no potential what happens, for instance, when the external loads
depend on the tensors u, ¢p, ¢ and their variation in time. If the external forces possess
a potential (what is possible only if they are independent of u, ¢p, ¢» and their derivatives),
then

@2.29) o = (22 51 22 sy 225 pim

auk 3(;0“ 51/)”"' = —02.

Here 2 is the potential of external loads. On substituting this relation into Eq. (2.23)
we obtain the following form of Hamilton’s principle

(2.25) 8 [ (—&—p)dr =0,
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where &+ 2 denotes the total potential energy. The equation may also be written in the
known form

(2.26) sW=135 [ Ldr =0,
where L = % — & — 2, the difference of the kinetic energy and the total potential energy,
is called the Lagrange function. The integral

W = fnLdt

71

is called the action integral in the time interval [7,, 7,] and Ld is the elementary action
[24].

From the suitably generalized Hamilton’s principle (2.26) we can obtain the equations
of motion and the boundary conditions for structural media in the case of external loads
derived from a potential. To this end let us consider the individual terms of Lagrangean
function L.

The micro-particle (x, y) with spatial macro-coordinates x* and spatial micro-coordina-
tes ¥* has all the properties of a classical continuous medium. The kinetic energy density,
that is the kinetic energy per unit macro-volume v is expressed by the integral

11 %
(2.27) k = o fgw"wkdw.

Here p is the micro-material density, w* are the components of the total displacement
vector of the micro-particle, and w — the microvolume. Small circles denote differentiation
with respect to time.

Let us calculate the material derivative of displacement w;. From Eqs. (2.14) and (2.5)
it follows that

] oll

(2.28) o= W = g =

o

Using Eq. (2.15) we may write
(2.29) wi(Y4, XX, 1) = @, (X, )+ ¢,(X5, )y (Y + 9, (X5, 92 (Y4).

Substitution of the above expression into Eq. (2.27) and transformation of the integrand
yields

1 ﬂi o 0" o D" o i o " o o i o ¥ 0 i ) i Y
k = o7 f [ s+ 2 @10 )7 + 20 Pina 7% + @5 @i ' V* + 205 Praa 2 i} 1 272 00
(2.30)

Taking into account the fact that the time derivatives of tensors u, ¢, ¢ are independent
of the micro-coordinates ¥#, we may write the formula (2.30) in the form

(2.31) k= [io+20'gy 0"+ o™ + Zﬁiﬁ)jk! % 4 205 P M P P 4,

| —
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Here
1 = ) i 1 iz u i
= — | edw, ¢t =~ ) Yedo, == fyy gdw,
(2.32) @ ©

1 f . . 1 f e . |
bo_ Qlf d , ijk _ T ,vQJk d ’ ikl _ T I‘ngkl
p=— edw, p @ . yi&Q%edw, p w . o dw
are the generalized micro-densities of the structural material.
The total kinetic energy # is defined as the integral taken over the macro-volume v,

(2.33) A = [kav

of the kinetic energy density k expressed by the formula (2.31).

Let us calculate the variation of the integral [ #°dr. From the definition (2.33) it

follows. that

(2.34) 5 flxdr =0 f”dt [ kdo.

Assume the variations of generalized masses to vanish; then
d(odv) = d(p'dv) = 8(o"dv) = d(udr) = d(u*dv) = d(u'™dv) = 0.

The variation symbol may be written under the integration sign so that Eq. (2.34) may be
replaced with

(2.35) o [ v = [ dv [ okao.

Ty T v

From Eq. (2.31) it is seen that the kinetic energy density k = k(i;, @;5, §:) is a function
of the time derivatives of tensors u, ¢,  what means that the kinetic energy density varia-
tion may be written in the form '

(2.36) ok = 5(H1)+ 3, 5(%)+ - 5(%,«)

Due to the commutation law of differentiation and variation we obtain the identities

k o ,k o
(S( I) = ( Qu; ui) _(0) (suh

o,
ok ok ° [ ek
( l)a( '_6 ij) “(0)6 s
3(}3,1 o 29711 ¢ a‘PU P

ok )
81,“1]1: (w Jk) (awuk (p & ale

which may be substituted into the expression (2.36) for the variation 6k of the Kinetic
energy density,
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ok ok ( ok )
(2.37) ok ( au ) au, (a(P“) Piy— Byj i Vi

+(—a£5u)°+(£(§ )°+(ﬂc._a )o
E i 3% Piy 31/) Yijk] -
Substitution of this relation into Eq. (2.35) yields in turn

ok ok
B L P P

= [ ok “ [ ok £
2 [ 2 ]| 2 o]
+ [,_,f o u, v]n + [‘, T &P”dv]n + [u oo 5%&(&)]"

brackets denoting here the difference
R, TN S [ SN

According to the assumptions (2.22), variations du;, d¢;;, dy;; vanish at the ends
of the time interval [7,, 7,] what means that the expressions in brackets also vanish-
Thus the relation is simplified to the form

o o[t o[l

Formula (2.31) is used to evaluate the following expressions:

