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Algorithms for reactions of nonholonomic constraints 
and servo-constraints 

J. J. SLAWIANOWSKI (WARSZAWA) 

WE Discuss and compare various procedures of deriving equations of motion of constrained 
mechanical systems. A geometric interpretation of these procedures is given. Special stress is 
laid on nonholonomic constraints, both linear and nonlinear. We analyse certain qualitative 
differences between models of nonholonomic dynamics based on different procedures. Two 
algorithms are particularly interesting, namely, 1) the d'Alembert principle and its Appell· 
Tshetajev generalization (used in typical applications, e.g. in rolling problems), and ii) the 
variational Hamilton principle with subsidiary conditions (more interesting for mathematicians). 
We argue that the Hamilton principle, although not accepted in traditional technical applica· 
tions, is more promising, at least as a guiding hint, in generalizations concerning systems with 
higher differential constraints or more general functional constraints appearing in feedback and 
control systems. 

Przedyskutowano i por6wnano rozrnaite procedury wyprowadzania r6wnan ruchu dla uklad6w 
mechanicznych z wi~zami. Przedstawiono geometryczn(l interpretacjct tych procedur. Szczeg6lny 
nacisk polozono na wi~zy nieholonomiczne, zar6wno liniowe, jak nieliniowe. Om6wiono niekt6re 
jakosciowe r6znice mi~dzy modelami dynamiki nieholonomicznej opartymi na r6i:nych pro· 
cedurach. Szczeg6lne znaczenie maj(l dwa algorytmy, mianowicie: i) zasada d'Alemberta i jej 
uog6lnienie podane przez Appella i Czetajewa (zasady ui:ywane w typowych zastosowaniach, 
jak zagadnienia toczenia), oraz ii) wariacyjna zasada Hamiltona z dodatkowymi warunkami 
(ciekawsza z matematycznego punktu widzenia). Utrzymujemy, i:e zasada Hamiltona, chociai: 
niestosowna w tradycyjnych zagadnieniach technicznych, jest jednak bardziej obiecuj(lca, przy· 
najmniej jako heurystyczna wskaz6wka, w uog6lnieniach dotycZ'lcych uklad6w z wyzszymi 
wi~zami r6zniczkowymi, lub jeszcze og6lniejszymi wi~zami typu funkcjonalnego, pojawiaj'l­
cymi si~ w zagadnieniach autoregulacji i sterowania. 

06cy>I<AeHbi II cpaBHeHbl pa3Hbie rrpou;eAypbl BbiBOAa ypaBHeHffii ABIIH<eHIIH Ami MeXaHII­
'tleCKIIX CliCTeM CO CBSI3SIMII. TipeACTaBJieHa reoMeTpiiqeCI<aH mrreprrpeTal.l;liH 3TIIX IIpOI{eAYP· 
0co6eHHoe BHHMarrne o6pa~eHo Ha HeroJIOHOMHble CBH3II, Tal< JiliHeHHbie, Kai< If HeJIHHeH­

Hbie. 06cy>I<AeHbi HeKOTOpbie KaqeCTBeHHhie pa3Hlil.l;bl Me~y MOAeJISIMII HeroJIOHOMHOH 
AHHaMHKII, orrlipaiO~liMIICH Ha pa3Hhie rrpoi~e.rzypLI. Oco6em10e 3naqeHHe IIMeroT ABa aJiro­

pliTMa, H.'l1.eHHo : 1) npliHU:IIII )lanaM6epa If ero o6o6~eHIIe, npiiBeAeHHoe ArrrreJIJIOM II qe­
TaeBbiM (IIpHHI.l;liiihi, IiCIIOJih3yeMbie B Tlfiiiil.JHhiX IIpiiMeHeHRHX, HaY. 3aAal:fil KaqeHHSI), a TaK­
H<e 2) Bapliai.l;liOHHhiH IIpliHI.l;liii raMliJihTOHa C AOIIOJIHifTeJILHbiMII yCJIOBliHMII (6oJiee HHTe­

peCHbiH c MaTeMaTifqeCKOH TOl.JKif 3peHHSI). Yrnep>I<AaeTCH, l.JTO npliHI.l;liii raMifJILTOHa, XOTH 

HeiipliMeHHM B TpaAifi.l;liOHHbiX TeXHI{qeCKiiX 3aAaqax, OAHaKO 6oJiee o6eii\aiO~HH, IIO KpaH­
HeH Mepe KaK 3BpliCTifqecKoe yKa3aHife, B o6o6~eHHSIX, KacaiO~CH ClfCTeM C BbiCIIWMif 

AifcpcpepeHI.l;liaJihHbiMli CBSI3HMli IIJIIf e~e 6oJiee o6~IIMli CBSI3SIMII cpYHKI.l;liOHaJihHOro rnna, 

IIOHBJIHIO~HCIT B 3aAal.Jax aBToperyJIHpOBKII H ynpaBJieHIIH. 

1. Introduction 

IT IS REALLY incredible that towards the close of the 20-th century there exists a branch 
of mechanics with numerous practical applications but without physica11y justified and 
unquestionable, commonly accepted foundations. This is the theory of systems with 
nonholonomic constraints. Its traditional domain of applications includes all problems 
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646 J. J. St.AWIANOWSKI 

of rolling of rigid and deformable bodies, and electromechanical systems with sliding 
contacts. Nonholonomic constraints appear in rolling problems due to the direct contact 
mechanism based on friction forces. There is also another, rather new, domain of non­
holonomic dynamics. Namely, in navigation and automatic control systems based on 
feedback phenomena one deals with servo-constraints i.e. holonomic or nonholonomic 
constraints of non-contact origin. They are realized by systems consisting of sensors, 
amplifiers, relays (electromagnetic, pneumatic, hydrodynamic) and actuators. Such sys­
tems can be also endowed with automatic data processing. In many problems it is possible 
to neglect the dynamics of the control system itself and represent it by its "final product", 
i.e. by constraints or a program imposed upon the motion of the controlled mechanical 
object. There are practically no limitations on the shape of possible constraints. For 
example, one can produce higher-order nonholonomic constraints (e.g. constraints on 
accelerations), or even quite general functional constraints if the control system is en­
dowed with diferentiation and integration procedures. 

