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Some existence results in dynamical thermoelasticity
Part 1. Nonlinear case

A. CHRZESZCZYK (KIELCE)

THE PURPOSE oOf this paper is to show that classical energy methods can be used in the proof
of existence solutions in nonlinear dynamical thermoelasticity. We show that a solution of the
theory exists for sufficiently small times but is global in the space and belongs to Sobolev spaces
of orders sufficiently large to be smooth and to satisfy the equations, boundary and initial condi-
tions in the classical sense. Similar methods for nonlinear elastodynamics were used in [1].

W pracy zastosowano klasyczne metody energetyczne oraz twierdzenie Banacha o punkcie
stalym do dowodu istnienia rozwigzan dla nieliniowej dynamicznej termosprezystosci. Udo-
wodniono istnienie rozwigzan lokalnych w czasie, globalnych przestrzennie i nalezacych do
przestrzeni Sobolewa rzedéw dostatecznie wysokich, aby réwnania oraz warunki brzegowe
i poczatkowe spetnione byly w klasycznym sensie.

B paGoTe nmpumeHeHBI KIIaCCHUECKHE dHEpreTHueciine MeTofAbl M Teopema baHaxa o HemoaBH-
KHOH TOUKE IJIA AOKa3aTeNIbCTBA CYIIECTBOBAaHHUS pEIUIeHWi B HeIHMHEHHOH IMHAMHUYECKOH
tepmoynpyroctu. IlonyueHnsle pemreHHs SABJIAIOTCA JIOKAIBHBIMH BO BPEMEHHM, rio0anbHbI-
MH B IIDOCTPaHCTBE H INPHHAIIEXKAT npocTpaHcTBam CobosieBa JOCTaTOYHO BBICOKHX NOPAL-~
KOB, UTOOB! YpaBHEHWsd, IPaHHYHbIC ¥ HAYAIbHbIE YCIOBHA OBUIM BBIMOJIHEHBLI B HJIACCH-
YECKOM CMbICIIe.

1. Introduction

LET A HOMOGENEOQUS thermoelastic body #Z be identified with the bounded domain of
space it occupies in a fixed reference configuration » and let 0, T denote the finite interval
of time. Let y,(X, ) denote the position of the point X € # at the time ¢t €]0, T [. If we
use the standard notations (see [2], Chapt. XV) T, — the Piola stress tensor, o, — the
mass density, b — the body force, 7 — the entropy, @ — the temperature, 4, — the heat
flux, s — the heat supply, » — the Helmholtz free energy (all the quantities are considered
with respect to the reference configuration), then the equations of thermoelasticity can be

written in the following form (see [2], form. VIL 2-6, XV. 2-10, XV. 3-15, XV. 3-18)

(1.1) 0.%. = DivT,+o,b,
. ] il‘l gx]os T[’
(1.2) 67y = — Divh,+s,
= p(Vy,, 0), = -9 v ;ue s
- v = p(Vy,, 0) n o9(V2, 6)

T, = 0.0v,9(V., 9, h, =y, 0,V0).

To obtain Egs. (1.1) and (1.2) in Cartesian coordinates we put for arbitrary «, f, p,

q=123,
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A:ﬁ = anﬂanuwﬁ A; = aBana':”:

bo= —033y,  BY = agh,,
(1.4) | ‘I"
B* = *aaohxas BY = -y OFqaltu>
= —00p,, ey,
where
B, = S, B, =80
and

Zs={1up}p=1.2.3, hn={hmz}p=1,2.3, X={Xu}a.‘-=],2.3'
In consequence the system (1.1), (1.2) takes the form
(1.5) Fup = AP Yrgap+A0a+b,, p=1,2,3,
(1.6) bo® = B8 5+ B0, + B 1y apt Blingt S,

where b = {b,},.1,2,3; moreover the summation over repeated indices «, f,¢g =1,2,3
is implied and the notations @, = Jy«@, @,.3 = OxpIx=@ are used. Let us note that the
coefficients A%, A%, by, B: depend on Vy,, 8 only and B*, B%, B3 depend additionally on
ve.

In the present paper we consider Eqs. (1.5) and (1.6) together with the initial condi-
tions

0 1 0
(1.7) (0) = 2, ,:(,,(0) =Y 00)=06 on %
and the boundary conditions
(1.8) Ix = Ino» 0=0, on d#x[0,T].