L e
( y ) = o+ gi'e’ +uln",
U; (

ak ) Qﬂj i o0
- | = Wo'+@ile™ + Y
(39911 Yol + @i o™ + P! .u

ok o 5 s g g
(aij}tﬂ) - uk#”""q"kﬂ”j'*'wb;.kﬂ”’m-
Right-hand sides of these expressions are now substituted into Eq. (2.39) to yield
@40) 8 [ adr = — [ dv [ [Go+ e +Pitu) bu,
T1 T1 v

+ (U0 + BP0 + B! ™) Oy, + G U + G + ik pm) Sy ) do.
In the particular case of o' = "/ = p** = 0 (what is true, e.g., in microstructures charac-
terized by three axes of symmetry), the above expression is simplified to the form

(2.41) 5 f fd’f = — dT f [i;ig 6u,+2’;5,‘;'Q“‘(5<pu+1°/5,,',,"/A””"61p“k]dv.

Let us now pass to the problem of work done by the body and surface forces; it is written
as a sum of volume and surface integrals

(2.42) ~2 = [ Fydv+ [ Tyds,
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taken over the macro-volume v and surface s bounding v, respectively. F(v) is the work
density of the body forces, and T(s) — the work density of surface forces. Consider both
the integrands. The density of work done by surface forces is defined by the integral

(2.43) Ty = | Plnywido

of the work done by the mean surface stresses p* (u) taken over the surface o bounding the
micro-volume w. Using the relation (2.15) we obtain

(2.44) T = fﬁfu)(”t"".“’nyj'*'%mgjh)do'-

Tensors u;, ¢i;, yix are independent of o, and hence
(2.45) Ty = tiPimy+ Qi Mimy + s B

with the following notations:

Pimy = f[j’én)dff,
(2.46) mlly = [ V'pinydo,
bk = [ Q%plyydo.

From Eq. (2.45) it follows that the surface forces work density Ty = Tsy(ui, iss Yiik)
is a function of tensors u, ¢p, Y. Variation 87, of the density T, is given by the formula
(2.47) 0T s, = Py Otty +mis 0915+ b Oy

The density of work done by body forces is defined by the integral taken over the micro-
volume w,

1 f o
(2.48) F(,)) = Q_(U Qf w; dw-

Here again o is the micro-volume, g — micro-material density, ¢ — macro-density, and
w; — the corresponding component of the micro-particle displacement vector. Symbol
f* denotes the body force density of the micro-particle.

Equation (2.15) may be used to write the expression (2.48) in the form

(2.49) Foy = flug+h o+ 8™ i,
where

i 1 i
J= e ff gdw,
1 e
JEk J £k
(2.50) W = o fyf odw,

g = ELT f Qftgde

are the definitions of the generalized body forces.
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Variation 0F,, of the body forces are calculated by means of the relation (2.49):
(251) 6F(u) = f‘éu; +hi"6wu+giﬂ‘ 6Wijk
and variation 82 of the work done by body and surface forces — from Eq. (2.42),

(2.52) —82 = 8 [ Fyydv+6 [ Ty, ds.

Writing the variation symbol under the integration sign we obtain

(2.53) — 0% = féFw,var J 0Ty ds.
v s

Substitution of the right-hand sides of Egs. (2.47) and (2.51) for the variations §F,, and
8T in (2.53) yields

@54) =82 = [ (fidu,+hI6q,+8" Sy do+ [ (phy Oy +midy gy, +bidk oy, ) ds.

Let us finally define the internal energy of a structural medium. Assume the internal
energy density U per unit macro-volume o to be a function of the strain tensors y;;, *ij»
Nk~ It may be written that

(2.55) U= Uy, #ims Mijwr) -

Let us evaluate the variation dU of the internal energy density. In view of the above relation,
it may be written in the form
au au au

2.56 oU = Oy + 0%+ ——— i
( ) 0Yi; v %y " Mgt g

Generalized stresses in a structural medium are defined as partial derivatives of the internal
energy density U with respect to the corresponding strains,

3 oUu oU .
2.57 ij_ , mik = . bUM =
( ) P oy 0%k

ey
M '

Substitution of the above definitions into Eq. (2.56) yields
8U = pY oy, + m* + 8, + bM by,
and using the geometric relations (2.21) we obtain
(2.58) OU = pYo(uyi— ug) +m P e, i — pip) + 67 0(wjua, 1) -

The operations of variation and differentiations are commutative, so that Eq. (2.58),
after suitable rearrangements, assumes the form

(2.59)  OU = (p"du;), i —pi duy—pop,;+ (m"* o).
—m'* Sy — m ¥ Sy, + (B Oy jur), i — b Oy -

