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Remarks on mathematical theory of materials

K. FRISCHMUTH, W. KOSINSKI and P. PERZYNA (WARSZAWA)

THE AM of the present paper is to clear up some of the originally introduced concepts by PERZYNA
and Kosinsk1 [6, 8] as well as to improve the definitions of a method of preparation in such
a way, that the principle of determinism holds and the phenomena of plasticity and work-har-
dening fit into the theory.

Celem obecnej pracy jest wyjasnienie pewnych oryginalnych koncepcji zawartych w pracach
PerzyNY i KOSINSKIEGO [6, 8] oraz zaproponowanie nowych definicji dotyczacych metody
przygotowania. Wprowadzone nowe definicje zapewniaja, ze obowiazuje zasada determinizmu
oraz w ramach proponowanej teorii mozna opisa¢ takie zjawiska jak plastyczno$¢ oraz wzmoc-
nienie materialu.

Ilensio HacTosIel paGoThI ABJACTCA BbIACHCHHE HEKOTOPBIX OPHTHMHANIBHBIX KOHIEITIIHiA,
comepsKaBimxca B paborax I[Iaxunel u KocunbcKoro [6, 8], a Takyke MpeAnonoyeHHe HOBBLIX
omnpeaesicHHit MeToAa NPHUroTOBJIEHNA. BBeJeHHble HOBbIE ONpene/IeHHA obecrieunBaioT (hakT
00A3bIBAaHMA [IPUHLHIIA JeTEPMUHM3MA, @ TAKXKE UTO, B PaMKaX MPEIJIOKEHHONH TEOPHH, MOXK-
HO OITMCATh TaKHe SBJIEHHS, KaK IUIACTHYHOCTE M YIIPOUHEHHE MaTepHala.

1. Introduction

Any mathematical description, identification or modelling of physical object behaviours
is based on some catalogue of observed phenomena. Modelling starts with a deterministic
hypothesis which states, roughly speaking, “what depends on what”, i.e., an input space
G and an output space S are chosen. Having done this, the mentioned catalog is transformed
into a table of input (i.e., G-valued) time-functions versus the corresponding output (i.e.,
S-valued) time-functions.

A central feature of inelastic systems is the non-uniqueness of the output. More speci-
fically, to each input function P defined on a bounded time-interval there corresponds, in
general, a set of output functions Zp, such that for each Z € Z, the pair (P, Z) belongs
to the table of observations.

One way of associating a unique Z with each P consists in introducing such a parameter
space K that Z is determined by P and an element of K through the response mapping
R: (P, k) — Z. Here the parameter k €K is assumed to summarize the influence of the
past inputs, that is before P has started.

In the system theory the process of associating a S-valued function with each input
is called either the parametrization of the space of input-output pairs (cf. ZADEH and
DEsoEr [11]) or the state space realization (cf. WiLLEMS [10]). It should bz pointed out,
however, that this process belongs to the modelling procedure forming one of its first
steps.
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Doing this step means to choose the state space approach. If the phenomena to be
described are well understood and not too complex, the process of parametrization can
be based on physical intuition only and the state space can be easily defined together with
the map 2 as well as with a state transition function (called also an evolution function),
where the latter governs the time evolution of states along input time-functions.

However, if the mechanisms governing the object behaviour are not entirely known,
the problem of state space realization will be complex and, in addition to intuition, some
more advanced mathematical methods will be necessary.

In continuum physics a number of theoretical models of deformable bodies are known.
Using the concept of state, however, one can write down a master equation in terms of the
map Z for a sufficiently broad class of such models. In this way an order can be introduced
in this “chaos” of constitutive models.

The idea of a state of a physical object is used formally or informally in almost all
branches of physics. In continuum physics, however, the first use of the concept of state
in a rigorous mathematical language was made by NoLL [7] in his New Theory of Simple
Materials.

Stimulated by Noll, Perzyna and Kosinski published their alternative mathematical
theory of materials in 1973. In their description the concept of a state arises as a consequence
of the notion of a method of preparation and a configuration. Given in PERZYNA and Ko-
sINsK1 [8], the rules of interpretation of the first notion render their approach more adequate
than the mathematically formal one of Noll.

