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On static calculation of fishing nets 

K. FRISCHMUTH and U. SZYSZKA (ROSTOCK) 

THE SYSTEM of equations governing the statics of a simple model of fishing nets is derived. The 
existence and uniqueness of solutions are discussed. For a single line the problem is reduced to 
a system of three equations in three unknowns. The properties of this syst~m allow for a glo­
bally convergent solution method. Testing examples as well as conclusions for the problem of 
rectangular nets complete the paper. 

Wyprowadzono uklad r6wnan statyki prostego modelu sieci rybackiej. Przedyskutowano 
problemy istnienia i jednoznacznosci rozwi(lzan. W przypadku pojedynczej tiny zagadnienie 
sprowadza si~ do ukladu trzech r6wnan z trzema niewiadomymi. Wlasnosci takiego ukladu 
pozwalaj(l na zastosowanie globalnie zbieznych metod rozwi(lzywania. Prac~ konc~ przyklady 
obliczen i wnioski. 

RbiBe,geHa CHCTeMa ypaBHeHffii CTaTHI<li npoCTOH Mo,geml phi60JIOBHOH CeTH. 06cy>K,geHbi 
npo6neMbi cymeCTBoBamrn H e,gHHCTBeHHoCTH pemeHHH:. B cnyqae enmm:liHoro KaHaTa 3a­
_gaqa CBe,geHa I< CHCTeMe Tpex ypaBHeHHH c TpeMH HeH3BCCTHhiMH. CBoHCTBa Tai<oH CHCTeMhi 
rro3BonmoT npHMCHHT& rno6anbHO cxo,gnmHecn MeTo,ghi pemeHHH. Pa6oTy oi<o~HBaiOT npH­
Mepbi pacqeToB H cne,gCTBHH. 

1. Introduction 

FoR THE LAY-OUT of fishing nets it is desirable to have approximate but effective methods 
to calculate the acting line-forces and the positions of the knots. To this end various physi­
cal models were introduced [1, 2, 3] and the resulting systems of equations were solved 
by several numerical methods [2]. In some cases one prefers to model segments of the real 
lines as stiff or elastic rods [2]. Despite the simplicity of such models, the related systems 
of equations are essentially nonlinear and hence their solution is expensive. Unfortuna­
tely, in general, there is no known natural configuration as, for example, in the case of 
prestressed line constructions, so that the introduction of linearized models is not use­
ful. 

Generally, one is interested in keeping the number of unknowns as small as possible. 
Consequently, one prefers to introduce the nodal positions as unknowns rather than the 
line-forces. For this choice the dimension of the equations system is smaller by a factor 
1/2, provided the net under consideration is rectangular [2]. However, if the model con­
sists of stiff rods, a substitution of the line-forces in terms of the positions is impossible. 
So we have a paradoxical situation: the number of unknown variables increases, while 
the number of degrees of freedom decreases. 

For the case of rectangular nets, we found a trick to obtain again a system with only 
three unknowns per node. We treat such nets as a connection of two families of lines, 
say rows and columns. Now, our variables are the interactions between rows and columns 
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in the nodes. The system of equations comes from the condition that the dislocation of 
the nodes has to vanish, i.e. the nodal positions have to be the same if calculated for rows 
as for columns. The key to this approach is a reliable algorithm for the solution of single 
line problems. The aim of the present paper is to discuss the difficulties connected even 
with this apparently simple case and to describe an algorithm for the solution of the 
occurring type of nonlinear equations. The idea of this algorithm is to calculate the po­
sition of the last node from the position and the force acting on the first node. Then that 
force and latter on all other unknowns are determined from the equality between the cal­
culated position and prescribed boundary condition. A shooting algorithm of this kind 
was already tested in [2], but its convergence was not satisfactory. However, in [2] a dis­
cretized version of Newton's method was used. We studied the exact Jacobian and ob­
tained under appropriate assumptions a globally covergent method. 

2. The mathematical model 

We introduce a set of nodes Y = {y;}, i E /, Y; E R 3
• Two nodes Y; and Yi, i =1 j, are 

said to be connected, shortly 

y1cony1 

if there is a line between them. The neighbourhood of the node Y; is defined as 

u,, := {y1 E Y:y,cony1}. 