It seems quite natural to use analytical dynamics of nonholonomic systems, a rela­
tively classical topic, as a pattern for the analysis of more complicated constraints appe­
aring, e.g. in automatic control problems. However, when we try to do this, it turns out 
that traditional procedures do not suit such generalizations; moreover, there are some 
doubts as to their own correctness and justification. 

2. Algorithms for holonomic constraints 

To understand the motivation for various algorithms for nonholonomic constraints, 
we must recapitulate the procedures used in holonomic dynamics. 

Let us consider a system with n degrees of freedom, i.e. with the n-dimensional con­
figuration space Q. At this stage Q is a general differential manifold without any addi­
tional structure. As usual in analytical mechanics, we use two kinds of state manifolds, 
namely the Newton state space PN, i.e. the space of generalized positions and velocities 
and the Hamilton state space P, i.e. the space of positions and conjugate canonical mo­
menta, called also the phase space. From the mathematical point of view PN and Pare 
2n-dimensional differential manifolds, respectively, the tangent and cotangent bundles 
TQ, T*Q over the position space Q. 

We shall follow traditional notations; thus the generalized coordinates, i.e. local coordi­
nates on Q, will be denoted by q1

, i = 1, ... , n, and the corresponding coordinates on PN 
and P will be denoted respectively by (qi, vt) and (qt, p;), i = 1, ... , n. If calculated along 

a fixed motion t 1-+ q(t), the velocity ddti (t) will be denoted shortly by l/(t). 

Let us assume that the dynamical structure of our system is described by a pair (L, D), 
where L is a Lagrangian describing the non-dissipative part of dynamics, and D is a ca­
nonical generalized force of dissipative interactions. From the mathematical point of 
view, Lis a scalar function on PN = TQ and Dis a covariant vector on Q, depending on 
generalized positions and velocities. More rigorously, with any generalized position q e Q 
and velocity v e TqQ c PN, there is assiociated a covector D(q, v) E r:Q attached at q. 
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It is important to stress that within an abstract framework based on a general Lagran­
gian L, the canonical force D cannot be identified with a usual, i.e. contravariant, vector 
in Q. This can be done only after introducing an additional object in Q, namely, the metric 
tensor. If the system is free of dissipation, D = 0, then the equations of motion are de­
rivable from the Hamilton principle of stationary action, ~ J Ldt = 0, and have the fa­
miliar Euler-Lagrange structure, 

(2.1) 
d oL oL 

dt oil - oqi = 0, i = 1' ... , n. 

If dissipative forces are taken into account, the equations of motion are not derivable 
from a variational principle and have the form 

d oL oL 
(2.2) dt oiJ' - oqi = D1, i = 1, ... , n. 

Let us quote a typical example 

1 i J ' L(q, v) = -
2
-gu(q)v v +A 1(q)v + V(q), 

(2.3) 
Di(q, v) = -du(q, v)v1, 

where g is a positively-definite metric tensor on Q underlying the kinetic energy 

T = -~- giivivl, Vis a scalar potential (e.g. electrostatic, or oscillatory) and A, is a vector 

potential responsible for non-dissipative velocity-dependent forces orthogonal to genera­
lized velocities (magnetic forces, gyroscopic forces). The friction tensor d is positively 
semi-definite in the g-sense, i.e. the mixed tensor dj : = gi"d"J has non-negative eigen­
values. Besides, one assumes that d(q, 0) is finite (no viscous friction at rest). The resulting 
equations of motion have the form 

(2.4) 
D2qi it dqj ik ov i"d dql 
~ = g F"id! -g oq" -g "lTt' 

where 

D2qi . _ d2qi { i \ dql dq" 
Dt 2 .- (j(l"+ jkfdtdt 

is the g-covariant acceleration vector, ek} being the Christoffel coefficients, and 

. oA1 oA" 
Fk} .= oq" - oql , 

i.e. the exterior differential of A, is the "magnetic-like" field responsible for non-dissipa­
tive velocity-dependent forces. Let us observe that now, after introducing the quantity g, 
we have identified all forces, both variational and dissipative, with contravariant vec­
tors. 

._ ,oL 1 Mechanical energy is given by the familiar formula, E . - v ov' - L, for examp e, 

in the above example we have E = T + V. The energy balance has the form 
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dE _ oL +D· dqi 
Tt = at ' dt ' 

i.e. in the case of time-independent systems the time rate of energy equals the power of 
non-variational forces D, 

(2.6) 

Let us now subject the system to holonomic constraints W c Q, W being an (n- m)-di-:­
mensional submanifold of Q described by the equations 

(2.7) F(l(q 1 
... q") = O,. a = I, ... , m; 

the functions Fa are functionally independent in a certain neighbourhood of W. The 
constraints W restrict the state manifold PN = TQ to the submanifold PN(W) = TW; 
similarly, P = T*Q is replaced by P( W) ·= T* W. Thus the set of admissible velocities 
at a configuration q E Q is restricted to the (n- m)-dimensioniallinear subspace Tq W c TqQ. 
Obviously velocities compatible with constraints satisfy the following linear equations; 

(2.8) oFa i o' 
oqi v = ' a = ~~ ... ' m. 

Excep~ for some very special relationships between (L, D) and W, the general solution 
of Eq. (2.2) is incompatible with W; as a rule, trajectories with initial values on TW leave 
this · manifold. Thus to confine the ' system in W, we tnust subject it to an additional dy­
namical .influence. This means that at each point q e W w~ switch on an additional, in 
general velocity.~~ependent, canonical force R(q, v) e TqQ .with the task to keep ~on­
straints without disturbing the along-constraints motion. It is impqrtant to stress that R 
is defi~ed only for constrained m~chanical states, tl,lus for q e W and v e Tq W, never­
theless, a priori R(q, v) is a general element of TqQ, not of Tq W or of a fixed subspace of 
TqQ. 