However, some formal definitions following the concept of the method of preparation
appearing in the original Perzyna-Kosinski theory as well as its thermodynamic generaliza-
tion (cf. PERZYNA [9]) turns out to be too restrictive in describing plasticity and workhard-
ening phenomena. On the other hand, they are too general to ensure the principle of
determinism.

The aim of the present paper is to clear up some of the original concepts appearing
in PERZYNA and Kosmiski [6, 8] as well as to improve the definitions in such a way that
the principle of determinism holds and the aforementioned phenomena fit into the theory.

2. The original definition

It is well known that for a nonelastic (dissipative) material system its response (i.e.,
output) depends on the way the system had been prepared before the input was applied.
Furthermore, it is clear that each initial segment of the input time-function may be treated
as a preparation of the system to the remaining segment of the input. These two observa-
tions will be of help in understanding what follows. Let us introduce a few definitions.
If the sets G and S stand for the input space and the output space, respectively, then by
the input time-function P (or output time-function Z, respectively) we mean a G-valued
function (or S-valued function) defined on [0, dur P], with P > 0. If G and S are equipped
with some topologies, then only continuous functions will be considered. Note that in the
case of the local theory of materials the sets G and S are subsets of finite-dimensional
linear spaces, i.e. G = Sym™*(T, T*) and S = Sym(T*, T), where T is a finite dimensional
linear space.
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Then any input time-function is called a deformation process and any output time-
function is called a stress process. In what follows we often use these notions for a G-valued
function or an S-valued function, respectively.

It should be noticed that the set of all deformation processes I7 (or the set of all stress
processes Z, respectively) does not have the structure of a linear space because processes
may differ in their durations(!). However, one may define a composition operation for
different processes P, and P, whenever P,(durP,) = P,(0); then the result called the
continuation of P, with P, will be a new process P,-¥ P, naturally defined by

P (s), 0<s<durPy,

P,(s—durP,), durP; < s < durP;+durP, = dur(P,¥P,).
Moreover, if 0 < ¢, € 7, € dur P, then one can define a [t;, 7,]-segment of a process

P as a new process Py, ., as follows:

Pyia(s) := P(s—t;) for 0<s<1,—1.

(P1%P)(s) := {

Coming back to the modelling, let us notice that the table of observed input processes
versus the corresponding output processes may be treated as a subset R of the product
ITxZ, Then, according to PERZYNA and KosiNskI [8], the set K of all methods of prepara-
tion of a given material system (a material element or a specimen) is introduced together
with the postulate that there exists a map £ which realizes the relation R, i.e.

Q.1 ARITxK - Z Y(P,Z) e Rk, eK
R(P, ko) = Z

In the original paper mentioned above, the map # was defined on (/I xK x G);, :=
= {(P, K, g) ell xKxG: P(0) = g}, which can be identified with /7 xK. Consequently,
the present approach is equivalent, but more economic. If P = P, P, with some P,, P, €
€ll, then P, is regarded as a preparation of P,, and hence there should exist for each
k, a new method of preparation k, such that

'@(P, ko) [dy.d;+dy] — '%(Pla kl)

where d;:= durP;, i = 1, 2. If the theory constructed is going to be deterministic, then
the value k, should be determined by k, and P, . So it is assumed that there exists a map T

T:KxII - K
called an evolution function, and such that
(2-2) %(P: kO)[dl.dl+d2] = g?(Pz, T(k()a P:))-

The following uniqueness postulate is now introduced:
if k; # k, €K, then there exists at least one P e/l such that

(2‘3) ‘%(P: kl) # '@(Pv kZ)'

Models which do not satisfy this postulate have been called by FriscHMUTH ([2]):
“prestructures”. It is not difficult to prove that this postulate is weaker than
(24) VPellR(P, -)K — Zp, is a bijection, where Zp:= {ZeZ:(P,Z)eR}.

(‘)7 In Kosinskl [4] the space of all processes is equipped with the structure of an infinite-dimensional
differentiable manifold.
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It should be noticed that in the most general case one assumes that (cf. paper(?) I)
R(P, ) is defined on K;, with g = P(0) and K, = K. Then in the relation (2.1) the map %
is defined on |J {{I,xK,:g€G}, with IT, := {Pell:P(0) = g} and the state space
2 is just the set | ) {{g}xK,:geG}.

