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Some existence results in dynamical thermoelasticity
Part II. Linear case

A. CHRZESZCZYK (KIELCE)

TrIs PAPER is a continuation of the paper [1] concerning the existence of solutions in nonlinea,
thermoelastodynamics and is devoted to the investigation of corresponding linear equations
The proofs are similar to those in [2] and therefore will be only sketched.

Praca dotyczy istnienia, jednoznacznosci oraz ciagtej zaleznosci rozwiazan od danych dla pew-
nego liniowego ukladu réwnan obejmujacego w szczegoélnosci rownania klasycznej dynamiczne-
termosprezystosci. Przyjete zalozenia dotyczace gtadkosci wspolczynnikéw i danych sa na tyle
stabe, ze wyniki pracy mogty by¢ zastosowane w czg¢éci pierwszej (patrz [1]) do dowodu istnienia
rozwiazan dla nieliniowej dynamicznej termosprgzystosci.

PaGoTa nocesiieHa CyUIeCTBOBAHHIO, €IUHCTBEHHOCTH M HEIPEPBHIBHON 3aBHCHMOCTH OT JaH-
HBIX JUIST HEKOTOpOH JTMHEHHOW CHCTEMBI YPaBHEHMil, OXBATHIBAIOI[MX B YACTHOCTH KJIac-
CUYECKUE YPAaBHCHUA [IUHAMHYECKOM TCPMOYTIPYToCTH. IIpennonoiKeHHs: TMagKoCTH Kodd-
(HMINEHTOB M JAHHBIX HA CTOJIBKO CJIa0ble, UTO PE3yJbTaThi paboThl MOriM 6bITH NPHMEHEHbI
B mepBoit yacTi (cm. [1]) B MoKa3aTesIbCTBE CYUIECTBOBaHMA pelIeHnit NIs HeTuHeHoH Iu-
HaMMYeCKOi TepMOVIPYTrOCTH.

1. Formulation of the problem

IN OPPOSITION to the nonlinear case, the literature concerning the well-posedness of ini-
tial boundary value problems of linear thermoelastodynamics is relatively extensive, see
for example [3]-[6].

It seems, however, that the existing papers do not contain the results sufficiently strong
to be applicable in the nonlinear case(*). Therefore we have decided to write a separate
paper devoted to the investigation of the linear equations used in [1]. These linear equations
are slightly more general than the classical equations of the linear thermoelasticity and
contain the last ones as a special case.

To be more precise, in the present paper we investigate the system of linear operator
equations of the form

(1.1) 1+A{x,0} =1,
(1.2) bi+B{y,0} =g in &x]0,T],

(*) In particular, in the linear theory the cosfficients of equations are smooth functions of the position
of the point while in the nonlinear case they are functions of solutions and therefore depend additionally
on the time and belong to appropriate Sobolev spaces.
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where
(1.3) A{x; e}= A1x+A26,
(1.4) B{y,0}= B,0+B,x+Bs}

and 2 is a given regular domain in R3,] 0, T[is a finite interval of R!, ¥, 6 are unknown
functions defined on % x]0, T [with values in R3 and R! respectively, ¥, 6 denote corres-
ponding derivatives with respect to £ €]0, T, f, g are given functions defined on # x 0,
T[ with values in R® and R?, respectively.

The operators A;, i = 1, 2, By, i = 1, 2, 3, the coefficient b and the functions f, g are
equal to the operators A4;(%, 0),i=1,2, Bi(%, 6), i = 1, 2, 3, the coefficient b(x, 0) and
the functions f(%, 0), g(%, 0) of the paper [1], respectively, and have the properties de-
scribed in Lemma 1 and Lemma 2 of [1].