The quantities R are traditionally called reaction forces or simply reactions. In some 
sense, the search of proper reactions belongs to the theory of program motion, control 
theory and optimization. 

The total system of equations describing constrained motion has the form 

d aL oL 
(2.9) dt - oqi- oq' = D,+R, Fa(q) = 0, i = I', ... , n, a= I, ... , m. 

This system of n + m equations is 'to be solved with respect to 2n quantities q1, Rj, 
i = I, ... , n. The solution is evidently non-unique. To specialize it we must impose cer­
tain restrictions on the class of admissible 'reactions. First of all, the set of admissible 
trajectories must be derivable from a second-order differential equation on W, as its ge­
neral solution (dependent on 2(n-m) constants). But the fundamental restriction is that 
the only dynamical effect of R is to maintain constraints without influencing along-con­
straints modes of motion. Obviously, when formulated in such a way, this demand is 
rather qualitative. There are a few ways to make it mathematically precise. They are very 
close to each other., almost equivalent, for holonomic systems, but diverge when con­
stniints are nonholonomic: Overlooking this fact accounts for accumulated historical 
misunderstandings in nonholonomic mechanics . . 
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2.1. Dual reactions 

This is a rather geometric and intuitive way of making precise the demand "without 
disturbing along-constraints motion". For any q E W, v E Tq W, R(q, v) is an element 
of the subspace An Tq W c r:Q, i.e. 

(2.10) (R(q, v), w) = R(q, v)1 wi = 0 

for any w E Tq W. But vectors w tangent to W satisfy 

(2.11) oFa. wt = 0, ~ a=1, ... ,m, 
uq' 

thus 

(2.12) R ( q, v )1 = A a ( q, V) ~;~ , i = 1 , ... , n, 

;.a being certain, yet non-definite functions of mechanical state. If Q is endowed with 
a metric tensor g, for example if we deal with. models (2.3), then we can represent any 
co vector fi by the contravariant vector ]t : = gi~fj (if there is no danger of misunderstand­
ing, we shall simply write ft instead of / 1

). If canonical reactions Rt are dual to W, then 
their contravariant representatives R 1 are g-orthogonal to W: 

gtJRiwl = 0, 

for any w E Tq W. Such constraints, or rather such forces maintaining them, are tradi­
tionally called ideal. It is easy to see that ideal reactions are unique. Indeed, substituting 
Eq. {2.12) to the system (2.9), we obtain equations 

(2.13) dl. ~~ - ~~ = Dt +;.a ~F~ , Fa(q) = 0. 
t t uq uq uq 

This system consists of (n+m) equations imposed upon (n+m) variables (qi, ;.a). Solving 
them we find a 2(n-m)-parameter family of motions q1(t), i = 1, ... , n in W, and quanti­
ties ;.a(q, v), a = 1, ... , m for any q E W, v E Tq W. 

For historical reasons, let us quote the traditional way of writing Eqs. (2.13) in terms 
of virtual displacements, 

(!!_ _}_s- 0~ -D.) t5qi = 0 
dt oit oq' ' ' 

( ) [}Fa. ~ i = 0 Fa q = 0, oq, uq 

(2.14) 

(ideal reactions do not work on virtual displacements compatible with constraints). 
Let (x 1 ••• x"- 111

) be coordinates on W; the corresponding parametric equations of W 
have the form 

qt =fl(xl ... x"-m), i = 1, ... , n. 

Then the system (2.13) is equivalent to the following system of (n-m) Lagrange equations 
on W, explicitly free of reactions: 

d aL oL -
dt -iJx'-'- - ox'' = Dtt' fl = 1 ... (n-m), 
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where [ and i5 are restrictions of L and D to constraints W, 

(2.16) 

-L( ") ·- L(fi() oji ·v) X, X • - X , OXv X , 

D ( ") •- D (Ji( ) ()ji •v) ()fi 
Jl X' X • - t X ' OXv X - (}xll . 

2.2. Dead reactions, adiabatic reactions 

Such reactions do not do any work along curves admitted by constraints (along all 
of them, not necessarily dynamically admissible). This means that 

(2.17) (R(q, v), v) = R(q, v)1vi = 0 

for any v e Tq W. Thus we maintain the along- W behaviour of our system without per­
forming mechanical work. Reactions do not influence the energy balance, 

dE _ D dqi. 
~- i dt' 

energy being understood in the unconstrained sense, E = vi ~~ - L. In particular, energy 
uV 1 

is conserved if there is no dissipation, D = 0. Obviously the condition 2 is weaker than 
1, dual reactions do not work along constraints, but not every energy-preserving reaction 
is dual. Indeed, it is easy to see that Eq. (2.17) is satisfied by all reactions of the form 

(2.18) 

H being a skew-symmetric twice covariant tensor. Such reactions are non-unique. The 
~'magnetic-like" ("gyroscopic-like") term Hi1v 1 is arbitrary if we do not accept additional 
criteria. In any case, there is no intrinsic geometric prescription which could assign a 
particular form of H to given functions Fa. 

The force Hilvi does not contribute to energy balance, nevertheless it influences in 
some sense the along-constraints motion, because in general it has a non-vanishing pro­
jection onto W. 

2.3. Constrained Hamilton principle, Lustemik theorem 

If there are no dissipation forces, D = 0, then we can formulate the restricted variatio­
nal problem in W, 

€5 f Ldt = o, 
L being the restriction of L to TW, L : = Li TW. 

The resulting Euler-Lagrange equations coincide with the system (2.15) if D = 0. 
The q~antities A0 (reaction coefficients) then appear as Lagrange multipliers in the Lus­
temik theorem. Indeed, this theorem tells us that there exist functions of time A0

, a = 1, ... , 
m such that conditional stationary points of the functional J Ldt (with conditions 
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Fa(q(t)) = 0, a = l, ... , m) coincide with the usual (without conditions) stationary points 
of the functional J L[A.] dt with the modified, time-dependent Lagrangian: 

L[A.](q, v, t):= L(q, v)+A.~(t)Fa(q). 