In [8] the stronger condition (2.4) was introduced at once in the definition of the method
of preparation space K. Furthermore, the evolution function was only defined, neither
its existence nor uniqueness being discussed. In the next section we will show that, unfortu-
nately, the postulate (2.4) leads to several complications in considering the evolution
function.

On the other hand, Eq. (2.4) enables us to identify the states by simple measuring
the actual values of the input and the output. Assuming the output space to be not greatet
than continuum (which usually is the case), in all special cases to which the theory from
[8] applies the set K is not greater than continuum, too. Consequently, the classification
of material structures given in [8] based on the cardinality of the method of preparation
space K is not too reasonable. The introduced structure with internal state variables turns
out to contain all other structures, while the class of non-trivial materials with memory
(i.e., structures with a non-empty set A in Eq. (4.1) of [6]) is empty.

2.1. Main features of the original theory

In paper 1 the map # was used to define the instantaneous response function s
(called in the system theory the read-out function, cf. WILLEMs [10]) as follows, if s € Dom P
and (P, k) ell xK,

(2.5) AP, K)(s) = S(P(s), T(k, Pro.))-

In I the condition (2.5) was expressed in terms of S and the evolution map e, since
there X = G xK. The present evolution function T can be used to define € by the relation
é((g, k), P) = (P(dur P), T(k, P)), for (g, k, P) € G xK xIT. It is not proved in I whether
S and T are well defined by (2.5).

One of the weaknesses of the original Perzyna—Kosinski theory is the possibility of
constructing a set K and a response map £ for which no evolution function T exists.

To show this let us take a model {K, £} for which an evolution function T exists and
which is non-trivial in the sense of
2.6) 3 3 3 Tk, P)¢K,.

K.cK keK; P,ell

Note, that K, may be chosen as a singleton {k}. We assume that K, # and T satisfy the
conditions (2.2) and (2.4).
Now we are going to modify {K, £} defining a relation

R, := {(P,R(P,k):Pell, keK,}

together with the set of methods of preparation K, and the response map #, := 2|m7xk,.
The condition (2.4) is obviously satisfied and thus it remains to show the nonexistence
of an evolution function 7).

(®) In what follows the reference PERZYNA and KosiNski [8] is denoted by 1.
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To this end let us assume T to exist and consider condition (2.2) for P, k from (2.6).
We obtain

R, (P, k) (durP) = R,(Phy, T, (k, P)) (0) = #(Pls,, Ti(k, P)) (0)

with T,(k, P) € K,. Here P{,, denotes the process of zero duration with value P/ :=
:= P(dur P). Note that P = P--Pl;,. On the other hand, applying the condition (2.2)
to the original model we arrive at

R(P, k) (dur P) = R (Pl,,, T(k, P)) (0) with T(k, P)¢K,.
Due to the bijectivity of 2(Pf,, ‘), we may infer that
#,(P, k) (dur P) # #(P, k) (dur P)

which contradicts the assumption, that £, is just the restriction of % to the set [/ xK,.
REMARK. We used here the condition (2.2). This condition follows from (2.5) provided
T satisfies

(2'7) T(ksPl%P2) = T(T(k)Pl), PZ)

for all k, P,, P, such that P;-¥ P, exists.

In [2] the same fact was proved. In that paper the example of a semi-elastic material
element (in the sense of [7]) was used.

The above case would be excluded if the postulate (2.4) were refused or weakened.
There is, however, one more drawback connected with the plasticity phenomena. Let us
prove the following

LEMMA. If for a given response map R fulfilling (2.4) there exists a pair of mappings
(T, S) satisfying (2.5), then

vV Vv if
Pell Z,eZp
for some p e DomP then Z, = Z,.

Proof. Note first that if Z = #(P, k), then by Eq. (2.5) Z;y.1 = Z(Pio,), k) for
each t € DomP = DomZ and, moreover, by the relation (2.4) k is the only element
in K which satisfies the second equality. Let Z, = #Z(P, k,) and Z, = Z(P, k,); then
for any teDomP we put Z, . = #(Pr,n, ki) and Z, . = A(Pro,n, k2).