If the cardinality of all U1 ; is not greater than two, we have a single line. Usually, for 
fishing nets the relation 

is valid (Fig. 1 ). 

Yt 

Y3 
single line 

IJn 

FIG. 1. 

net 
(elements oF UIJi denoted 

by rat dots) 

A solution of a static problem has to satisfy the following conditions: 

(1)1 }; F11 +E1 = 0, i E I""- 10 (balance of forces), 
j:y1euP1 
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lh 
Oh 
(1)4 

(l)s 

Fti = ftlYt- Yi) = -Fit 

hJ ~ 0 

635 

Yt con y1 (length of lines), 

(constitutive relations), 

(boundary conditions). 

Here I0 is the subset of I corresponding to boundary points, Et the external force acting 
-on the i-th node, Iii the length of the line between the nodes Yt and y1 (if there is a line) 
and Fii describes the interaction between these nodes. 

It is worthwhile to note that the unknown tensions Ji1 can be interpreted as Lagrange 
multipliers corresponding to the constraint (1)2 • Usually, for bilateral constraints there 
is no inequality posed on the multipliers, while non-negative Ji1 corresponds to the 
unilateral constraint IIYt-YJII ~Iii. For that reason the condition (1)4 is frequently 
·dropped during the calculation process and used after it as a criterion for the choice of 
proper solutions. 

If there are no vanishing line-forces, Eqs. (1)1-(l)s can be reduced to the form 

(2) A(F)F = r(E, g). 

Here the vector F denotes the totality of unknown forces, E the given tractions and g 
the prescribed boundary positions. Having solved the system (2), the remaining unknowns 
are easily calculated from Eqs. (lh, (lh and (1)5• 

The matrix-valued function A(F) occurring in the system (2) splits into a constant 
part for the equilibrium conditions (1)1 and a variable part for the geometrical compa­
tability (lh, (lh and (l)s, i.e. 

(3) 

As an example let us write down the matrix A(F) for a single line clamped at both ends: 

I -I 

I -I 0 

0 I -I 
(3') A(F) = I -I 

Here we used the notation 

I= (~ ~ ~). 
0 0 1 

Equation (2) reads for this case 

(2') 

Before constructing algorithms for the solution of this system of equations, let us consider 
what we may expect from those solutions. 
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3. Existence and uniqueness of solutions 

If we drop the condition (1.4) and assume E to be a given constant vector, then an 
existence proof can be easily carried out via the construction of a potential and the ar­
gument that a continuous function on a compact set takes its bounds. Excluding special 
cases the solution is obviously not unique. The situation becomes much more complicated 
if E depends on the actual configuration, i.e. 

E == e(Y) 

with a given function e. Such a dependence occurs very often in mechanics of fishing 
equipment, some typical examples of functions e are listed in [2]. Let us call a configura­
tion Y = (y1 , ... , Yn)t admissible if it obeys the boundary conditions (1.5) and the line­
length conditions (1.2). The set of all admissible configurations M is a smooth manifold 
in R3"- 3 • Now, we can characterize the equilibrium configurations as such points of M 
in which the vector of forces e(Y) is perpendicular to the tangent space Ty. We denote 
the tangent component of the field e(Y) by et(Y) and assume it to be continuous. By a 
well-known theorem [4] the set of zeros of the field Et is non-empty, if the Euler character­
istic of M is different from zero. For a single line modelled by n-I rods and fixed at one 
of the ends, M is isomorphic to the product 

M = S 2 X S 2 .. • X S 2 • 

n-1 times 

Hence its Euler characteristic equals 2"- 1 'I= 0. This implies the existence of solutions 
to Eqs. (1.1), (1.2), (1.3) and (1.5) even for the case of solution depending forces. 

Unfortunately, this proof is non-constructive, and it cannot be generalized to more 
complicated nets or boundary conditions. Indeed, even for two rods clamped at (0, 0, O)t 

and (1, 0, O)t with 112 = 123 ~ ~ and E2 = (0, - Y23, y 22)t we always have er(Y) 'I= 0, 

hence no equilibrium can be found (Fig. 2). 
Analogously, for larger numbers of rods, such whirling forces can be introduced. 