Here and in the sequel the dependence of all functions on X € # is consequently omitted
but the dependence on ¢ € [0, T] is sometimes explicitly written, as for example in the

conditions (1.7) where ¢t = 0.
. 0 1 0 2 m 1 m—1
Having y,, %., 0, we can define the new symbols x., ..., %, 0,..., 0, m>4

using the recursive formulas

k+2 £ k —i 51, K\  k-i *
Xup = 2(1) Pq(O)Zuq ot i)A:(O)e-m+bP(0)’ p=123,

i=0 i=0

k k
+ k —-i (i) —i
(1.9) bo(O)kGl= Z( )B“ﬂ(O)Sap-i- ( )B“(O)O + } ( )B“ (O)qu op
i=0 =0
k

@) k—=i+l k\ ) k-i+1
+2( )B<0)x,,;+s(0)~ Z(i)bo(m 8, k=0,.,m=2.

i=1
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0]
In the formulas (1.9) the symbol A% (0) denotes the i-th time derivative of the function

t - A%(Vy.(1),0(2)) taken at ¢ = 0 and similar abbreviations are used for other symbols
of this type.

m 1 m”

1—1
The functions x,, ..., %, 0, ..., 8 will play an important role in a formulation of
our main theorem. Before we give this formulation we recall some notations concerning
function spaces.

2. Function spaces

In general, we use the notations of the paper [1] but some modifications are necessary.
If ¥ is any real number, then the symbols H, = W"*(#, R®) and H, = W"*(%, R")
denote the Sobolev spaces of functions with values in R® and R*, respectively. In both
cases the corresponding norm will be denoted by || ||,. As usual the spaces V =
= WHA(#, R®) and V = W§2(#, R*) consist of functions vanishing on the boundary d#
of #. In the paper we shall frequently use the abbreviations X, = H,nV, Y,= H,nV.

For the Banach spaces Z', Z2 the symbol £(Z!, Z2) will denote the space of bounded
linear opaerators from Z! to Z2. Moreover, we set

m—1 m=2

&z = .ml-‘?(zjna Zj)’ Z, = _nl"‘(e(Zj+29 Zj)a
j=- j=-
m—k

$k= mg(zj+k9zj)5 k=3,..,m, mz 4,
i=0

where Z; = H;or Z; = H;, j = —1,0, ..., m. The spaces %,, ..., %, are equipped with
standard operator norms denoted by || - || ,.

For T>0,1<p< o0, k=0,1,... and for the Banach space Z we use the symbol
W*P([0, T], Z) to denote the Sobolev spaces of functions defined on [0, T] and with
values in Z (see [3], Chapt. I, Sect. 1.3). If k = 0, we obtain the space L?([0, T], Z) of
Z-valued functions strongly measurable and integrable over [0, T'] with the p-th power
for 1 £ p < o and essentially bounded on [0, T] if p = o0. The symbol C*([0, T],Z)
denotes the space of k-times continuously differentiable functions from [0, 7] to Z.

Finally, for an open subset @ of R" the symbol C§(0) will denote the set of all functions
possessing continuous and bounded derivatives to the order k.

3. Formulation of the main theorem

Let m be any integer such that m > 4. Assume that the reference configuration of the
thermoelastic body is a bounded domain # = R?® with the boundary of class C™.
Suppose that @;, i = 1, 2, 3 are open sets such that
0, = {FeR3¥<3:detF > 0}, (we identify the set of 3 x3 matrices with R3*3),
(3.1) 0,=10, +oof,
0; S R;.
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Let the coefficients of Egs. (1.5) and (1.6) satisfy for any o, i, p,q =1, 2, 3, Fe 0,,
0e€0,,Ge05,¢6 = {&}po1,2,3 #0 and 5 = {9,},_1,2,3 # 0 the following relations:

Ay )5 A3y 2 )s bo(ey +); BY(e, ) € CF(0, % 0,),
B¥(y vy -); B*(e 5 0 ) BEC ¢ 1) € G (0, X 0, % 03),
AZG(F, 6) = A55(F, 6),

B*(F,0,G) = B™(F, 0, G),

(3.4 0.>0, bo(F,0) >0,
AZF, 0)€,8,mam > 0,
B*(F, 0, G)namp > 0.