To make the paper accessible to readers who are not interested in the nonlinear case,
we show that the system (1.1), (1.2) obeys the classical equations for a linear nonhomo-
geneous thermoelastic body. To this end one has to use the relation 4(X, t) = X+u(X, t)
where ¥ (X, t) is the position of the point X € & at the time ¢ €] 0, T and u(X, ¢) is the
displacement vector, and next to put

(1.5) Ay = %divC[E], A0 = —;—div(B—BO)M, fo= i b,

B,0 = div(KV0), B,y =0, Byy=0,M-E,

@) b=c, g=r,

where 6 = 0(X, t) the temperature function, ¢ = o(X) > 0 — the density, £ = %(Vu+

VuT) — the infinitesimal strain tensor, C = C(X)— the elasticity tensor, M = M(X)—
the stress-temperature tensor, 6, — the reference temperature, ¢ = ¢(X) > 0 — the spe-
cific heat, K = K(X)— the conductivity tensor, b = b(X, t) — the body force, r = r(X, t)—
the heat supply. As a consequence we obtain the known equations, see [7], p. 310,

1.7 ol = div(C[E]+(6—00) M) +b,
(1.8) cf = div(KV0)+ 0o M- E+r.
The reader interested in Eqs. (1.7) and (1.8) only may read the present paper independently
of [1].
In a formulation of the main results of this paper we shall use the notations concerning

the function spaces introduced in [1]. For easy reference we record briefly these notations
First of all let us recall that in [1] we have put

H, = W"2(#,R%, H,=W"%#,R"), yeR,

where the right hand sides are Sobolev spaces of functions defined on £ and with values
in R* and R!, respectively. The norm of these spaces is denoted by || - [|,. The spaces V,
V are defined as follows:

V={yeH:x=0o0nd#}, V={0ecH:0=0on iR}

We have also introduced the notations X, = H,nV, Y, = H,nV.
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Moreover, the following spaces of operators are used:

m-—1 m—2
g: = m g(zj+lzj)s Ly = m "g(zj+29zj)s
Jj=-1 j=-1
(1.9) o

L=MNLZ,Z), k=3,...m, m3>4,
i=0

where Z; = H; or Z; = H; and #(Z*, Z?) denotes the space of bounded linear operators
from the Banach space Z* to the Banach space Z2.

Finally the usual notations concerning spaces of functions defined on [0, T] with
values in a Banach space Z are used as for example L?([0, T], Z), W*?([0, T], Z),
CY[0,T),2),1 < p< +00,k=0,1,2,... (see [8], Chapt, I Sect. 3). If  is an element

of W*r([0, T], Z) or C¥([0, T}, Z), then 1;)(‘)denotes the i-th derivative of y with respect
to t €[0, T].

Now we are ready to formulate precise assumptions concerning the operators A;,
i=1,2, B;,i =1, 2,3 and other data.

First of all let us assume that an integer m, m > 4, is given and # is a bounded do-
main of class C™,

Let the following inclusions be satisfied :

m—1

A, Ekq Wk'w([or T], Lx+1),

m-2

Bli B2 € pl Wk.oo([o, TL gk-i—l)s

(m=1)

B, e Lz([o’ 1), 2(Hy-y, H.)Nn¥(H,, Hp)),
(1.10) -1

Bz € Lz ([0: T], g(Hm: HO)):

m—1

Ay, Bye () WE=([0, T], £,
k=1
m—1
b ekr)) Wk,w([o, T]; Hm—l—k)'
Also let the operators 4, and B, satisfy the following conditions:
(1.11) Foranyk=0,1,...,m—2 and any y,0 the inclusions x € X,,
Al X € Hk (r‘esp. 0e Yk, BJ_ 0e Hk) impIy X € Xk+2 (YCSp. 0e Yk+2)'

Furthermore assume that there exist positive constants u;, #;, 4;, i =1, 2, ¢o, such
that

(1.12) Hallkez < wa(lzllc+ 1Ay 210 for all  x € Xiya,
' 101cr2 < w20l +1(B,0lx)  for all 0 € Yiy,,
(1.13) Ay, o +llxlld = Adlxl13 for all  yelX,

(B8, 65 +x,]1011 = 4,[10117 for all OeY,,
(1.14) bzc, on Ax[0,T).
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For the general equations (1.1), (1.2) the conditions (1.10)-(1.14) are motivated by
Lemma 1 and Lemma 2 of the paper [1].

In the special case of Eqs. (1.7), (1.8) where the operators 4,, 4,, By, B; and the
coefficient b are defined in the relations (1.5), (1.6) and are time-independent, the rela-
tions (1.10) reduce to

A,,B,e¥,, A,,Bie¥,,

(1.15) Be B ..