Calculating Euler-Lagrange equations for L[A.] and substituting constraints equations, 
we obtain the system (2.13) with D = 0. Thus, for holonomic non-dissipative systems, 
the procedures 1 and 3 give identical reactions and identical effective equations of motion. 

3. Algorithms for nonholonomic constraints 

Let us assume that besides the a priori given interactions described by (L, D), the 
system is subject to influences which restrict its Newtonian states to certain submanifold 
M c PN = TQ. Such constraints are called anholonomic. They are called nonholonomic 

if they are not reducible to holonomic constraints, i.e. if M is not foliated by submanifolds 
of the form TW, W c Q. Thus, roughly speaking, nonholonimoc constraints restrict 
velocities without restricting positions (or, in any case, restrict velocities stronger than 
positions if they contain an admixture of holonomic constraints). 

Let Mq denote the set of admissible velocities attributed to a given position q E Q, 
thus Mq: = MnTqQ, and M = n Mq . We shall assume that M does not contain any 

qeQ 

holonomic admixture, i.e. projecting M onto Q we obtain the whole configuration space Q. 
Thus, for any q E Q we have: dimM = (n-m), where m equals the co-dimension of M, 
dimM = (2n-m). Analytically the constraints Mare described by the equations 

(3.1) Fa(q 1 
••• q", v 1 

••• v") = 0, a = 1, ... , m. 

For gi!neral constraints M the submanifolds Mq are curved, i.e. they are not linear sub­
spaces of TqQ. Their equations (at least some of them) are nonlinear with respect to 
velocity arguments. However, in most popular practical applications of analytical mech­
anics we deal just with nonholonomic constraints M intersecting all fibres TqQ along linear 
subspaces. We shall call them linear nonholonomic constraints; certain authors use also 
the term kinematical constraints. Such constraints can be pictured as a field of m-dimen­
sional linear subspaces, Q 3 q 1-+ Mq c TqQ, i.e. in differential-geometric terms, as an 
m-dirnensional distribution. One can describe them with the help of equations linear in 
velocities, 

(3.2) Fa(q, v) = Wai(q)vi = 0, a= 1, ... , m. 

In other words, the set of kinematically admissible trajectories in Q is a priori restricted 
to integral curves of the Pfaff systems 

(3.3) Wa = 0, a = 1, ... , m, 

wa being differential forms (covector fields) on Q dual to the distribution q H Mq, 

(3.4) Wa: = Waidq1• 

If the Pfaff system (3.3) is maximally integrable, then we deal with anholonomic constraints 
equivalent to a family of holonomic constraints foliating Q. This is the case if and only if 

(3.5) dwa 1\ W1 1\ ••• 1\ Wm = 0. 

Such constraints are sometimes called semi-holonomic. 
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Linear nonholonomic constraints exhaust the most popular and natural class of non­
holonomic mechanical problems, namely, the nonsliding rolling of rigid or elastic bodies. 
Their dynamical properties are still very close to those of holonomic constraints. Neverthe­
less, . in contrast to popular views, there are certain ambiguities and doubts concerning 
the concept of ideal reactions. 

Let us now try to follow 'three algorithms for reactions, discussed in previous section. 

3.1. Dual reactions 

There .is no submanifold of admissible configurations in Q, but nevertheless, at each 
configuration q E Q we have the Well-defined linear subspace of admissible v'elocities 
Mq c TqQ, and, consequently, the space of dual reactions AnMq c r:Q. R is dual to 
constraints if ' 

(3.6) (R,(q, v), w) = R(q, v)t wi = 0 

for any q E Q, v E Mq, wE Mq. Elements of Mq satisfy the equations 

(3.7) 

thus, 

(3.8) 

~here A.a are yet unknown functions of admissible states. The resulting equations of mo­
tion have the form 

(3.9) 
d oL oL a 

-({i[)i/ - 8qi = D,+A. Wai, 

Just as in the holonomic theory, this system of (n+m) equations can be solved with res­
pect to (n+m) quantities (qi, A0

). 

This is just the commonly used algorithm for linear nonholonomic constraints. By 
analogy to holonomic systems, the reactions (3.8) are usually called ideal. Equations (3.9) 
reduce to Eq. (2.13) if Eq. (3.2) is an anholonomic description of essentially holonomic 
constraints, i.e. if 

3.2. Dead reactions, i.e. adiabatic reactions 

They do not work along curves compatible with constraints, i.e. along integral curves 
of roa, a = 1, ... , m, thus, 

(3.10) (R(q, v), v) = R(q, v)1v1 = 0 

. . dE •. 
for any q E Q, v E Mq. Reactions do not contnbute to energy balance, dt = Diq'. By 

analogy to Eq. (2. I 8), we have 

(3.11) 

where v E Mq and H is skew-symmetric. 
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Let us observe, however, that nonholonomic systems have certain new features which 
give rise to intrinsic prescriptions for H. Indeed, we have at disposal m skew-symemtric 
twice covariant tensors 

a= 1, ... ,m. 

Therefore we can postulate 

(3.12) Hu(q, v) = p,a(q, v)YatJ' 

(3. I 3) a ) ( OWaj OWat ) 1 1a( 
Ri(q' v) = fl (q' v oqi- - oqi v + IL q' v)wab 

p,a being yet non-definite functions of admissible states. At each state (q, v), the reaction 
(3.13) is controlled by 2n multipliers p,a, ;.a a = 1, ... , n. Therefore the system (2.9) lea­
ves n of them arbitrary. 