From the above we conclude that if there exists s € Dom P such that Z;o.5; = Z310.57

then k; = k, and consequently Z;, = Z,. [
It follows straightforward from Lemma that in the model satisfying the relations (2.4)
and (2.5) the map S’(g, -):K — S is invertible for any g € G. Since for the rate-type material
element in the sense of Noll its intrinsic state is represented by a pair configuration —
output (g, S) with g € G and S € S, we may conclude that each unique material structure
in the sense of the paper I is of the rate-type.

It is not difficult, however, to observe that a plastic (or visco-plastic) material system
with workhardening is not of the rate-type (cf. FRiscHMUTH [2]). Hence the original defini-
tion from the paper I is too restrictive and does not cover such a class of materials.

To conclude this section let us investigate implications following the condition (2.4)
for the case of material systems with (fading) memory. As it was observed at the end
of the previous section, the “classical” materials with memory in the sense of COLEMAN

Z’[O.p] = Z30.m
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and MizkeL [1] fall into the class of material structures with internal state variables. This
is in some sense reasonable but, nevertheless, it turns out that in modelling materials
with memory, we can satisfy either the definition of the set of methods of preparation
(2.1) or the definitions of the evolution function (2.2) and the response one (2.5).

To make it evident let us examine the consequence of the bijectivity of the map Z(P, -)
for any P for the case of a material with memory. It was not done in the paper I.

First of all, let us notice that “past history” and “method of preparation” are two
different things, in general, since a whole class of “equivalent” in some sense (cf. FRISCH-
MUTH and KosiNski [3]) but different past histories correspond in general (?) to one method
of preparation.

Let K* denote the set of all past histories (i.e., functions defined on open interval (0, co0)
with values in G), and let S* be a response functional of a material with memory

S*:GxK* - §.
In K* there is an equivalence relation ~ defined with the help of S* by
k¥ ~ k¥ iff VP ell S*(P(durP), k¥ % P) = S*(P(durP), k3% P).

Denote by k := [k*] the equivalence class to which the history k* belongs. Then the
evolution map T is defined by

(2.8) T(k, P) = [k*% P]
where k* e K*

e P(durP—s) for 0 < s<durP,
(e % P)(s) = k*(s—durP) for s> durP.

If p:K*¥ > K*/. =:K is the canonical map, then the response function S:GxK =S
is simply defined by S‘( -, B(*)) := S*(-, +). Let us notice that by applying Lemma to the
map .§', we get the following implication for the map S*:

2.9) v v v if  S*(g, k¥) = S*(g, k) then

ge€G kY, k¥eK* Pellg

§*(P(dur P), k¥ % P) = S*(P(dur P), k% % P)),

provided the response map £ constructed from Sand T by (2.5) satisfies the relation (2.4).
Assuming the relation (2.9), consider K* as the Lebesgue space L, (0, c©), Sym*(R?))

with p > 1 and the weight (the so-called influence function) 4:(0, co) - R* such that

h(s)s? - 0, when s — 0. For further purposes assume that S* satisfies the strong principle

of fading memory, which means that S* is once continuously differentiable. Then from the

chain rule applying for the constant process P(s) = const =: g € Sym*(R*) = G and

the equality (2.9), we get,

(2.10) if  S*(g,k¥) = S*(g,k3) then OS*(g, k¥|k}) = 8S*(g, k3K,

where 4S5* is linear in the last argument and

—k¥'(s) ::diik?‘(s) for a.e. s5€(0, ).

(®) Past history is the same as a method of preparation only in the case of a material with permanent
memory [3]. For such a material each of the two different histories will prepare the material differently
for further response. The existence of such materials was recently shown by PoHL and FriscaMUTH [12].
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Let us make the particular choice of a visco-elastic material function S* with a nonlinear
instantaneous response, namely

(2.11), S*(g, k*) = flg)+ H*(g, k*),
where
(2.11), H*(g, k*) := of O(g, s)k*(s)ds,

with fe C'(G, G) and Q(g, ")h~*() € Lyu, Where g = p(p—1)"".
Then the principle of fading memory holds and for the Fréchet derivative we get

85*(g, k'k") = H*(g, k).
In view of the relation (2..10), the following implication is true, for any g € G:
(2.10)* if for some k*el, ,H*(g, k*) = 0 then H*(g, k*') = 0,
where H*(g, k*') is defined only if k* e D with
D:= {k*el, k¥ el, s} =Ly

The implication (2.10)* together with the definition (2.11) means that the following
problem is stated, for any g € G: two linear maps H*(g, *):L,» = S and M:D — L,
with Mk := k', keD, sych that

ker H*(g, -) p = ker H*(g, M(-)).