To satisfy the relations (1.15) it is sufficient to assume that the functions ¢, ¢ and the com-
ponents of the tensors C, M, K belong to the space H,..,. The relations (1.11)-(1.14) are
in this case the consequences of the strong ellipticity of the tensors C, K and the posi-
tivity of the functions ¢, p.

As in [1] the right hand sides of Egs. (1.1), (1.2) are assumed to satisfy the conditions

m-2 (m-1)
fe ﬂ CX([0, T], Hp-i- 2), f e L*([0, T1, Ho),

(1.16)

m—2

(m-1)
g Ekr_:l] Ck([o, T]’ Hm—k—Z)’ g € LZ([O, T]: H—l)'

Equations (1.1), (1.2) will be considered together with the initial conditions

0 1 0
1.17) 20) =%, 0=y 060=6 on A,
where the right hand sides are given functions satisfying the relations
0 1 0
(1.18) xe€H,, xeH,.,, 0eH,
and with the boundary conditions
(1.19) x=0, 6=0 on d#x[0,T].
To satisfy the compatibility conditions at t = 0, we define for k =0, 1, ...,m-2
k
k+2 [(5) K\ ® k—i () k—i

(1.20) = To- ()oY + L0,

i=0

k k
(1.21) b0) 6 = ?(0)-2( )b(O) '3 Z( )[B](O) 0+ 8.0 7 +8:0) 7 1@
i=1 l
and assume that

k
€Xnr, k=2,..,m,
(1.22) A=k

k
beY, . k=1,..,m—1.

(®) In the case of the time-independent operators defined in the relations (1.5), (1.6) the relations
(1.20), (1.21) simplify in an obvious manner.
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Finally we introduce the auxiliary expressions
(1.23) m ={M1,M2}, ={ny, %}, A= {A, A},

(1.24) L° = ||4,(0)||&, +||16(0)|[m-g,» €€10, = [— sufficiently small,

m-1

(125 L= esssup{uA O+ D) V‘ 1Ayl 0+ (D)L, + 2 1402,

k
m—Z m=2

+1B,(Dlle,+ HB;(t)H.?m+HBz(t)Hzﬁ X [IBa(t)I\zk+1+llBs(t)H.%
k:l k:l

" ® "W m-1)
+ DB Ollet Y 6@ mores-atll b (D)o}
k=1 k=0
(m—1) 1/2 T (m-1) . 1/2
+ f 1By Ol modt) +([ 1By ()| ztm, o)
0

¢ D 1/2
+ (f Il Bz (t)ffzf(n,,,,yo)dt) ;

m—2

(126) N = Zlunm o+ max SOzt f 1F @aar

k_

m—1

+ 5‘ 16113+ max 2 18 (13- k+f g )l de.

Now we formulate our main result:

THEOREM. Let the assumptions (1.10)-(1.14), (1.16), (1.18), (1.22) be satisfied. Then
Sor any positive number T the problem (1.1), (1.2), (1.17), (1.19) has a unique solution
{x, 0} with the properties

(1.27) ¥ ekr]oc"([O, T], Hpu-i)»
m-2

(1L28) e () CH0, T], Hyop), 8 € COI0, T], H)nLA(10, T1, ).
k=0

Furthermore, the following estimate holds:

m—2

(1.29) es§gn;;]>(2 2O+ S’HG(:)H,.. 170 017 )+fn 6 (0)l3dr
te[o, i

where

Ci = éi(007 ”’ %, z: LO) for i= 1523 63 = C3(C’0, H, %, As Los L)

and the functions él , 6'2, CA73 depend continuously on their arguments.
The proof of this theorem will be divided into several steps.
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2. Regularization

It is well known that the operators 4;,i = 1, 2, B;, i = 1, 2, 3 can be extended to the
interval [~ T, 2T] in a smooth manner, see [9] Chapt. 1, Sect. 2.2 and therefore the se-

quences
1 Ap(t) = (0¥ 4)(), i=1,2

@1 Bu() = @¥B)®), i=1,2,3 n=1,2,..