FIG. 2. Line composed of two rods, fixed at the ends. 
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ON STATIC CALCULATION OF FISHING NETS 637 

Now the question arises whether for a non-empty set of equilibrium solutions there is 
always a solution satisfying the relation (1.4). The answer is negative again, as we can see 
by another example. 

We take three rods of length 2 fixed at the same points as above. If we assume 
E2 = £ 3 = mg(O,O-ll , then either the middle rod or the two others are pressed in 
equilibrium (Fig. 3). 

I a 

L 
FIG. 3. Line composed of three rods. 

Of course, this example has nothing to do with a real line. By refinement, taking, e.g., 
six rods of unit length, we obtain solutions satisfying the relation (1.4). 

Finally, let us show that the condition ( 1.4) does not suffice to remove the non­
uniqueness of solutions of Eqs. (1.1), (1.2), (1.3) and (1.5). Take two rods fixed as in Fig. 2 
above. For the force E2 = (0, y 22 , y 23)t each configuration is in equilibrium. 

It follows from the above considerations that we need further assumptions in order 
to construct a globally convergent algorithm for the solution of Eq. (2'). This will become 
more evident in the course of the next section. 

4. Single line under constant forces 

If the matrix A(F) is non-singular for all forces, then Eq. (2) may be transformed in 
fixed point form 

(4) F = A- 1(F)r = :rp{F) 

and hence a simple iteration can be applied. This method was exploited by several authors 
[I, 3], but its convergence is unsatisfactory. Other methods were tested in [2], but most 
of them fail to work for stiff rods or are too expensive. For the case of a single line a sho­
oting algorithm was tested in [2]. However, this algorithm required good initial guesses 
which usually are not available. The aim of this section is to provide suitable modifications 
and appropriate assumptions in order to make the convergence of a shooting algorithm 
for Eq. (2') global. 

First, let us reduce Eq. (2') to a three-dimensional system of equations. We denote 
F = F1 and obtain from the constant block of (2) 

(5) F1 = F- 2 Ei. 
j,;;,i 

Now the variable block of Eq. (2a) takes the form 

(6) h(F) = g 
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with 

(7) h(F) - '\"1 I, (F- ~ E ) 
- ~ IIF- .J: EJII .~ 1 

I j~i J~l 

and g = g,-gl. 

Let S1 =}; £1, i = 2, 3, ... n-1, then the domain Dom (h) is just the open set 
)~i 

D = R3
" {S2 , S3 , ••• S,._ t}. Further we see that the function h is smooth in D, the Ja­

cobian being 

(8) 

with Fi from Eq. (5). The application of Newton's method to Eq. (6) is thus connected 
with two main difficulties: 

a) the iteration may lead out of the domain D, 
b) the matrix H(F) may be singular (at least numerically). 
If one of the above situations occurs, then we want to modify Newton's method so 

that a new iterated in D with a smaller defect llh(F)-gW is found. As a preparation we 
prove now the following: 

LEMMA 1. The matrix H(F) is positive semi-definite for all FE D. It is singular iff F 
is parallel to all £ 1, i = 2, 3, . .. n-1. 

P r o o f. Let us consider the sum (8). In a suitable system of coordinates each of the 
terms has the form 

(

ex 0 0) 
0 ct 0 
0 0 0 

with 
I, 

rt = lfFJT > 0. 

Hence H(F) is a sum of positive semi-definite matrixes of rank 2, and it is singular if the 
kernels of all these matrices are ·equal. On the other hand, the kernel of the i-th term in 
Eq. (8) is spanned by F;. Hence H( F) is singular if all forces F1, i = I , 2, ... n - I, are 
parallel, and that case occurs due to Eq. (5) if Fll£2 11 £3 ... 11 £,._ 1 • As a consequence we 
see that H(F) is always regular if not all of the external forces are parallel. Further, if the 
defect llg-h(F)W takes a local minimum, then either F is a solution of Eq. (6) or 

(9) 

This relation indicates ill-posed situations, i.e. solution is either geometrically impossible 
or trivial. The first case occurs if the lines are too short, i.e. I: 11 < llgll or if the discre .. 

ljs= Yn J Ej,g.F 
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tization is too coarse so that there is no equilibrium without pressed rods. Trivial sol­
utions exist if the expression (9) is valid and there is a number k, l ~ k ~ n- l, such that 

L li =X li+ iig ii (Fig. 4). 
i~k i>k 

Note that a small disturbance of the parameters li of this problem leads to non-existence 
of the solution. 

