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On the regularity, uniqueness and continuous dependence for
generalized solutions of some coupled problems in nonlinear theory
of thermoelastic shells

A. CHRZESZCZYK (KIELCE)

THE REGULARITY, uniqueness and continuous dependence results in Sobolev spaces for general-
ized solutions of two-dimensional nonlinear equations describing thermoelastic vibrations
of shells coupled with three-dimensional nonlinear heat-conduction equation are formulated.
The shell under consideration is partially clamped and partially supported, and there is no
heat exchange with the surroundings. The nonhomogeneous initial conditions are imposed.

W pracy sformulowano twierdzenia o regularnosci, jednoznacznosci i ciaglej zaleznosci od
danych dla uogolnionych rozwiazan dwuwymiarowych nieliniowych réwnan powlok, sprzg-
zonych z trojwymiarowym, nieliniowym réwnaniem przewodnictwa cieplnego. Rozwazana
powloka jest sztywnie utwierdzona na czgéci brzegu i swobodnie podparta na jego pozostalej
czgsci. Zalozono brak wymiany ciepta z otoczeniem.

B paGote chopmynupoBaHb! TeopeMbl PEryJIAPHOCTH, €MHHCTBEHHOCTM M HANpEPBLIBHOMN 3a-
BHCHMOCTH OT OAHHBIX I 0GOGIUEHHLIX pellleHHil JBYMEPHEIX, HeJIMHEHHBIX YpaBHEHHIT
000JI0YEK, CONMPSIYKEHHBIX C TPEXMEPHBIM, HEJIMHEHBIM YPaBHEHHEM TeILIONPOBOAHOCTH. Pac-
cMaTpuBaemMas 000JI0UKA YaCTHYHO 3allleM/IeHa H YaCTHYHO IApHUPHO oIepTa mo Kpasm. Ilpex-
TIOJIOYKEHO OTCYTCTBHE BHELLHEr0 TEILI000MEHa.

1. Introduction

THE EXISTENCE of solutions for the two-dimensional nonlinear problem of vibrations
of shells coupled with three-dimensional nonlinear heat-conduction equation was considered
in [1]. In the present paper we deal with further mathematical questions concerning the
same problem, i.e. with the regularity, uniqueness and continuous dependence on the data.

The equations under consideration are of the form (see [1], our modiffications of the
notations of [1] allow for using the summation convention with i,j =1, 2)

(1.1

(1.2)
(1.3)

7 Arch.

h
2

ohip — I3+ DA?w — k05— (a%w, 1), ;+bA £x30dx3:q1 in  2x]0, 1],

ohi;—ok ; =p;,, i=1,2 in 2x]0,T[,
Col—2qA30+bTo(éy—x34%) = ¢, in  @x]0, T,
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where
h
2

0'1*j = 0j;— 5ub r Odx;, Oy = Qyjki &y
h

2
1
EU = -—2'—- (ul,_"l'u.’,i'i'w.lwlj)'—'kuw,

£2 — the open domain in R? of variables x,, x,,]0, T[ — the open interval in R* of variable

t, ]-—%, +%[—the open interval in R! of variable x; and Q = Qx]—%, +%[
Furthermore ¢,; = d@/dx;, @,i; = 0*@|dx;0x;, @ = dp/ot, § = ?*@lot*, Ap = @ 11 +@,23,
A30 = ¢ 11+¢,22+@,33. The constants in (1.1)-(1.3) have the following meaning;
03 — mass density, s — thickness of the shell, I = ph®*/12, D = Eh3/12(1—+?), » —
Poisson’s ratio, E— Young modulus, b = Euy/(1 —v), ar — coefficient of thermal expan-
sion, T, — initial temperature, k,,, k,, — curvatures of the middle surface, k,, = k,, =

= 0, ¢, — specific heat at constant stress, 4, — thermal conductivity;
ay = Eh|/(1=9?); @y = vER/(1=9?), i#j;
a; = Eh/(1+v), i#j;, aum=0 forother i,j,k,[=1,2

(in (1.4) there is no summation over repeated indices).
The following functions are assumed to be given:

(1.4)

qr = q10x1, x2, 1) normal load,
P = pi(xy,x5,8), i=1,2 load in the x;-direction,
q: = q2(xy1, X5, X3, 2) heat sources function.