In general, R(q, v) given by Eq. (3.13) is not dual to Mq, i.e. there are vectors u E Mq for 
which R(q, v)iui # 0. This means, roughly speaking, that the reactions (3.13) modify the 
"along Mq" - instantaneous behaviour of the system. Nevertheless, there are no reasons 
to object against them because in the nonholonomic case there is no proper submanifold 
of constraints N c Q and the instantaneous "along Mq" effect of R(q, v) cannot be inter­
preted as a perturbation of the finite along-constraints motion. On the contrary, for non­
holonomic constraints (3.2) the term p,a(wai,J -WaJ, i)q1 is exactly as natural as ;.awai. The 
19-th century philosophy of virtual displacements has brought about some, in our opinion 
misleading, discussion as to these terms and their mutual relationship. Namely, in anal­
ogy to holonomic systems, virtual displacements were defined by the formula 

(3.14) Wai~ql = 0 · 

Time-dependent (Jqi were to describe small, compatible with constraints, variations of 
a given motion t ~ q(t). But in the nonholonomic case the modified motion qi(t)+ ~q 1 (t) 

fails to be compatible with constraints, [1 ,6], because in a first-order approximation 

(3.15) ~ . i . d i dql ~ i 
(Fa= Fa(q 1 + Oq )-Fa(q 1

) = dt-(wai Oq )+(waj,l-Wat,J)dt uq · 

The condition (3.14) is not s~fficient for vanishing of ()Fa. Thus, one argued, virtual dis­
placements connecting nearby curves compatible with constraints had to satisfy two 
algebraic conditions, namely the formula (3.14) and 

(3.16) (waj,i-Wat,J)(Jqi = 0. 

This view resulted from the unquestionable belief in the magic power of virtual displace­
ments satisfying appropriately chosen algebraic conditions. It is obvious, however, that 
geometrically proper variations (Jqi expressing along-constraints deformations of curves 
satisfy n differential conditions 

(3.17) d( ~i )'l~t-o -
1
- Waiuq ) + (waJ i -Wai ;· q uq -c t . ' ' 

instead of 2n algebraic conditions (3.14), (3.16). 
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The functions c5q1(t) compatible with Eq. (3.17) are proper "tangent vectors" at the 
curve q(t) in the functional manifold of all curves subject to the conditions w0 ;i/ = 0. 

3.3. Hamilton principle, Lusternik theorem 

It turns out that this algorithm gives the reactions (3.13) together with a relationship 
between A and ft leaving only n of them arbitrary. Indeed, if there is no dissipation, the 
restricted Hamilton principle 

(3.18) c5 J L(q(t), q(t) )dt = 0, F0 (q(t), q(t)) = 0, a = I, ... , m 

gives the equations 

(3.19) 
d (}L (}L 
---- ~qt = Rt, dt (Jqi () 

where 

(3.20) 

d 
p,'' being Lagrange multipliers. This is just the special case of Eq. (3.13) with A0 = - dt fJ0

• 

For dissipative systems the obvious generalization of Eqs. (3.19) is 

d (}L (}L dqi 
(3.21) dt (Jqi - (Jql = Dt + Rt' WQt dt = 0 

with the same reaction (3.20). 
The algorithms 1 and 3 give evidently different results. For holonomic systems they 

are equivalent and agree with experimental data concerning the dynamics of naturally 
occurring constrained systems like rigid bodies and their aggregates. At the same time, 
the algorithm 3 is a convincing procedure excluding, for holonomic systems, the pro­
c;edure 2, which, although mathematically possible, is charged with a nonphysical arbitra­
riness and does not agree with experiments on rigid bodies. Thus we are inclined to be­
lieve that the algorithm 3 is also a proper way of describing naturally occurring and tech­
nically constructed nonholonomic systems. It is rather surprising that this procedure 
implies "magnetic-like" ("gyroscopic-like") reaction terms· fta(wai,; -wai,i)v1 for nonho­
lonomic systems, although it has just excluded them in the holonomic case. The quantity 
p,a(wai, i -w0 ;,i)v1 resembles certain expressions occurring in Woronetz equations for 
linearly nonholonomic systems. However, this similarity is superficial because Woro­
netz equations are based exactly on dual reactions (3.8), not on reactions (3. I 3). Equa­
tions (3.19) are certainly non-equivalent to W oronetz equations. 

Let us observe that in Eqs. (3.19) with the reactions (3.20), the Lagrange multipliers f.l-0 

occur in a non-algebraic way, together with first derivatives. Therefore it does not seem 
possible to follow the holonomic procedure of solving, i.e., to eliminate p,a, to solve the 
remaining equations with respect to qi, and then to express fta as functions of mechanical 
state. Rather, the parameters p,a acquire the character of additional, controlling, degrees 
of freedom. 
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Let us notice that the Hamilton-Lusternik variational algorithm is based on virtual 
displacements satisfying the differential equations (3.17). What would result if we used 
two independent algebraic conditions (3.14), (3.16)? It is easy to see that the standard 
formula 

~ J Ldt = J ( ;~-:, ~~~-)~q'dt = 0 

with ~qi subject to Eqs. (3.14), (3.16), gives us exactly Eqs. (3.13) with 2n non-determined 
parameters. 

Analysis of nonlinear nonholonomic constraints seems to support our belief in the 
procedure 3. 

Let us now consider general nonholonomic constraints M c TQ. It is obvious that 
if the intersections Mq : = M n TqQ are nonlinear, then the procedure I in its literal sense 
is completely meaningless. Indeed, if Mq is nonlinear, then its linear shell has higher di­
mension than Mq itself, and in the general case it coincides with the total space TqQ. 
Therefore, the only covector R(q, v) dual to all elements of Mq is the null element of 
TqQ. But with vanishing reactions the equations of motion are incompatible with con­
straints. Many attempts have been made to overcome this difficulty. One of them, from the 
formal point of view relatively natural, consists in defining the reactions R(q, v) as dual 
to the tangent space TvMq, i.e. 