Now the theorem on kernels tells us that there exists the linear map(*) L:S — S on
the output space S which fulfills the following equality:

LH*(g, k*) = H*(g, k*') for any k*eD.

0
From the representation (2.11) we conclude that for any (test) function £* € C,(0, )

g O(g, )k*'(s)ds =0f LO(g, s)k*(s)ds,

which means that the distribution derivative of Q(g, s) satisfies the equality
In the standard way one concludes that Q(g, -) has the form
(2.12) 0(g,s) = Qo(g)exp(—Ls) for se€(0,c0),a .e.

with Qo(g) € S. This result was obtained originally by FRISCHMUTH [2] but by using less
elegant arguments and stronger assumptions.

Looking at the last result one notices that the common part of the mathematical theory
of Perzyna and Kosiniski and the classical theory of materials with fading memory contains
at least the class of Boltzmann materials. Moreover, restricting our attention to materials
with linear dependence on the past history, one concludes that this common part is only
composed of Boltzmann materials, however, with a general nonlinear instantenous response
(i.e., with a nonlinear dependence on g). Since S is finite dimensional, we may try to de-

) Note that in general L may be different for different ge G.

5 Arch. Mech. Stos. nr 1—2/86
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scribe the class of materials with memory governed by the relations (2.11),,, in the form
(2.12) by introducing a finite dimensional preparation method space, instead of the space
of equivalent histories, and choosing an appriopriate evolution equation for internal state
variables (i.e., for elements of the preparation method space).

3. The new definition of the set of methods of preparation

The contents of the previous sections form a proper basis to improve the original
version of the Perzyna-Kosinski approach. Keeping two main ideas of that approach,
namely, the concept of the method of preparation incorporated in the language of input-
output processes, we are suggesting a new definition of the set K (cf. (2.1)).

To be more precise, let us list the properties of the relation R = IT x Z which is a mathe-
matical idealization of the table of observed experiments. They are:

(i) if (P, Z)eR then durP = durZ;

(i) if (P, Z)eR then for any 0 < ¢, < ¢, < durP

(P[t,.t,J’ Z{tl,r,]) eR;
(iii) if (P,Z)eR and P¥ P, € Dom R then there exists a Z, € R(P;) such that
(P%P,,Z¥Z))eR.

Here we do not assume that Dom R is the whole I7 since for some models it may not be
the case. Note that in general R is the so-called multi-function, i.e., R:Dom R — 2%

Comparing the conditions (i) — (iii) with that of the paper I, we can see the difference.
In I the weaker form of (ii) was assumed ; moreover the condition (iii) was not introduced
in the original formulation of the theory. However, the condition (iii) was included in the
revised version of the theory formulated by Kosmski [5]. Without the last condition it
was possible (cf. FRISCHMUTH [2]) to construct an example of a system model without
an evolution function.

Now let us pass to the realization of the set of methods of preparation. If we assume
that there exists a nonempty set K and a map £: ITxK — Z such that

a) AP,K)yoZ,:= R(P), for any P € Dom R < IT;

b) for any k € K and P, P, €if Py = P, qurp,sthen

'%(Pl’k) == ‘%(Pa k)LO,durPJ!

¢) for any (P, k) eI xK there exists exactly one k, € K such that for any P ell,,
with g = P(durP),

'%(P’ kp) . '@(P%ﬁy k)[durP.durP*i’-Iy

then K is called the method of preparation space, while # is called the constitutive map.
Comparing the present definition of the constitutive map with that of the paper I,

we notice that no assumption concerning the bijectivity of Z(P, -)for any P €[] is assumed.
In the original formulation the condition

Pell:R(P, k,) = R(P, k,)
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for some k,, k, € K, necessarily implied k, = k,. However, assuming that the conditions
a) to c) hold, we obtain the weaker implication

3.1) if for each Pe IT:#(P, k,) = #A(P,k,), then k, = k,.