The functions sought for are

w= w(xy, X3, 1) deflection of the shell,
u, = u(x,,x,,t), i=1,2 displacements in the x,-direction,
0 = 0(x;, x5, X3, 1) temperature difference.
Let 2 be the bounded domain with the cone property (see [10], p. 314), and let 22 denote

its boundary. Let us assume, that the shell under consideration is partially clamped and
partially supported, i.e.,

w=0
(L.5) W, = aa_": =0 on 8.2x10, Tl

Uu; = 0, I= 1,2
and

(1.6) M,=0 on &,02x10, 7],

=0, i=12
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where n = (n,, n,) is the unit outward normal to 0,
M, = —D{Aw+(1—v)2nynyw, 1, —n5W, 11 —nI W, 22)},
0.2 — the clamped and 0,2 — the supported part of 0Q. 9.2 or 3,62 may be empty
but 0.20d,2 = 902. In both the cases no heat exchange with the surroundings, is assumed,
ie.,
(1.7) =0 on dQx]0,TY.
Finally impose the initial conditions (space variables x; are omitted for the sake of brevity)
w(©) = w%  w(0) = ¥
(:8) w0) =w!l, @ =u i=1,2, 6(0)=86°
where the right-hand sides are given functions.

2. Assumptions

Let us consider the following two types of domains
2.1) 282 is of class C3,

(2.2) 49 consists of finite number of closed straight-line segments I, k = 1,2, ..., N.

We assume that in the case (2.1), 8.2 =¢ (= null set) or 6,2 = ¢ (= null set)
what means that the shell is either entirely supported, or entirely clamped, and in the
case (2.2) the changes in the type of the boundary conditions (1.5), (1.6) are allowed only
at the corner points {P,} = Iinli_,, k=1,2,...,N, I'y = I'y. Let w; be the inner
angle at the corner point P,. We assume that

0 < wy < 180° for corner points P, clamped along both sides;

23) O<wp<w for the corner points in which the type of boundary conditions
changes, where w ~ 126°, 726699;

0 < w, <90° for corner points supported along both sides.
Let the function spaces W™?(D), H"(D), H3(D), L*(0, T; X), D = 2 or Q be defined
as in [2], Chapt. I, and let
V()= {veH*(Q):v=2,=0 on 34102
and » = 0 on 0,2 in the trace sense}.
We suppose

q.€L*(0, T; H'(2)), 4, €L*0, T; H-()),
pi € L2 (Oa T; LZ(Q))’ i)i € LZ(O’ T; LZ(Q))s i = l: 2:
q; € Lw(o’ T’ LZ(Q)), éz € LZ(O: T! LZ(Q)):

2.9 wl e H3(22), wO satisfies Egs. (1.5), (1.6) in the trace sense,
wl e V(Q),
uf € H*(2)nHy(Q), .
ul e Hi(Q), fe= ks

0° e H*(Q).

T*
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3. Results

The hypotheses (2.1)-(2.4) imply the following regularity result:
THEOREM 1. There exist functions w, uy, u,, 0 having the properties
we L2(0, T; H3(@QnV (@) C([0, T1, V(2)),
we L*(0, T; ¥(2))nC([0, T, Hs (),
we L2 (0, T; Hy(9)),
u € L2 (0, T; H*(QnHy(2)nC([0, T1, Hy(22)),
G.D) i € L (0, T; HY(2))NC([0, T1, L*(%)), i=1,2,
i, e L= (0, T; L*(9)),
0eL>(0, T; H(Q)nHs(Q)NC([0, T], Hy(Q)),
0 e L>(0, T; LX(Q))NL*(0, T; Hy(2)),
such that w, u,, u,, 0 satisfy the Eq. (1.1) in the distributional sense, the Eqs. (1.2), (1.3)
almost everywhere on 2x10, T[ and Q %10, T[, respectively, the boundary conditions (1.5)
in the classical sense, the boundary conditions (1.6) in the trace sense, and the initial conditions
almost everywhere on 2 and Q, respectively.
The continuous dependence and uniqueness results follow from the estimate, formulated
in
THEOREM 2. Let gy, py, W°, ', af, ut, 00,1 = 1,2 and G;, py, % ', &, it} , 0, i = 1,2,
respectively, be the data satisfying conditions (2.4). Let w, u;, 0 and W, u;, 0, respectively,
be the corresponding solutions of the problem (1.1)~(1.8). The following inequality holds true