The above motivates the following assumption. 
A. If all external forces are parallel, then g is linearly independent of them. 
Now we can formulate 
LEMMA 2. If the assumption A holds, then each local minimum point of the defect 

lig-h(F)W is a solution of Eq. (6). For the proof it suffices to observe that A violates 
the condition (9). The remark preceding the expression (9) yields the thesis. 

In order to avoid the difficulty a) mentioned above, let us now extend h to the whole R 3 • 

Unfortunately, there is no continuous extension. Thus we define 

n-1 

h(F, b) = 2; l,v, 
i=l 

with 

n-1 times 

Now we choose h(F) such that 

llh(F)-gil = infllh(F, b)-gil. 
B 

This is always possible since B is compact and h(F, · ) continuous. 
As a matter of course we note that 

(10) hlo = h 

and that llg-h(F)II 2 is lower semi-continuous. 
Let us consider now the behaviour of h for increasing modulus of the force F. Since 

R 3""D is bounded, we may restrict ourselves to h. It is geometrically obvious that 

n-1 

(II) lim inf ilh(F)-gW = ( 2;t,- llgllr =: c2
• 

M-+oo JI F IJ= M i=l 

Without proof we note that the following lemma 3 holds: 

Il-l 

LEMMA 3. If l -, /i > JJg JJ the set 
i=l 

is not empty. 
As a straightforward consequence of the lemmas we can formulate 
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THEOREM 1. If 1: 11 > llgll, then the function Ft-+llg-h(F) II 2 takes its minimum at 
some point F* E R3

• If further A is valid and F* belongs to D, then F* is a solution of Eq. (6). 
On the other hand it follows from our considerations that for F* e D there are two 

possibilities. Either llg-h(F*)II 2 = 0 and hence F* determines a solution of the condi­
tions (1)1-(1)5 which is not a solution of Eq. (2), or the conditions (l)c(l)s have no 
solution. 

Consequently, the following assumption is useful 
B. Ifllg-h(F*)II = minllg-h(F}II , then F* ED. 
Now we are ready for the formulation of our modification of Newton's metho~. We 

put ·· 

(12) I 
A.H(F)- 1 (g-h(F)) for 

L1(F, A.) = ). 
1 

(g-h(F)) else 
~-' . 

F,¥:0 F, 

IH(F)l > 0, Ff;D, 

with F, from Eq. (5). 
If we start near a solution F* E D with the iteration 

(13) 

then the definition (12) leads to Newton's method. Now our aim is to study the iteration 

(14) 

with a suitable choice of positive stepsizes A.". To this end we assume 1:11 > g, A, B and, 
additionally, 

The most crucial point is to show that L1 (F, A.) is a direction of descent for the defect 
llg-h(F)ll 2

• 

THEOREM 2. Let 1:1, > llgll and A, B ·as well as C be valid. Then, for each Fe R3 either 
F is a solution of Eq. ( 6) or there is a positive number E such that 0 < ). ~ E implies 

llh(F+L1(F, 2))-gll < I!Ji{F)-gll. 

P r o o f. a) Let FE D. Then it is sufficient to verify 

L1(F, A.)Vllg-h(F)ll 2 < 0 for g #= h(F). 

But 

{

-2A.IIg-h(F)II 2 if IH(F)l > 0, 

LJ(F, A.)Vllg-h(F)11
2 

= -2A. ~-~1-(g-h(F))'H(F)(g-h(F)) else. 
L.J IIFtll 

Due to assumption A the above product is indeed negative unless g = h(F). 
b) Let F ¢D. We put/' = {i e /, F, #= 0}, /" = {i e /: F1 = 0} and denote summation 

over I' by 1:', summation over /" by 1:". 
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Let further h0 (F) = E' -
11
i II Fi. Then, with respect to C, 

- , g-h0 (F) 
h(F) = ho(F)+E I, llg-ho(F) II 

and 

for each b of the form b = (g-h 0 (F))rx 2
• 

Denote 

g-ho(F) 
h1 = E"lt llg-ho(F)II 

Since L1(F, ).) has the above form (cf. Eq. (12)), we are through if 

LJ(F, .A.)VIIho(F)+ht-gll 2 < 0 for ho(F)+h1 =I= g. 