Let the body forces, the heat sources and the initial functions satisfy the inclusions

(3.2)

3.3)
3.5

m=2 -
be () CHI0, T1, Huors), b € LA((0, T1, Ho),
k=0

(3.6) - (1)
5 e m Ck([os I']’Hm—k—'z)’ § GLZ([Oa ﬂ; H—l)s
k=0
0 1 0
3.7) #€Hus x.€Hn_,, 0€H,,
0 0 0
(3.8) Vy.€0,, 6€0,, VOel,; on A.

Furthermore let us assume that the boundary functions y,., 0, are the traces on
02 x [0, T] of some functions 7,0, 0, satisfying the relations

m m=1
(3'9) ZxD € kr:]) Ck([oa ns Hm—-k)’ eo € kq Ck([oa T], Hm—k):
(3.10) Viwel,, 0,e0,, VB,e0®; on Bx[0,T],

where T € [0, T] is sufficiently small.
Finally let the following compatibility conditions be satisfied:

kK ® k

(3.11) Y00 = €V, k=0,..,m,
£ W k

(3.12) 0-0,00=0¢eV, k=0,..,m—1,

where the functions ;;,‘,6 are defined in the formulas (1.9).

Now we are ready to formulate our main result.

THEOREM 1. If the assumptions (3.1)-(3.12) are satisfied, then for T sufficiently small
there exists a unique solution of the initial-boundary value problem (1.5)-(1.8) with the
properties

m-2

(313) xn Ekr]f) Ck([oy ﬂ: Hm—k); 0 ekg Ck([os T]: Hm-k)!

(m=1)

9 € 2, I, Ho)nL*([0, T1, Hy),
(3.14) Vy.€0,, 0e€0,, V8e0®; on Bx[0,T].
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REMARK. The assumption m > 4 implies that the solutions satisfying the properties
(3.13) are sufficiently smooth to satisfy Egs. (1.5)-(1.8) in the classical sense.

In the next two sections we make some simplifications and sketch the strategy of the
proof.

4. Simplifications of the problem

To avoid the difficulties connected with the conditions (3.14) we introduce two non-ne-
gative functions ¢, € C*(R'®) and ¢, € C*(R'3) with compact supports contained in
0y x 0, and 0, x (', x 05, respectively, such that ¢,(F,0) = 1 on 2, and ¢,(F,0,G) =1

00 0 0 0
on 2, for some open neighbourhoods 2, and 2, of (Vy,, 0) and (Vy,, 0, V@), repecti-
vely. Next we define the functions

@D A 0 = {qnl(F, 0) A% (F, 0)+ (1 — @, (F, 0))dug0,, for (F,0) €0, x 0,,
‘ Pq 3 -

0ug0pg for (F,0) ¢ 0,%0,,
@2(F, 0, G)B*(F, 0, G)+ (1 —p2(F, 0, G) )og
(4.2) B*¥(F,0.G) = for (F,0,G)e 0, x0,x03,
Oup for (F,0,G) ¢ 0,%x0,%x0,,

(pl(Fv 6)bo(F, 0)+(l “?71 (-Fs 9))bmin f01' (Fs 6) € @l xwz;
bin for (F,0)¢0,x0,,

where b,,,, = min{b(F, 0):(F, ) € support of ¢,} and we put the coefficients ffj‘,(F , 0),
BX(F.,0, G), B3"(F,0.G) and BX(F,6) equal to ¢,(F, 0)A%(F, 0), ¢2(F,0, G)B*(F, 0, G),
¢2(F, 0, G)B(F,0,G) and ¢,(F,0)B;(F,0), respectively, for (F,0,G)e0;x0,%x0,
and equal to zero for (F,0, G) ¢ 0, x 0, x 05 . Now, if {y*, 6*} is a solution of the prob-
lem (1.5)-(1.8) with these new coefficients and without the condition (3.14), then, by the
relations (3.8) and by continuity, for sufficiently small T we obtain the inclusions
(Vx*, 0%) e 2, and (Vy*, 6%, VO*) € 2,. This implies that {y*, 6%} is also a solution of
the original problem with the conditions (3.14). Thus it is sufficient to solve the problem
(1.5)-(1.8) with the new coefficients and without the conditions (3.14).