can be constructed, where g, is a usual sequence of regularizing kernels and the symbol -
denotes convolution, i.e.

e e}

(en¥9)(t) = f on(t—0)y(o)do, 1€[0,T], y= A, or B,

The operators A;,, i = 1, 2, Bi,, i = 1, 2, 3 have the following regularity properties:
Alm Blm BZn € Cm([O: ﬂ’ 32)3

2) Aoy Bsn € C™([0, T], &), n=1,2, ..

and the following convergence properties if n - +00:

m=1
Ajp—> 4, in kq wr=(0, T], &),

m-2
Bln*Bls B2n'_)B2 in m Wk.oc([o’ le‘gk+l):
k=1
m-1 (=1
(2~3) Bln = Bl m Lz([()’ T]: "gg(Hm—l H H_l)ﬁ.(f(]‘[,”, HO))-

m-n  m-1)
B, = B, in  L*([0, 77, £(H,,, Ho)),

m—1

A2n =¥ Ala B3n _*;'BJ in m Wk.oc([o’ T]: gk)
k=1

Since the construction does not generally preserve compatibility conditions (1.22),
2 m 1 m-1

we approximate y, ..., %, 6, ..., 0, f, g in such a way that the compatibility holds true.
To this end we put

m m m—1 m—1 m—1 m—1
(2.4) =2  da=2 O =0,
and note that for sufficiently large » > 0 and for %, %,, n > r the operators
(2.5 A;n(0)+ 2, — A2,(0) (B1(0) + %2 )~ B2, (0)
and
(2.6) B1,(0)+ 2

are invertible from X, , to X, and from Y., to Y,, respectively, if £k =0, 1, ..., m—2.
kK K
Thus, a recursive determination of y,, 0,, k = 0,1, ..., m—2 from the equations
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k+2 k
(27) Zn e [Aln(o) + T AZII(O) (B]n(o) + H;)_len(O)]x,,

k+1 k+1 k+1 k
+ A5,(0) (Bln(0)+x2)-l(_b(0) 0, —B3,(0) x +b(0) 6 +B,(0)6
k K k+1 k+2 k k k
+#,0+B,(0)x+B3(0) x )= x +A4©) {1, 0} +x 1,
k+1 k k k+1 k+1 k kK k
(28) b(O)(On +Bjn(0)+x2)6n +B2n(O)Xn+BSA(0) An = b(O) 0 +B(O) {Z’ 6}+M26
is possible. Here
k k k k
and
k k Tk k k+1
B(0){x, 0} = B,(0)6+B,(0) x+ B,(0) x .

It 1s not difficult to check that the convergence properties (2.3) imply

k k

=% in X,.., k=0,1,...,m-2,
k

6,—-6 in Y,, n- oo,

(2.9)

Now let us rewrite the formulas (2.7), (2.8) in the abbreviate form:

k+2 k k k k+2 k k k
In +An©) {n, O} +21 20 = 2 +AQO) {3, 0} +2, %,
(2.10) .

k+1 k Kk K k+1 kK &
b(0) 6, + B,(0) {xn, 0,3} +%,0, = B(0) O +B(0){x, 0}+x,6,

where
k k k k
A,,(O) {xn: Bn} = Aln(o)xn+A2n(0)any
kK k k k k+1
B,(0) {xrn 6,,} = B,(0)6, +B2n(0)x'l +B3n(0) Xn
and let us define the sequences

0o 0
PR = %,(x—xn)s

@.11) e
r?= 7‘2(6"6:1)9

k .
@12 g = xn)+2( )[A,(O){xl, 0} -AO1{7, 0]

i=1

k—i k—i Q)] k—i k-1

k
q,’.‘=uz(0—6n)+2( )[B(O){x.., 0,3—BO0){ %, 0]

k

+2( )(3(0)(5’ P

5 Arch. Mech. Stos. nr 6/87
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where
k—i k i ()] (i)
k= 1’2"“’m_2, n(O){Zm nJ = Aln(0)1n+A2n(o)6

and the symbols

0 k=i k-—r () k-i k-i @) k=i k—i

A(O){x 0} Bu{xas0}, BO{x, 0}
are defined analogously.