(3.22) (R(q, v), w) = R(q, v)1w1 = 0 

for any q E Q, v E Mq and wE TvMq c TqQ. But elements of TvMq satisfy the equations 

(3.23) oFa i O 
ovi w = ' a=l, ... ,m, 

thus, finally, 

(3.24) 

)/' being non-determined coefficients. If (q, v) are kept fixed, the set of all admissible 
R(q, v)'s ism-dimensional. Thus, formally, the system of (n+m) equations 

(3.25) dd 0°~t - 0°~ = D1+;.,a 0

0~;, Fa(q,q) = 0, a= 1, ... ,m, i =I, ... ,n, 
t q q' q 

can be solved with respect to (q1
, ;.,a), uniquely up to initial values of (q, v). Using the 

virtual displacements philosophy we can write Eqs. (3.25) as 

(3.26) ( 
d oL aL ) . 

di oii - oqi -D~ llq' = o, 
()Fa ..\\ . 
oqi uq' = 0; 

tJqi are to be eliminated. 
Constrained systems maintained with forces R of the form (3.24) are called Appe/1-

Tshetajev systems. If constraints are linear, the Appell-Tshetajev procedure reduces to 
the algorithm I of dual reactions because then TvMq = Mq for any v E Mq. There is some 
philosophy used in literature for justifying the Appell-Tshetajev procedure. It is based on 
concepts of acceleration work, acceleration power and acceleration energy. Acceleration 
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work of a force F along a curve t ~--+ q(t) is defined as J Fir? dt; the integrand Fi(ji repre­
sents the acceleration power. Reactions (3.24) at any point q E Q have vanishing accele­
ration power along any instantaneous motion in Q starting at q with vanishing velocity 
and compatible with constraints. However, this justification is rather misleading because 
acceleration work is a rather nonphysical concept, which has nothing to do with balance 
of energy. Moreover, it is not correctly defined unless Q is an affine space, because in 
a general manifold, second derivatives of q~(t) do not represent vector or any geometric 
object at all. Because of this, the expression Fiqi is dependent on coordinates; thus non­
geometric and nonphysical. 

The idea of the reactions (3.24) goes back to Gauss who was the first to suggest reac­
tions dual to virtual accelerations. The original Gauss principle was formulated fot con­
strained systems of material points in Euclidean space. All tangent spaces TqQ are then 
canonically isomorphic to the standard linear space of translations V, thus TQ = Q x · V, 
T*Q = Qx V*. The vectors (u, w) E Vx V tangent at (q, ·v) EQx V to constr~fints M 
satisfy 

0~ i 0~ i (3.27) ~(q,v)u +~ (q,'l/)W = 0. 
vq' ov' · 

Any curve t 1-+ qi(t), i = I ... n in Q induces the curve t H (qi(t), qi(t)) in TQ = Q x V. 
Vectors tangent to the latter curve have components (iJi(t), q1(t)); thus for them 
u' = qi(t), w' = iji(t). Equation (3.23) can be formally obtained from Eq. (3.27) by 
restriction to vectors of the form (0, wi). In this sense wi are virtual accelerations compa­
tible with constraints [5, 6]. It must be stressed, however, that this interpretation is not 
to be taken too seriously because vectors (0, qi) are not tangent to curves in M c Q x V 
induced from Q. 

Quite independently of this, rather incorrect, acceleration philosophy, the Appell­
Tshetajev algorithm is formally well-defined for any mechanical system, independently 
of geometry of Q. However, one can doubt whether it is a natural or technically realizable 
and optimal program for maintaining realistic constraints M. In any case, the concept 
of virtual displacement defined by the algebraic conditions (3.26) is a rather artificial and 
purely formal extrapolation of the corresponding holonomic notion (2.14). It has no 
convincing mathematical content; for example, it does not represent the tangent vector 
in the infinite-dimensional functional space of trajectories kinematically compatible with 
constraints. It has no physical interpretation, either; for example, it has nothing to do 
with the true m~chanical work of reactions and with the energy balance. The vanishing 
of Ri ~qi, fundamental for Eq. (3.24), has no physical motivation. 

The principle of dead reactions (adiabatic reactions) is non-effective because it admits 
too much arbitrariness for reactions, even in the holonomic case. Besides, if the func­
tions Fa are nonlinear in velocities (even if they are affine, i.e. linear nonhomogeneous 
functions), it may happen quite easily that equations based on this principle will be 
inconsistent. In fact, it seems evidently impossible to maintain all kinds of nonholonomic 
constraints without energetic influence (try to confine the absolute value of velocity or 
angular velocity without influx or efflux of energy). 

Thus it seems that the most promising program for forces maintaining nonholonomic 
constraints is that based on the Hamilton-Lusternik principle. Let us discuss it briefly. 
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If there is no dissipation, then, introducing m Lagrange multipliers p,a(t), a = 1, ... , m, 
and calculating Euler- Lagrange equations for the modified Lagrangian L[p,] := L+p,aFa, 
we obtain the following system of (n+m) differential equations for (n+m) variables 
qi (t), p,a(t): 

(3.28) 
d a L o L a o Fa d ( a o Fa ) -cri oi/ - aqi = p, oqi - dt p, oil- ' i = 1 ' ... ' n 

Fa(q,q) = 0, a= 1, ... ,m. 

Reactions contain multipliers p,a together with their first derivatives; 

) R _ a o Fa d ( a o Fa ) 
(3.29 i - p, ()qi - dt p, ()qi 

- a oFa - dp,a oFa - a ()2 Fa dqi a ()2 Fa d2ql 
- P- oqi dt oqi P- oqioq1 dt - P- oiloiJ1 dt 2 • 

It is rather natural to postulate the same mechanism of reactions in dissipative probkms 
thus the equations of constrained motion have the form 

d aL aL 
(3.30) dt oi/ - oqi = D,+R1 , Fa(q, q) = 0, 

Ri again given by the formula (3.29). 
Nonlinearity of nonholonomic constraints with respect to velocities has a remarkable 

qualitative effect on the dynamical structure of reactions R 1• First of all, R1 contains the 
term with second derivatives, i.e. , 

a ()2Fa d2ql 
-p, aq'aq1 dt 2 • 

Such acceleration-dependent forces modify the inertial properties of the object. Besides, 
nonlinearity of M may influence the energy balance because, in general, the reactions (3.29) 
need not annihilate the velocity vectors. Indeed, let us calculate the power of the reactions 
(3.29) along curves in Q compatible with constraints M . After elementary calculations we 
obtain 