To obtain the more compact form of the problem (1.5)-(1.8) ('), we write these equa-
tions as follows:

(4.3)  bo(F.0) = {

(4.4) 1+ Ai(x 0)x+ A2y, 0) = f(x, 0),
where

L= a0 0 =0-8,
and
A7, 007 = 1= Aa(V 2+ V0, 04+66) Fg,u} p=1,2,35
Ax(x, 0)0 = {— A2V + V70, 040000 2 }p-1,2, 35

(*) with the new coefficients

4  Arch. Mech. Stos. nr 6/87
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f(, 0) = —Fuo— A1 (s O 7o — A2(x, 0)8o + b,
b(x; 0) = bO(Vx+Vin0$ 6+60)1 B B
By(x,0)8 = —B¥(Yy+Vixo, 0+80, V0+V8)0 45
— B(Vy+ Vino, 0+080, VO4+VO,)F .,
'-BZ(Z:' 6)5.’ = —E;ﬁ(Vx+V';?,,O, 0+60a V9+V60)%q,aﬁ,
BJ(x) G)i = —B;(VZ+V/T(”05 e+60)2q.aa
g(x, ) = —b(x, 6)8— B, (x, 0)86— Bs (x> Oxo—Bs (1, 0) guo +5.
The functions z, 0 satisfy the homogeneous boundary conditions
(4.6) =0, 6=0 on d#x[0,T]
and modified initial conditions
0 0
Z(O) = Xn—'zno(o) =X
1. 1
“.7 %(0) = g—7220(0) = 72,
o _ 0
6(0) = 0—0,(0) =0, on A.
The conditions (1.9) take now the form
k+2

51 k\ & k—i () k=i (k)
@58) r ==, (l) [4:(z, )(0) z +A2(x,6)©) 8 ]+ (1, 0)(0),

i=0

k k
+ k\d +1-i k\ d -
@9 b000 = - X (30007 Y (1) B 0o

i=1 i=0

5y [k @ k=i W) k+1-i
- (,) [Balx OO 7 +Bs(z )O) 7
i=0

where

i

Q) — —
Leo0y = |- it BT+ V00, e(r>+eo<r))](0)wq.aﬁ}p

and similar notations are used for other operators.

5. The basic idea of the proof

i (k)
1+ g (%, 9)(0),

=1,2,3

From Sect. 4 it follows that it is sufficient to prove the existence of a solution for the

problem (4.4)-(4.7). To this end, following [1] we introduce the set Z (M,
functions {2,?} which satisfy the conditions

EE m Wk.w([o, n: Hm—k):
k=0

(5.1)

m-2 (m=1)

T) of pairs of

6eM We=([0, T], H,_), 6 eL=([0,T], H)nL*([0, T}, H,).

k=0



SOME EXISTENCE RESULTS IN DYNAMICAI. THERMOELASTICITY. PART I 611

(k) k
720 =%, k=0,1,...,m—-1,
(5.2) (k) k
60)=6, k=0,1,..,m=2,
m-2 (k) (m ) T -1

(5.3) esssup(z 20 3o+ Z 10Oz +11 O ()I13)+ fn 0 ()]3dr <

[0, T

where M is a constant independent of (¥, B). For given {y, 6} eZ(M,T) let us consider
the linear problem
(5.4) i+ A G O+ A:(7, 000 = f(7, 0),
(5.5) b(x, 0)0+ B, (x, 0)0+B,(x, 0z +Bs(x, 0 = 2(x, 0),
with the boundary and initial conditions (4.6_), 4.7).

We shall prove that for every pair {},0}e€Z(M, T) there exists a unique solution
{x,0} of the problem (5.4), (5.5), (4.6),_ (4.7) and that for M sufficiently large and T
sufficiently small the operator & : {3,0} > {x,0} defines a contractive mapping of

Z (M, T) into itself. The contraction mapping principle will imply that 4 has a unique
fixed point which is a solution of Eqgs. (4.4)-(4.7).

6. Some results concerning the linear problem (5.4), (5.5), (4.6), (4.7)

To implement the program outlined above we shall need some results concerning the
linear problem (5.4), (5.5), (4.6), (4.7). The present section contains the formulation of
these results.

Lemma 1. Let {x,ﬁ_}eZ(M, T) and Kk =0,1,...,m—2. The conditions x € X,
A1(x, 0)x € Hi(resp. 0 € Yy, B,(3,0)0 € Hy imply y € X, (tesp. 0 € Y, ,). Furthermore
there exist continuous functions w;, #;, Ai, Co, i =1, 2,defined on [0, +o0[x [0, +00]

with values in] 0, + 0o [such that for sufficiently small ¢ € ]0, --—[ T€]0, +oo[ and
for arbitrary {y,6} € Z(M, T) we have

xlles2 < a7l Im—e 10llm-e)(Ulxlle+ 140G O gl for all g € X,

101les2 < B2(l[X]Im=os 110]lm-o) (101l + 1B (X, D)O||) ~ for all 6 € ¥, ,,

A 02 10+ %1 (1T s 101l 112113 2 A (117 Immes 1161l 12113
$B, (%5 0085 6> +%2(||Zllmese 116]lm-16113 = A2(1|Zlnme> 116]1m-2)I16113

forall ye X, andfeY,,
(6.3) b(%, 6) = Co(llllm-s 1B]lm-) > 0.