Moreover, as an immediate consequence of ¢) the existence of a transition function
(an evolution map) follows. In fact, putting T(k, P) := k,, where k, P and kp are those
appearing in the condition c), we get the definition of the evolution map.

From the properties of R and # we derive the following conditions for T:
(1) if durP = 0, then T(-, P) = idk;

(i) for any keK and P, %P, ell:T(k, P, P,) = T(T(k, P,), P,);

(iii) for any keK, Pell and 0 < ¢t < durP

(3-2) @(P, k)[:,durP] = -@(P[:.dmp]: T(ks P[o,t]))-

Moreover T is uniquely defined by the above conditions.

In some cases it is more convenient to work with a response function F defined on the
product G xK, and given by
(3.3) F(g,k) := R(Pro,01,k) forany keK and Pell, geG.

’Using the pair (F, T), the constitutive map may be reobtained by the following formula:
(3.4 (P, k)(s) = F(P(s), T(k, Ppo,p)) for any (P, k)ellxK,
and any s € Dom P. Conversely, # defines uniquely 7 and F, which is obvious from the

following:

THEOREM. Let R: Il xK — Z satisfy the condition a) above. Then R is defined by the
Sformula (3.4), where T possesses 1), the semi-group property ii) and both T and F possess
the state-selection property, i.e., for any k., k, €K and any P ell

(3.5) F(P(durP), T(k,, P)) = F(P(durP), T(k,, P)) then k, = k,,

if and only if R is a constitutive map, i.e. for & the conditions b) and c) are valid.
Proof. The necessity is obvious; to show that b) and c¢) are sufficient, note that

the formula (3.4) follows from the relations
R (P, k)(s) = R(Pro, 51, k) (5) = R(Pro, 1% Prs, 51, k) (5)
= ‘%(P[s,sj’ T(k: P[O.s])) (0) = F(P(S)’ T(k! P[O.s]));

where the conditions b) and c) were used. Now, in view of the equality Py oy %P = P
the preparation method kp = k satisfies the condition c) and hence by the uniqueness
of kp we infer that (i) holds. To show the condition (ii) it is enough to prove that for any
kekK, P, P,, P;ell:

-@(P:h T(ks PL%PZ)) = QE(PS: T(T(k’ Pl)’ PZ))

Because of c) the left-hand side as well as the right-hand side of the last relation reduce
to R(Py¥% Py% Ps, k)a,p; With a := durP, +durP, and b := durP3+a. This ends the
proof. [

5=
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4. Stability considerations

If one defines a state as a pair o = (g, k), (cf. the paper I) then, as it was noticed in
Sect. 2.1, the state space 2 becomes a subset of G xK and the evolution function é takes
the form

é(o, P) := (P(durP), T(k, P)), if o= (P(0),k).

Then the theory constructed seems to be just a particular case of Noll’s new theory (1972)
translated into the “input-output” language. However, the essential difference between
these two approaches lies in the topological structure of the state space. Noll applied the
concept of uniform topology pulled back from the output space S through the response
map S to each g-section of the state space X (i.e. to each 2, := {s e X: (3’((7) = g, with
G:Z-G }, g € G) and the topology of the whole X' was taken as the sum of the topologies
of the sections, i.e., X' =(_J{2,; g € G}. Thus there is no connection between different
sections which form together the state space. Consequently, in the case of the elastic
material the state space is a discrete topological space and no discussion of stability is
possible. Thus we conclude for the general case that the Noll’s concept is not useful for
stability analysis, except for the case of relaxation processes.

However, dealing with the concept of the preparation method the situation is different
and much better. The space of preparation methods is a primitive concept which the
concept of the state space follows. Hence the physical situation and the particular conditions
and experimental basis for which (and on which) the mathematical model is constructed,
determine the physical meaning and mathematical character of the method of preparation.
The preparation method as a mathematical object is a number, or a vector or a composition
of vectors, tensors or tensor-valued time-functions. In each case, however, the preparation
method belongs to a space with a given topology. Hence the continuity of the constitutive
(response) functions is an independent postulate of the theory. In our opinion the con-
struction of a topology in the state space a posteriori is an interesting thing; it cannot
play, however, the main role. For some problems the comparison of the primitive topology
with that constructed via the constitutive map as Noll suggested may be treated as an
interesting problem only helping in defining an appropriate stability criterion.
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