R dq 
1 = a dFa _ .!!._ ( a • i a Fa ) 

i dt P- dt dt P- q olJ' · 
The first term vanishes in virtue of constraints equations. Thus, finally 

(3.31) R·"i __ !!__( a oFa ·~) 
,q - dt P- olJ' q · 

Hence, in general, reactions (3.29) need not be adiabatic. They are adiabatic if constraints 

are linear. Indeed, linear functions satisfy the equation vi ':Ja. Fa = Fu thus Eq. (3.31) 
uv' 

takes on the form - ~ (p,a Fa) that evidently vanishes along any curve kinematically 

compatible with constraints. More generally, Eq. (3.31) vanishes if vi ':Ja . FaiM = 0, 
uv' 

7 Arch . Mech. Stos. nr 6/87 
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i.e. if vi ':lo. Fa = kab Fb for certain functions kab nonsingular in a neighbourhood of M. 
uv' 

But this means that the vector-field vi 0~t is tangent to constraints M. Let us now notice 

that vt ':lo . is identical with the generator of the one-parameter dilatation group 
uv' 

v H ~ v, x e R; thus any integral curve of vi 0~t is either a half-space of a one-dimen­

sional subspace of a certain TqQ, or just the null element of TqQ (singular integral curve)(!). 

Therefore any manifold M with the above property [ v' ~~ F. = k. • F.] is plaited of one­

dimensional subspaces of fibres TqQ. Any one-dimensional (half) subspace is either disjoint 
with M or entirely contained in M. This means that Mq = MnTqQ imposes constraints 
on directions in TqQ, i.e. on directions of velocities at q E Q, but not on their magnitudes . 
.Thus we can formulate the following: 

THEOREM. If nonholonomic constraints restrict directions of velocities but leave their 
magnitudes arbitrary, then their Hamilton-Lusternik reactions are adiabatic, i.e. they do 
not do any work along curves compatible with constraints. 

This class of constraints is evidently wider than linear nonholonomic constraints. 
Equation (3.31) means that the energy balance has the form 

(3 32) d (E a oFa . i) D . t . . di +p, oiJi q = iq. 

The balanced quantity 

(3.33) [ ] ·- a oFa . t 
E L, M .- E+p, oll 

calf be interpreted as the effective energy of the system constrained by the manifold M 
When M is fixed, E[L, M] does not depend on the particular choice of functions Fa used 
as left-hand sides ''of equations of M. Indeed, any change of Fa, ( ... Fa···) H ( .. . fra : = 
: ~ FbLba···) is compensated by the corresponding dual change of coefficients p,a. 

The quantity E[L, M] contains two parts: the natural energy E = vi ;~ - L of the 

unconstrained system and the energy of constraints 

(3.34) E[M] ·- a oFa . i 
. .-" oil q · 

a 
(1) Indeed, integral curves of v 1

- -
1 

.satisfy differential equations ov 
dq 1 dv 1 

--=0, --=v1
• 

dt dt 

Integrating them we obtain 

q1 = a1
, v 1 = b'e', 

a1
, b' being integration constants. But these are just parametric equations of a one-dimensional 

half-subspace of T. Q with the directional vector b = ( .. . b1 
... ). If b = 0, this subspace degenerates 

to the null element of T. Q. 
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If there are no dissipative forces, the total energy E[L, M] is a constant of motion. The 
existence of this constant of motion is just the peculiarity and distinguishing feature of the 
Hamilton-Lusternik algorithm. Let us observe that E[L, M] can be directly obtained 
from the modified Lusternik Lagrangian L[/.t]. Indeed, 

(3.35) E(L[p]] = qi 0~~] -Llu] = E[L]+,ua ~~~ li-,uaFa, 

but the last term vanishes on constraints M. 
The mechanical work done by Hamilton-Lusternik reactions has a variational struc­

ture; it can be interpreted as the exchange of energy between the system in question and 
the constraining object. In Gauss-Appell-Tshetajev algorithms based on algebraically­
defined virtual displacements there is no nice result like Eq. (3.32). 

One can formulate the following question: what is the largest class of nonholonomic 
constraints with dynamically adiabatic Hamilton-Lusternik reactions? By '~dynamically 
adiabatic" we mean that RJi vanishes along all trajectories satisfying the equations of 
motion (3.28), but not necessarily along all curves compatible with constraints. We have 
no slightest idea how to answer this question. The point is that Lagrange multipliers 
p/' in Eqs. (3.28) are not a priori known; they are to be determined from equations of 

motion. Thus we cannot exclude the situation that ,ua 
0

0F~ ii will be constant along any 
v' 

solution of Eqs. (3.28) although vi ~:~ will not identically vanish in M. However, this 

is rather unlikely. 
Obviously reactions which do not work along constraints restricting directions of 

velocities; but have a non-vanishing power when magnitudes of velocities are constrained, 
seem reasonable and physically intuitive. 

In our opinion, the above Hamilton-Lustemik algorithm (variational algorithm) for 
reactions provides the most natural generalization of the holonomic d' Alembert algorithm. 
It is also compatible with t•he ideas of :Dirac's . generalized Hamiltonian mechanics [4]. 
Hamilton-Lusternik reactions are not ideal in the traditional sense of vanishing power 
(except for constraints restricting only directions of velocities) but nevertheless they are 
"ideal" in some intuitive sense, namely, they have variational ~tructure; together with 
equations of motion they are derived from the Hamilton principle subject to additional 
conditions. In contrast to other . traditional algorithms (Gauss, Appell, Tshetajev), the 
Hamilton-'-Lusternik algorithm is directly applicable to mechanical systems with constraints 
imposed upon higher derivatives, e.g. accelerations, or to systems with more general 
functional constraints, e.g. systems with feedback, servomechanisms and automatic data 
processing. 