Sketch of the proof of Lemma 1

Let us introduce the expressions Q,(F*, 0%, &, n) = I;Q(F*, 088 Esmphgs O2(F*, 0%,
G*,n) = B*(F*, 6%, G*)nyns for arbitrary F*e R°, 6*e R', &, %, G* € R® and let us
define the functions

(6.1

(6.2)

4
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A ([lln-es 10]lm-e) = min {Q(F* 6%, &, m): ] = Iyl =1, .
[F¥[2+16%> < CRl[Xlim=et C2110]l7-c 3>
T2l mes 181l = min {Q2(F*, 0%, G*, 7): ] = 1 7
[F*[2+16%2+|G*|*> < Cilizlln-e+(C3+C0]17_. 3,
where C,, C,, C, are constants from the Sobolev inequalities

max|Vp(X)| < Cil[9ll-e,  maxlp(X)] < Coll@lln-.
Xe# Xe®

max|Ve(X)| € Csll@lln-» for any yeHu_,, ¢€H,_,.
Xed
It is not difficult to prove that the functions L, i =1, 2 depend continuously on
their arguments and that the following inequalities hold:

QI(VZ! 6’ Ea 77) 2 Zl(“%”m—es Henm—c)iélzl"ﬂzs
Q2(Vi’ 69 VB’ "7) 2 AZ(HZ”TR—ES Hanm—e)hﬂzs
for arbitrary {x,0} € Z(M, T), &, 7 € R3,
The inequalities (6.4) are the starting points in the proof of the Garding type inequali-
ties (6.2) and the elliptic regularity results (6.1). The detailed proofs can be obtained for
example by modification of corresponding proofs of the book [4].

To prove the inequality (6.3) let us introduce the symbol 8 = 6+, and remark that
the inequality

(6.4)

() = 6()—8(0)+6(0) > — Tmax|8(1)| +8(0) > — TC, (M+C) +6(0),
1€[0, T}

which holds for some positive constants él, é‘z implies the existence of T such that 6(r)
is positive for all ¢ € [0, T] and all 6 such that {x,0} € Z(M, T). Therefore the coefficient
b(x,0) is positive for these {¥,0} and the function

ol1Z]lm-e» 11B]lm-.) = min{b(F*, 6%):|F*|>+|6*2 < C3|[7lla .+ C3lI6I[2%.
can be used to satisfy the inequality (6.3). This completes the sketch of proof of Lemma 1.

In the formulation of the theorem describing the properties of a solution of the problem
(5.4), (5.5), (4.6), (4.7) we shall use the notations

% = Fo(lBlm-es Ol le=1,2s & = {R{IZ -2 110]le=e) Yim1, 25
= (G2l lmmes 0lmeo) bi=1.20 €0 = Coll%llmeres 1B]lmerc)s
(6.6) L° = [|A,(%, YO, + 116G, OOl

(6.5)

[ - m;l o . 7
67 L= essupllldiz, OOllet D) 141G OOllew,, +dx(z, OOl
€LY, k=1
m-1 m=2

(k) — ¢y K
+ MA@ OO+ 1B OOz, + D 1B DOl
z k=1

k=1

_ 2wy e
HIBG OOl D 182G OOl iy +11Bo D)D),
k=1
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(6.7) im=2
feont] o Z 1BsG DOllet b G DO+ P 1BG: Olln-s-1-)

(m—1) - -1
+” (Il B (z: OO atn, o +11 By G OO\ %0, 1.,
0

m-1) _ 1/2
+11 By (% OO o) dt)

m % m-—2 @ T -1y
(6.8 N= Z}leli_k+max Z Hb(r)u,%,,z-ﬁf Il b (2)l[3de

+max ) o Ol f | Tl 3t + 5‘ 16112+ max Z 15 (122
:0

te[0, te[0,T

ml(k)

+ [ 1S 2 det max Z 1180(0)]12 i + f 1002 .