From the properties (2.3) and (2.9) it follows that

k50 in X,x, k=0,1,..,m=-2,

2.13) gk>0 in Y, a n-— .

By the trace theorem, see [9], Chapt. I, Sect. 3.2, there exist sequences {p,},{g.}, n > r
such that

m=1 m—1

pn € DO W"’z([os T], Hm—-l—k)! qn ekC)) Wk‘z([or T]’ [{m—l-k)9

(k) N k) i
p,,(()) = Pn, qn(O) = qn,
m—1

Pn ™ 0 il'l n Wk.?.([(), T]v Hm—l—k)’

k=0

(2.14)

m—1
qn — 0 in m Wk’z([oz T']! Hm—l—k)a as n = co.
k=0

Therefore if we define f,, g, by

Jo = S+Dn,
(2.15) p
&n = 1 Gn,
then it is not difficult to prove that
. m—2
f;l_’f in ﬂ Ck([o, T]sHm—Z—k)o
(2.16) k=0
(m—1) {m-1) .
fo = f in L*[0,T],Hy), asn- oo,
m=2
g—g in [ CX0, T], Huosoi),
(2.17) k=0

(m-1) (m-1) i
g — & in L*[0,T],H.,), asn— o

and the compatibility conditions

k
L+2 (k) k\ & - k-
= f2(0)— ( ) u(O){zn, 6 }eX.,. P

=0

.
i k\G)  k+1-i
@18) 506, =20~ Z( )B(O){"xf,"e - (oo e v,

i=1
n>r, k=0,1,..,m-2, hold true.
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3. Existence of solutions for the regularized problem

In the present section we shall show that if the conditions (1.10) are replaced by the
stronger conditions
Al’ BL, BZ € Cm([os T]: gz)s

A,, B3 € C™([0, T], £,),

then the existence of solutions of the problem (1.1), (1.2), (1.17), (1.19) can be proved
by use of the Faedo-Galerkin method. In a consequence we shall prove that the regula-
rized problem from Sect. 2 has at least one solution.

Let us differentiate Eqs. (1. l), (1.2) m—1 times with respect to ¢ to obtain

m+1) on—1) m—1yo (m 1-i) m—1 (.)(m 1 i (m—1)
G2 7 A7 =72 - )4 2 o =

i=1

m—1

() (m-1) m—1 (x)(m i) () (m=1-=i)
b +B, 0 = —2{ ) +8, 0 )

m—1\ @ m-1=n @ m=-0  (n=1)
—Z ; (B x +B: )+ g =G.
i=0

We shall show the existence of a weak solution of the problem (3.2) with the initial
conditions

3.1

0 . 1 (m)
1© =2, 20 =g, .., x(O) = x,

60)=0, H0)—6,..., 60 ="6
Let us note that the compatibility conditions (1.22) imply that a solution of the problem
(3.2), (3.3) is also a solution of Egs. (l.1), (1.2), (1.17). The boundary conditions (1.19)
will be accounted for by appropriate choice of the function spaces used in the proof.
As usual in the Faedo-Galerkin method let {£,}*, be a base of V and {{,}7,
a base of V. Let V, and V, be the subspaces of V and V spanned by {£,, ..., ¢&,} and

L1y -rs &y )y TEspectively. We seek a Faedo-Galerkin approximate solution in the form

3.3)

v
-

j -
Ky = AE (P’:“EJ'“ 6” = Z WI'[A(:;H v = 1,2, e
=1 n=1
where ¢,,, v,, are real-valued functions defined on [0, T] such that the ordinary differen-
tial equations
(m+1)
< r» ; >+<A1 x, JED = (F,ED,

m 1)

<b6vs ‘:,u>+<Bl v o p>_<Gs S;A)’ n = 1,2,...,7,
with the initial conditions

(3.4)

0 (m) m
00 = 25 -..r 200) = 2.,
(m-1) -l

(3.5) 5
6,0) =6,,..., 6, (0)= 6

5%
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0 m—1 0 m m ~1

V] m
are satisfied, where y,, ..., %,,0,, ..., 6, are the projections of . ...,y and 0
on V, and V,, respectively.
It is easy to check that the following a priori equality for the approximate solution
{x,,0,} holds:

(m=1) (m-—=1) (m 1) (m=1)

G.6) I pIB+1628, 13+¢d; 7 » x,>+f<Bi s 0, Ydo = |[%I3

i3 (m~-1) (m-1) (n 1) (m-1)
FIIB20) 0, 1B +(A,(0) 70 x~>+f<A: Lo 1 >da+f<b . 8, ydo

(m-1) m—1 : (m-1) d (n-1)
+2F, 1, y~2AFO), 7, >+2[(F, 7, >do+2 [<G, 6, ydo
0 0
which, according to the relations (3.1) and (1.12)-(1.14) leads to

(m) ” (m=1) " (m=-1) 5 (m-1) 5
G URIE+I8 13+ 7 1+ (176, \ide
0
o (m-1) o)
- - 'm m—
< &+ & [l 1406, 1o S0 fu 0, I1ido

0

with the arbitrary positive number 8 and some constants 5, . 62, C,. Putting Cio< 1
and using the Gronwall’s inequality, we get

(3.8) +16, 13+1 % 13 +fn b, I3do < G,

with constant C, > 0.
The estimate (3.8) enables us to extract two subsequences of the sequences {y,}&,
and {0,};2, weakly convergent in the space

Wm.Z([O’ I‘L HO)nWm-'l'z([Os ﬂs Hl) and Wm-i‘z([()’ I'.L HI)’
respectively. By a standard argument, the limits ¥ and 6 of the two subsequences form
a weak solution of the problem (3.2), (3.3) and therefore the solution of the relations

(1.1), (1.2), (1.17).
Integrating Eqs. (3.2) with respect to ¢ and using the compatibility conditions (1.22),

we obtain the equalities

® *+2) k (:) *- k B k- ®
All=_l—‘ ( 1.7(" -A20+f,
39 “\ [k D=ty 1 k\ (k—:) K\ O «=-0 & G+1-d (B
5= ()89 ,) Zi[Bzx +By 7 1+%,
i=0 i= i=0
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Similarly as in [2], from Eq. (3.9) and the elliptic regularity properties of the operators
A,, B, it follows that the solution satisfies the additional smoothness relations

m—1

(3.10) 1M WE([0,T), X,-). 0Oe () WHE([0, T, Y,.,).
k=0 k=0

4. Regularity and uniqueness of solutions of the non-regularized problem

Now let us assume that {y.0} is a solution of the problem (1.1), (1.2), (1.17), (1.19)
with the properties (3.10) and that the hypotheses (1.10)-(1.14), (1.16), (1.18), (1.22) are
satisfied (3).

From the Sobolev embedding theorem and from the properties (3.10) it follows that

m—1

x€ M Cm =Ko, T, X.),
k=0

m=—1

Be C" X0, T, Y)).
k=1

(4.1)

To prove that the solution {y,0} possesses the regularity properties (1.27), (1.28)
(m—-1) (m-1)
we use Egs. (3.2), which we regard as evolution equations for y and 0 of order two

or one, respectively, with the initial conditions

(m=—1) m=—1 (m) m (m-1) m—1
(4.2) 2 @O= 2, xWO=yg, 6 ©0=296.
The right hand sides F and G of Eqgs. (3.2) satisfy the inclusions
(43) FELZ([O': ﬂ’HO)a GELZ([()’ T], H—1)

and therefore the known results concerning evolution equations (see [9], Chapt. 3, Sect.
4.4, 8.4) can be used to obtain
(m—1

(m) )
1 €C[0, T], X,), e C°([0, T], X)),
(4.4) 4 ([0, 7], Xo) X ([0, T], X,)

(m—1)
6 € CO([Oy I‘]’ YO)-

Moreover the following energy identity is valid:

m 12(:“—1)‘5 (m—1) (m-1) ! (m-1) (@m-1)
@.5)  lgl3+06"2 0 134+<A x . z >+ [<B 0, 0 Ydo
o

m ni—1 m—=1 m=1 f L (m=1) (m-1)
= |3 +116"2(0) 0 1[3+<4:0) x , x >+ [{A:i 1 » x »>do

b
: § (m—1) ! (m) 4 (m—1)
+ [ 167270 |3do+2 [(F, x>do+2 [<G, 0 Ydo.
0 0 0

(® In the present and next section we do not assume that the relation (3.1) holds.
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Starting from the relations (4.4), using the elliptic regularity properties (1.11) of the oper-
ators A; and B,, Egs. (3.9) and proceeding inductively as in [2] we can show that the
properties (1.27), (1.28) hold true.