As an example let us quote a system with dynamical structure (L, D), (L being the 
usual Lagrangian depending on positions and velocities, and D -non-potential forces) 
subject to differential constraints 

(p) 

(3.36) Fa(q, q, q, ... , q) = 0, a= 1, ... , m, 

where ~> denotes the system of /-th derivative~ dd
1

1 qi, i =I, ... , n. The Hamilton-Lustemik 
t . 

7* 
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algorithm gives the equations of motion 

a aL aL <P> 
-d ~-~=D,+Rj, Fa(q,q, ... ,q)=O, 

t uq uqi 
(3.37) 

where 

p l . 

n ( 1 d ( a ) aFa ) 
R, =?. -1) dt' p, (t a~~> , (3.38) 

1-'a denoting Lagrange multipliers. 
Letus notice that for such systems there is no other natural algorithm, in particular,. 

there is no natural generalizat~on of traditional procedures like those of Gauss, Appell: 
and Tshetajev. If p > 1, i.e. if constraints restrict accelerations or higher derivatives, then, 
as a rule, reactions R are non-adiabatic, there is no possibility to maintain constraints. 
without performing mechanical work. 

According t~ the Noether theorem, for higher-order differential constraints .. there 
exist also the effective energy quantity E[L, F]. The novelty is that it depends on higher 
derivatives, e.g. accelerations. For example, if we consider second-order constraints 
(restricting . accelerations), FQ(q, q, q) = 0, then, modulo terms vanishing in virtue of 
constraints equations, we have: E[L; F] = ·E[L]+E[F], where E[L] is given by the usual 
formula and 

(3.39) E[F] - Q aFa • '- ..!!._ ( Q oFa) . I Q aFa .. i 
- JJ aq~ q dt JJ a;p q +p, oq' q 

Obviously, 

dE[L, F] 
dt 

, a F, • , d ( a a Fa • ') 2 , a Fa •. , . 
= "' aq' q ~ di "' a;p q . + JJ oiJ' q · 

4. Interpretation problems and open questions 

The above algorithm is purely phenomenological, just as all other traditional approaches 
to the problem of mechanical constraints. One considers constrained motion as a program 
motion in the control theory sense [5, 7]. It is obvious that from the very formal point 
of view there is, in general, an infinity of program forces maintaining given constraints 
and any particular relationship between constraints and reactions is some kind of "consti­
tutive relations" [5, 11]. The whole historical effort concerning constraints was aimed at 
finding some kind of "philosopher stone", key principle distinguishing some natural 
shape of maintaining forces among all possible ones. This resulted in phenomenological 
principles like those known under the names of d' Alembert, Gauss, Appell, Tshetajev 
and others [ l, 5, 6]. This search was based ~n the belief that geometrically distinguished 
reactions are best candidates for describing what is actually going on in naturally occur­
ring constrained systems like rigid bodies of our macroscopic environment. Similarly, after 
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the feedback systems and servomechanisms have been discovered, it seemed quite natural 
to expect that reactions following from the mentioned geometric principles should pro­
vide the simplest or most economic scheme for maintaining required constraints in arti­
ficial systems. Obviously this belief concerning both natural and artificial systems is rather 
correct and physically justified. However, the point is that only for holonomic systems there 
was a natural consensus as to the key principle, namely d' Alembert's principle; For non­
holonomic systems (especially for constraints nonlinear in velocities) all mentioned prin­
ciples become more doubtful and mutually non-equivalent. They have no generalization 
to more complicated, e.g. higher-order constraints. The Hamilton-Lusternik principle 
is in our opinion maximally natural and formally applicable to any functional constraints. 
It maximally expresses intuitions concerning "ideal" or "optimal" extortion of constraints; 
ideal in the sense that our intervention into natural behaviour of the system is as small 
as possible. Nevertheless, even this principle is still phenomenological. 

It would be very interesting and instructive to undertake the task of "microscopic" 
analysis of the problem of constraints. In naturally existing systems, constraints are never 
exact. Any real system undergoes small, technically negligible deviations from the surface 
M given by Fa = 0, a = I, ... , m. The main part of motion, i.e. motion "along M" 
approximately satisfies autonomous equations independent of the mentioned "trans­
versal" deviations. The peculiarity of systems showing the M-constrained behaviour is that 
their dynamical structure (L, D) splits in some sense into two parts: (LM, DM) responsible 
for motion along M, and (LR, DR)- physical reactions approximately maintaining 
constraints, i.e. responsible for the "smallness" of deviations from M. Approximate 
equations satisfied by the "along M" part of motion have the structure 

where Ri are formal reactions defined only on M and somehow derivable from (LR, DR). 
Let us observe an important difference between (LR, DR) and R: Physical reactions (LR, DR) 
are defined in a neighbourhood of M; if the system deviates from M, they force 
it to return towards M or to perform small oscillations about M. On the manifold M, 
physical reaction forces vanish. On the contrary, formal reactions Rt are defined only 
on M itself. They provide a shorthand description of the "macroscopic" effect of (LR, DR), 
i.e. the approximate confinement in M. The problem of deriving the effective algorithm 
for R from the "micro model", i.e. from (LR, DR) is not yet generally solved. For bolo­
nomic systems it has been shown by Arnold that the elastic model of (LR, DR) implies 
in fact d'Alembert's principle. For nonholonomic constraints and general servo-constraints 
the problem is still open. 

The Appell-Tshetajev algorithm and Hamilton-Lustemik algorithm give different 
results even for nonholonomic constraints linear in velocities. It is an interesting open 
problem to compare the detailed predictions of both models for the simplest and natu­
rally occurring nonholonomic systems, i.e. for rolling rigid bodies. Simple systems of 
direct regulation based on contact forces (e.g. frictional speed reducer) _and electromecha­
nical systems provide another interesting and non-academic possibility of testing and com­
paring both algorithms. This is what we intend to do in subsequent papers. 
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