The introduction _qf the symbol L (see Eq. (6.7)) is justified by the following lemma.
LemMmA 2. If {y3,0} € Z(M, T), then t_he corresponding operators A;(;?,G_), i=1,2,
Bi(%,0), i = 1,2, 3 and the function b(%, 6) have the properties

m—1

A,(%,6) ele wr([0, T1, Lesos

m—2

Bl(i9_a), BZ@: E) EQI Wk,w([09 T]’ gk+l)9

(6.9)

"B, (1, 8) € L0, T1, £ (Hyor, H-1)) 0 L2(10, T1, £ (Hy, Ho)),

(m=1) -
BZ (7_6- 0) € Lz([oi ﬂ! c'g(Hms Ho))a
m—1

A>(%, 0), Bs(%,0) € Q1 we ([0, T], £,

m—1

b(%, 6) epo WE=([0, T], Hp-1-x)

and the estimate

T (n—1)
6.10) L Klesssupu 7 (r)ul+f<2( [1e @) +&

holds, where K, K, are positive constants and Kj is a positive function continuously de-
) @)
pending on the variables |[x|lm—i-cs ||0]lm-i-e» i =0, 1, ..., m—2 with sufficiently small

1
0, - [.
eel0, [
In the proof of this lemma one is to use the definition of the spaces %, k = 1, ..., m,
the chain rule and the properties of the Sobolev spaces mentioned e.g. in Sect. 5 of the

paper [1].
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Now, using the notations (6.5)-(6.8) we formulate the following well-posedness re-
sult for the problem (5.4), (5.5), (4.6), (4.7).

THEOREM 2. If the assumptions of Theorem 1 are satisfied and {y,0} is an arbitrary
element of the space Z(M, T) then for any positive T less than some T and for sufficiently
large M the problem (5.4), (5.5), (4.6), (4.7) has a unique solution {y, 0} with the properties

m m=2
xen ck([o’ T]sHm—k)’ een Ck([o’ T]’Hm—k)s
(6.11) k=0 k=0
“8" e Co[0, T], H)AL?0, T], H)).

Furthermore the following estimate holds:
(6.12) esssup(an(r)nm o Z 18@_+1"0 @)

(m—1)
+f |8 (0)]13dt < (CoN+C,LN)(1+ (1 + TC)exp(TCs)),
1}

where
C = Cilco, 2, pp, A L%  for i=1,2, Cs= Cilco,n, p, 2, L°%L)

and the functions él, C";, 63 depend continuously on their arguments.
The proof of Theorem 2 will be given in the second part of the present paper (see [3]).
Now we are ready to implement the idea sketched in Sect. 5.

7. Proof of the Theorem 1

In the first step, we prove that the operator 7 :{},0} — {y,8} defined in Sect. 5
and existing due to Theorem 2, maps Z(M, T) into Z(M, T) for sufficiently small 7T and
sufficiently large M. To this end, let us note that by virtue of the interpolation inequality
(see [3], Chapt. I, Sect. 2.5) we have for some positive constants C;,i =1, 2, 3 and
k=0,1,..,m=2,

®  ®
70D e =@ O)lm-r-1-s < Cd!?’(’) 99(0) 1l|<P(f) 97(0)Hm k-2

< CM'- "(esssupli v Ol 2T) < C3 MT,

where ¢ = yor ¢ = 6 and €10, -—; [ is the number from Lemma 2.

If we choose M, > 0 such that (?)

(7.2) (CyN+C,NK3)(0) < 1 5 Mo, [1+CoN(K, +K2)](0) < »é; M,

() The symbols C;, K;, i =1, 2, 3 are introduzed in Theorem 2 and Lemma 2.
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and T, €] 0, T] such that (3)
[C.N+ C,NK;)(t) < 2[C, N+ C, NK;](0),
(7.3) [14+CN(K +K)I(1) < 2[1+C,N(K; +K3)](0)  for 1€ [0, Ty}
[1+ 1+ T, Cy)exp (To Ci)I(7) < 3,
then by using the estimates (6.10), (6.12) and (7.2), (7.3) we obtain

"Y’, @ R (m=1) T =1
a4 esssup( NNz O+ X I0OIE L+ 6 O3+ [ 116 @)I3de
1€[0,T] x=p k=0 0

< 3(My+C,N(K, +K;) My) < M3,
i.e. 7 maps Z(M,, T) into itself for T €] 0, T,].
To prove that 7 is contractive if T is sufficiently small, we assume that T €]0, 7,]
and {7,0), {x,0} € Z(M,, T) are given. Let us put

V=11 $=0-0,
(7.5 &0 =70, &.0=7(F0,
v=i-1 ¢ =6-9.