Internal energy & of the structural medium is the volume integral

(2.60) &= [Udv
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of the internal energy density U taken over the macro-volume v. Variation & of the internal
energy & is calculated from the formula

(2.61) 06 = 6fUdv = féUdv.
Substituting here the expression (2.59) for the variation dU of the energy density we obtain

(262) 6& = — J‘pf{ 6ujdv—f (mi*+p’*) by dv— f (B4 + mM™) Oy do
v v v

+f(p”éuj)_id'v+f(mijka%k)'!dv+f(b““éwm,)_,dv.
From the Gauss—Ostrogradskii theorem the following equalities- may be derived:

f(p”éuj),id'v = fp”n[éujds,

v ]
[ (mi*s d :f iy S d
J (m'* o), 1dv MmN, 0@ as,
v s

f(b””fs%m).zd‘v = fb”k'"i Oy ds.

5
Here n; are components of the unit outer normal vector n of surface s. These equations
enable us to replace the volume integrals in Eq. (2.62) with the surface integrals,

(2.63) 66 = — ’ [p! Su;+ (mi{* + p™) Oy + (B + m'™) ] do

v

+ f (pn; du; + m“*n, Sy + b n, Syj) ds.

5

2.3. Equations of motion and constitutive relations

The generalized Hamilton principle (2.62) according to which variation 6W of the
action functional should vanish may, on the basis of preceding section, be represented
in the form

T2

(2.64) [ (#—&-Pydr = 0.

T

This equation will be used to derive the equations of motion and the constitutive relations
of structural media.

Let us substitute here expressions (2.40), (2.54) and (2.63) for.the variations 04", %
and d&. Disregarding the time integrals we obtain

@65 [ (P4 — ot — oM — i) oo+ [ (it 4 B
— Qj‘ﬁk _Qj-'f’q;;k _ ujilaji;k) ,5%k dv + f (bf{“ +mIk +gjkl _ij;;t_‘umjk&; _’ujkmniﬁm;ll) 61/)1“0’2;

- [ (pn;—piny) Ou,ds— ' (men; —mi,) &pjkds—f (6%, — b byyds = 0.

5 5
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According to the former assumption, variations du;, 0p;;, dy;; are mutually independent,
and the corresponding integrands must vanish separately. From Eq. (2.65) it follows
that

pli+f) = ol + "G+ Wi,
(266) miﬂfi+PJk+hjk - Q'iﬁk+91i$zk +Mﬂmwm X
bijk.l‘__‘_m_fk[_'_gjkl = ﬂika’f_'_#mjkz;;’i_'_#ﬁmn;ﬁm;l.
These equations are called the equations of motion of a three-dimensional structural
medium.
From Eq. (2.65) it may also be found that
b n, = pluy,
(2.67) ’ mn = mik
buklnl_ = b{ki’
and these relations are the static boundary conditions of a structural medium expressed
in terms of generalized stresses.
Similarly to the preceding section it is now assumed that the internal energy density U
is a function of strain tensors yi;, i, %isu - Let us now expand the internal energy density

function U(yiy, %, Nise) into a Taylor series in the neighbourhood of the undeformed
state (y;; = #jx = ’ﬁfkt = 0),

oU oU \ oU
268 U ijs Hijk» i —U+( ) +("'—) ? +( )
( ) Viss %iji> Nijrr) 0 a0 O'J’u 3% o ijk dﬂr;k! O"hjm

+1[( QU )mfk.+2( QU )y y +2(£ )y,,7

2 d}’ual’m o 37’113ak1m 0 MRS 3)/:_,077;“"... Skt
32U 92U ’

(3%M)o ”“”"""Jrz( 0%, 55 Muns. )o””"“"‘"‘ (amj n”“n'"m]

disregarding the terms of order higher than two. In a medium without initial stresses
in the undeformed state at y;; = 0, %5, = 0, 5y = O the stresses cannot appear and
p =0, m* =0, ¥ = 0. In view of the definitions (2.57) it means that the coefficients
multiplying the linear terms in (2.68) must vanish. Vanishing of the internal energy in the
undeformed state of the medium implies U, = 0 and, consequently, the expression for
the internal energy density is simplified to the form

1 .. . .
269 U= EAUHyijykl+D'Jklmyijxklm_i-E”k’mnyijnklmn

1

: 1.
+ 5 Cljklmn%ijk Etmn + F”klmmxijknlmnr +— B:jklmnrsnij“ "Ymnrl-

2

The following notations have been introduced here:

A:‘J‘kl = (jzij__) Dijklm o ‘>_ aZU;___)
Y1;0%a lo 015 0%m o
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a2Uu . 02U
2.70 Eljklmn = (_ . ) s Cljhlmn — (_ ) _
( ) Vi3 Mkimn 1o 0%k O%pmn o

JFiikimnr _ ( o*u ) ; RBiiklmnrs _ ( o*U ) .
axnjk 3"71»""- 0 aﬁijklanmnrs ]
Let us substitute the right-hand expression of Eq. (2.69) into the definition (2.57). Perform-
ing the operations prescribed we obtain

pl'J - Aijkl,y“+Dijklmxklm_i_EUann“ .
mn >
(2‘71) m”k = D““mylrrl-'_cij“mnx[mn+Fijk’mur77[mnra
bijk.l - Eijklmnymn+Fijk!mnrxm"r_!_Bijkfmnrsnmms.