2 2
(3-2) |’$(t)_ﬁ;(f)ljél(9)+ 2‘1Ilili(t)—&t(t)r’IZ.Z(n)+”W(I)—ﬁ’(t)lmzm)‘{’ EHu,(t)

i=1 i=1

T
— Oy H10) — DOy + [ 10O~ lhror < LW~ llEcey
0
2 2

+ 11— By + 80— 90 ragay + D, 189 = 5 gy + 118° = 60l s

i=1 i=1

T 2 ,
+ [ [18:0) = G ONE-scay+ D NP =B ey + 1182 2201 21 | ]}
0 i=1

with a positive constant C.

4. Sketch of proofs

The proof of the inequality (3.2) is similar to the proof of the Theorem 5.2 of the paper
[3] and therefore we can restrict our considerations to the regularity problem.

Asin [3] we can show the existence of the generalized solution of the problem (1.1)-(1.8)
with the properties
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wob e L=(0, T; (@),  #eL=(0, T; HiD)),
4.1 u, #,€ L*(0, T; Hy(R)), #4,€L=(0,T;L*Q), i=1,2,
6,0l 0, T; L*(Q))nL2(0, T; Hs(Q)).

Thus the functions w, u,, u,, 0 satisfy in the distributional sense the following system
of equations

h
2
DA?w = —phW+IAW+ k084 (ckw,),,—b fxsﬂdx3+Q1 0,
h
2

1 v =
4.2) Ak, = (aijkt (7 W W, — ki W)) —Qhui_éyb( 0a’x3) J_+Pi = P,

¥

| :-LﬂNI -

—/.. A30 = —COB—bTo(E,i—x3AW)+q2 = Q2.

Let 1 < r < 2. The inequalities
2-r

Jiouriwrdx < ( nat,\ldx) (flw =y )
£

0

= ||o4il| L2yl W, .” < const ”‘TIJHE.J(Q)HWHFN(Q)
2 (Q)

imply
oyw, € L2(0, T; L'(2))
and

(0w, )., €L*(0, T; W' (Q)).

1
The embedding H'**(2) =« W'(Q), 0 < ¢ < 1, ———+? 1 (see [10] pp. 327-328,

where Hy(2) = H3(2) = H'**(Q), p = 2, s = 1 +¢, is the so-called interpolation space
and Hy(Q2) = w"4(Q),t = 1) yields W-17(2) c H~17*(22) and, consequently,

(oi;w,.),; € L=(0, T; H'=5(Q)).
It is easy to see that for the other terms of the sum Q, similar inclusions hold and
(4.3) 0,eL*(0, T; H-'75(9)).

Because (4%)~! maps H~2(£2) onto H*(2) and H~1(L2) onto H*(£2) (see [5] in the smooth
boundary case and [4] in the case of polygonal domain), then by interpolation (see [S, 10])
it maps H~'"*({2) onto H3"*(2). Thus, we have

(4.9) we L2(0, T; H3~*(2)).
But w, ;€ L*(0, T; H**(22)) = L*(0, T; L*(£2)) (see [7] § 4.1, Ch. 1) implies
oyw,; € L*(0, T; L*(Q))
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and

(oyyw.).; € L2(0, T; H-1(D)).
Using again the properties of (4%)~! we arrive at the inclusion
4.5) we L?(0, T; H3(2)).
It is easily verified that (4.5) yields (w,xw,)),; € L?(0, T; L*(£2)) and
(4.6) P e L2(0, T; L*(D)).

Using the results of [9] and the method of continuity we may show as in [8], § 9, Chapt.

II

I that (4.6) implies

4.7 u; € L*(0, T; H*(Q)).

Similarly it may easily be proved that 0, € L*(0, T; L*(Q)). Using the results of [6],
[9] we conclude that

4.8) 6 e L>(0, T; H*(Q)).

The assertions (3.1) follow then from (4.1), (4.5), (4.7), (4.8) and the Lemma 1.2, § 1.2
Chapt. I of [7].

The remaining part of the Theorem 1 is a consequence of (3.1) and of the inclusions

H*"(Q) < C7(Q), y = 0,1, H*(Q) = C°(Q).
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