It is clear that a solution with the properties (1.27) and (1.28) is unique.

5. A priori estimate for the non-regularized problem

From the identity (4.5) we obtain the estimate

m (m—-1) (m-1) ~ (m=1)
(5.1) B {Tz@IE+1 6 @I+ 2z IF+ fl! 6 (o)llido}
r€[0,¢ b

t m
— _ L2 1 1 S
S OGN+ GIN+GIL+ 5o+ 55+ 55 Z\ix(a)llm_k
1 2 3 h =0
m—2

m—1
+ D 1810 @i+ S, f 178 @) o

k=0

2 : (m—1)
+ %2— Cs f 1021 B, (0)l|Z,, Hq)d0'+—- Cs f”x(a)“m[l Bz (G)H.‘f(H... Hydo,
o

where 8;, i = 1, 2, 3 are arbitrary positive numbers and the constants C,i=12..,6
may depend on ¢,, %, u, 4, L°. Using the relations (3.9) and (1.12) we also get

m m=2 t
*) *) (m=1) (m=1) an
(52) esssup( D, 12 (Dlfa-e+ X N0 @Iaa+10 @IE)+ [1170 (@)Fdo <CrX,
el =0 k=0 0
where C, is a constant depending on ¢, %, u, L% A and X is equal to the right hand side

of the estimate (5.1).
If the numbers d;, i = 1, 2, 3 are sufficiently small, then the following inequalities

0,C,C,< 1,

B s z (m—1)
8,CsCy [ 1 B, (0|20t mado < 1,
(5.3) 0

T
I (m—1)
35C6C [ 1| By (0)llttn, oo < 1
0

hold true, and we obtain

M i m—1 I i-1)
G4 DUt S 1001+1"0 @+ 176 @2 do
k=0 k=0 0
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(5.4)
feont ) esssup(an(r)um ,‘+2||0(r)nm 0 (r)n)+f| 0" (@)llido

re[0,1]

- = £a W "2 % (m=1)
< CN+C,LN+C, f ( ZHI(U)H%_H‘ 2”9(0)1]3._:‘+|I b (0)lI3)de,

where the constants C i» i =1,2, 3 depend on ¢y, »,u, 4, L° and C depends additionally
on L.

Finally, using the Gronwall’s inequality we arrive at the estimates

Z IOt Z 1 0)13_+11"8 (©)I13 < (C,N+CaLN) exp(TCy),
(5.5)

f "0 "(@)3do < (C,N+C, LN) (14 Ca Texp(TCy)),
0

which imply the estimate (1.29).

6. Proof of the main theorem

Let us consider a sequence of regularized problems from Sect. 2, i.e. the problems of
finding solutions of the system

%H+Aﬂ{xil5 6"} =j:l7
(6.1) B0t By (farla) = 8u» M > 1,

0 1 1]
xﬁ(o) = ZPH in(o) = xrn 9(0) — Bn’
where r is sufficiently large. According to Sect. 3, the problem (6.1) possesses at least one
solution. From Sect. 4 it follows that the problem has only one solution.

Let {x.,0,} n > r be the solution of the system (6.1). By virtue of the construction
0

0o 1
of Ay, By ¥ns Xn» On, fus &n and the a priori estimate (1.29) proved in Section 5 the se-
quence {y,, 0,}.>, is bounded in the space

m m—1

ﬂ Wk.Z([O, T]aXm—k)X n Wk.Z([O, T]a Ym—k)
k=0 k=0

and therefore we can extract a subsequence which converges weakly in this space to some
{x,0}. Standard arguments show that {y, 0} is a solution of Egs. (1.1), (1.2), (1.17),
(1.19). The additional regularity (1.27), (1.28) follows from Sect. 4. The proof is complete.
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