These formulae express the stress tensors in terms of strains and are called the constitutive
relations of the structural medium. Symbols A, B, C, D, E, F defined by Eqgs. (2.70) are
the elasticity tensors of the medium.

For instance, let us define the centrosymmetric structural medium in which no “cross-
effects” take place. This condition is satisfied provided

P = p(yu),
(2'74) mUk = mijk(klrnn)a

bifkl - bij“('r'mnrs)‘
that is when tensors D, E, F vanish. In a centrosymmetric medium expression (2.69)
for the internal energy density U is simplified to the form

| - | |
(273) U= ’2*14“”)’:'1?“""2 C”“mnxijkxlmn+"iBljk1mnrsnijk1nmnrs-

and the constitutive relations assume the form
pY = AWMy,
(2.74) mijk = Ciikimn,,
bl‘jkl e Bijklmnrs

ﬂmnrs -

The elasticity tensors A, B, C appearing here were defined by Eqs. (2.70). In the case
when yiu = Yim.m = 0, Egs. (2.71) or (2.74) yield the constitutive relations of the media
with couple stresses. In centrosymmetric media the generalized body forces are uncoupled
and we should assume ¢* = u** = y*¥™ = 0 in the equations of motion (2.66).

In the contitnuous model of structural media presented above 117 static unknowns
appear: 9 components of the stress tensor p*/, 27 components of the tensor m** and 81
components of b*, The geometric unknowns are represented by 9 components of the
strain tensor y;;, 27 components of x;;, and 81 components of the 7, tensor, what makes
together 117 unknown strain tensor components. Other geometric unknowns are the
39 components of the displacement tensors: 3 components of the vector u;, 9 components
of the tensor ¢;; and 27 components of the tensor ;. Summing up, the number of static
and geometric unknowns occurring in the theory of structural media equals 273.

The unknowns are determined from 39 equations of motion (2.66), 117 geometric
relations (2.21) and 117 physical relations (2.71) or (2.74). The 273 equations, together
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with the boundary conditions (2.67), enable a unique determination of the 273 static
and geometric unknowns of the model considered.

The most convenient set of equations to deal with, both in the classical elasticity and
here, are the equations of motion expressed in terms of displacements. Let us consider
this problem in the case of a centrosymmetric medium. To this end let us substitute the
right-hand sides of the physical relations (2.74) into the equations of motion (2.66); as-
suming o* = u* = p*™ = 0 we obtain

(A¥y), +f = o,
(275) (Cijklm"%lkn), i+ (Ajklmylm) +hjk =+ Qk[é;{l ’
(Bijklmnrsnmrs). i+ (Cjk!mm%m,,,) +gjk1 o= ”kzm,,’:ﬁim" .

Elimination of the strain tensors ;;, %ijr, i by means of the geometric relations (2.21)
leads to the set of equations

A (g, o= @], i+ = o,
(2'76) [Cij“mn (‘pmn, 1 Qlen)]. i+ [Ajk[m (um. 1= (le)] + hjk = le(;;fl ’

00

[Bij'clmm'S(wms' m)], it [Cjklm"r((pnr. m— wmnr)] +gjk = 'uklmnw:fm" .

Additional assumption of homogeneity of the medium (each particle has the same elastic
properties, irrespective of its position) makes all the elasticity tensors independent of the
coordinates {x'}. Then Eq. (2.76) may be replaced with the system of equations

ATy, g — @, )+ = o,
(277) Cijklm"((PMHy 11~ Yunn, i) +Ajklm (um, T ‘sz) +h* = Q“(:;ujl s
Bijklmms"/Jnrs. mi T Cj“m"(‘pnr,m - wmnr) +gj“'= Mklmniv“;imn .

which represents the equations of motion of a homogeneous, centrosymmetric structural
medium, expressed in terms of displacements. Solution of this system under the suitable
boundary conditions allows for a unique determination of all the generalized displacement
vector components$ #;, @i;, Y1, From the geometric relations (2.21) we calculate the strain
tensors i, #yr, Nijm- Finally, the physical relations (2.74) are used to evaluate the stress
tensor components p*, m**, bk Thus all the static and geometric unknowns of a homo-
geneous, centrosymmetric structural medium may be considered as determined.
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