If we introduce the new abbreviate symbols by putting

AG, 0 G, 6} = 4G, O3 +4:(3, ),

B(3,0){, 0} = B,(3, 0)0+ B.(3, )7+ Ba (7, )%,
then the relations (7.5) will imply the equalities
p+AG 0 {p. 0} = (AG, 0~ AG, 0)F. 0} (G, -1, 6),
16) bz 006 +BG, 0. ¢} = (BG, 0)—B(. 0) {7, 6}
~ (G, D)—-2G, )+ (bF. O)-b(, )8,
»(0) = $(0) =0, ¢(0) = 0.

Forming the duality products of Eq. (7.6); with 2¢ and Eq. (7.6), with 2¢ and in-
tegrating over [0, t], we obtain respectively

A1 193+AG O, v = [ KAi@, O, v>—264,(F, B, 9> }do
0

[‘ = — PR ] s = o
+2 [ (AR, O-AG B)(F. 63, -G, 0—1G, ), 9> }do,
0
and

14

18 116, 0)l3+2 [ (B.(F, 0)p,¢>do = [ b7, 0, ¢ddo
0

0

(®) We use thz continuity propertizs of the functions C;, K; and the inequality (7.1).
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(7.8) ' _ _ . _:
fcon ] +2 [ {—<Ba, 09, > —<Bs(F 0, $3 +{ (b7, 0)—b(7. 0))0, ¢ }do
V]

+2 [ K(BG, 0)-BG, ) G, 03,6> —<2(x, 6)—2(x, 1), $> }do.
0
If we use the estimates

[ 8.2 09,30 < €00 [[lipltilds < G [ (b 1w+ i) as,
0 0 0 !

t t

19 [ <(BG DB 0) G, 61, ¢>ds < Co0) [ Alplli+ 19110015
1]

V]
z — ' | B P 1 1
+ 10121 lods < C4(M)of(7!|w|1%+72il¢lﬁ+—2~(l+bj)H¢Il%)da,

with arbitrary positive numbers &,, 4, and some positive constants C;(M), i = 1, 2, 3, 4,
and if we remark that similar estimates are true for other expressions in the right hand sides
of Eqgs. (7.7) and (7.8), we arrive at the inequality

4 o e F t
. Cio ~ .
(7.10) nwn%+wm+n¢ua+ofu¢n%das i 0f|!¢|l%da+czof(HwH%+HwII?

t

5% [ 1g112do-+Co [ Q9113+ 171+ 161)do,
0 0

+lglI3)do+ =

with the constants é;, i=1,2,34,
Putting C; 6, < | and using Gronwall’s inequality, we get

t - t
A0 G+l +IGI3 < Cae® [ ARI3+IFIR+IG1Rdo+ =5 e [[1igzdo
V] 0

o T

= = - B " .8, = -

< TCyeT esssup(igll3-+1iglfE + 11+ &7 [ il do.
1[0, T] 4

Using again the inequality (7.10), we obtain
t
(7.12) 913+l + 1113+ [ n¢|ﬁdas2TC4(TC*2esz+1)«3s[sosglp(l|¢né+nw%+u$né)
0 €LY,

T
+C38,(C, TeCT+1) [ (11134t
[
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Now it is clear that the operator  is contractive if the condition
max{2T64(Téze5=T+1), C38,(Co TS T+ 1)} < o < 1
is satisfied and if the space Z(M, T) is equipped with the metric

({70}, (1, 0))
= g =a = 1/2
= (ess[gu;?(ui(t)—i(r)u%+||2(t)—i(t)||%+HB‘(t)—e(t)H%)Jr [ 16@)~6)13ar) "
te[0, 0

Completness of Z(M, T) with respect to this metric follows from * weak precompactness
of bounded sets and sequential * weak lower semicontinuity of the norm in the space
LP([0, T], Z) where 1 < p < oo and Z is Sobolev space.

By the contraction mapping principle the operator 4 has a unique fixed point
{x,0} € Z(M, T) which is a desired solution of the problem (4.4)-(4.7).

Using Theorem 2 to obtain appropriate regularity of the solution, we complete the
proof of Theorem 1.
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