But this term equals 

with 

~' It ( F, F, ) 
H 0 = L..J IIFJI I- 1/FJf ® 1/FJf . 

Since H 0 has the same form as H, the proof is finished. 

641 

: ; ~ 

REMARK. The choice of the factor - · 1~- - . ·=: {J in Eq. (12) is not essential for the 
~.!!__ ' . 

Fli:O F, 
proof and seems to be unmotivated. But it turns out that {JI is a generalized inverse o 
H ifF ED and I H , = 0. Indeed, in this case we have 

{JIH = H{Jl = lrmH. 

5. Numerical results 

Now we want to give some numerical examples. The calculations were carried out on 
a HP 9845 B. We found it to be ineffective to check the assumptions of theorems I and 2 

before starting the algorithm. Thus we proceed with the descent algorithm for ~ I f/i(F)- g ll 2 

until numerical convergence is indicated. Then we examine whether a solution is found 
or which of the assumptions is violated. 

For an i11ustration we choose three representative configurations. In the first one all 
assumptions are fulfilled, in the second one we have llgll = Lit and in the last one there 
is no solution because of the too coarse discretization. We expect ·square convergence in 

6 Ar\:h. Mt:ch . Stos. nr 6/ 87 
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-2 

-4 

-6 

-8 n 

X 11 1 
0 7 1 

7fl 
+ 7 0.2 

FIG. 5. For all three examples are g = (1, 1, l)t, £ 1 = E = (0, -1, O)t and /1 =I (i = 1, 2, ... , n). 

the first case: and linear convergence else. In Fig. 5 we plotted log ~ lfh(F)-gll 2 

via the number of steps. Those curves affirm our expectation. The initial guess was in all 
examples F 0 = (0, 0, O)t. This point doesn't belong to the convergence region of Newton's 
method, it doesn't belong even to Dom (h). The different behaviour of the first curve 
outside that region and inside of it is evident. 

6. Outlook 

Our present interest is focussed on applications of the algorithm for a single line as 
a tool for the solution of more complicated net problems. As an example let us briefly 
discuss the case of a rectangular net. We assume 

I = { (p, q) p = 1 , ... n,, q = 1 , ... nc} 

p 
Ypq 

FIG. 6. 

with n, the number of rows and nc the number of columns (Fig. 6). Let further 

Uyp,q = {yp,q: lfi-pl+lq-ql ~ 1}. 

Boundary conditions are given on 

/ 0 := {{p, q)p = 1 vp = n, q = 1 vq = nc}. 
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For the above net, Eqs. (l)c(l)5 reduce to nr+nc single line problems coupled by unknown 
nodal interactions. Let us denote by Np,q the nodal force in the intersection of the p-th 
row and the q-th column, acting on the column. We can calculate the position y~,q solving 

the problem (6) for the q-th column with the external forces ~ E;,q+N;,q (p = 2, 3, ... 

nr-1). Analogously, we can calculate Y~.q solving Eq. (6) for the p-th row with the external 

forces -} Ep,q-Np,q_ (q = 2, 3, ... nc-1). 

Finally, our system of equations takes the form 

(15) 

with 

L1y(N) = 0 

L1ypq: = Y~.q-Y~.q· 

Its dimension is indeed just 3 times the number of free nodes, while it usually equals 3 
times the number of rods. Moreover, the assignment N t--+.dy turns out to possess similar 
properties as F 1--+ h, stated in the lemmas of Sect 4. So its Jacobian is symmetric and po­
sitive semi-definite with respect to an appropriate inner product. We hope to give a dis­
cussion of an effective procedure for the solution of Eq. (15) in a forthcoming paper. 

Last but not least, it should be mentioned that the considerations of this: paper concerning 
stiff rods may be applied to elastic ones as well. If there is at least one non-stiff rod, then 
the matrix H will be regular in each point of D, hence our results may be strengthened 
in the elastic case. 
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