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On a certain method of synthesis of ordinary differential equations
by means of construction of sliding sets

S. KOTOWSKI and J. SZADKOWSKI (WARSZAWA)

THE PAPER contains the solution of the following synthesis problem: for a differential equation
of the specified structure

(*) x = Ax+B(x)p, x€eR",

where @ is a two-valued control parameter, the structural parameters of the equation (*) are
sought, i.e. matrices A and B and vector function ¢, which would transfer the solution from
point p € R" to the origin of the coordinate set O, along a straight line and according to the
given law of motion. It is assumed that the straight line is a set of discontinuity points of the

function ¢, and the segment [p, O] belongs to the set of slides of solutions of the differential
equation (*). An example of the synthesis on a plane is given.

Praca zawiera rozwiazanie nastgpujacego zadania syntezy: dla rownania rézniczkowego o danej
strukturze

(*) x = Ax+B(x)p, x€R",

gdzie ¢ jest dwuwarto$ciowym parametrem sterowania, okresli¢c parametry struktury roéwnania
(*), a wigc macierze A i B oraz funkcje wektorowa ¢, aby przeprowadzi¢ jego rozwiazanie
z punktu p € R" do poczatku uktadu wspotrzednych O po prostej i wedlug danego prawa ruchu.
Przyjmuje sig, ze prosta jest zbiorem punktOow nieciagtosci funkcji @, a odcinek [p, O] nalezy do
zbioru poslizgéw rozwigzan rownania rdzniczkowego (*). Podano przyklad syntezy na plasz-
czyZnie.

PaGora comep»<MT pellleHHe CieAYIOLei 3ajauu cHHTe3a: s AuddepeHUHaTbHOTO YpaB-
HEHHUA C JaIaHHOII CTPYKTYpoH

(*) x = Ax+B(x)p, x€eR",

rAe @ — JBY3HauHBbIM IapaMeTp YNpPaBIEHHA, ONPENeNIHTh apaMeTpbl CTPYKTYpPbl ypaB-
Henus (*), sHauut matpuusl A u B, a TakyKe BEKTOPHVIO QYHKIIMIO @, YTOObI NPOBECTH €ro
pelueHue U3 TOUKH p € R" B HAYAIO CHCTEMBI KOOPAHHAT O BIOJIb NPSIMOM M COTJIACHO 33/1aH-
HOMY 3aKOHY OBMW)KeHH#A. IIpUHUMaeTCs, YTo NpsMas sIBJIAETCA MHOYECTBOM TOUEK paspbiBa

dbyurimy ¢, a oTpe3ok [p, O] NPHHANIEKUT K MHOM(ECTBY CKOJBXKeHHI pemueHunii mudde-
peHunanbHoro ypaBueuus (*). IlpuBenes npuMep CHHTE3a HA IJIOCKOCTH.

1. Introduction

WE sHALL consider the problem of synthesis of the differential equation

(1.1)

x = Ax+x,

where x = col[x, ..., x,], 4 = [a;;] is a given constant square matrix nxn, »:R" = R"
is a sought function; Eq. (1.1) realizes the transition of the solution x(p, t), p € R%
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with the initial condition x(p, 0) = p, from the state p to p’, p" # p, along the given
line 8 (p, p’ € 6) and according to the given motion law

(L.2) x = P(x).
This problem has the trivial solution
(1.3) #(x) = —Ax+P(x).

Obviously, among the assumptions the condition should be secured that d be a trajectory
of Eq. (1.2).

In general, the trivial solution is not acceptable in technical problems, since it is easy
to notice that the solution (1.3) consists in attaching to the existing structure, represented
by the matrix 4, the “opposite” structure: — 4, and a new structure, represented by the
function P.

In this paper we shall give the solution to the problem of synthesis of Eq. (1.1) in the
class of piecewise continuous functions, with the condition that d is a trajectory of sliding
motions of Eq. (1.1). We shall also assume some modification of the conditions, supposing
that the matrix A is not defined a priori. In this case it is said about the differential Eq. (1.1),
that it is of the given structure.

2. Statement of the problem of synthesis

Let us take the differential equation in the form

@1 k= Ax+Bp  (=/(9),

where x = col[xy, ..., x,], 4 = [a;;] is a constant square matrix nxn, B = [b;;(x)] is
a matrix nx(n—1), b;: R" > R, byeC°% ¢:(R"\S)— {—1,1)}, ¢ =collg,, ...,
Pn-1l, ,uS_ = 0, @; are constant in the regions of continuity.

According to the formalism introduced in Sect. 1, matrices 4 and B and vector function
@ are the elements of the (given) structure of the differential Eq. (2.1). Synthesis of this
equation will be understood as such an evaluation of the elements of its structure, that
the solutions (in particular, the specified solution) would fulfill the conditions imposed
beforehand.

REMARK 1. Because the synthesis does not include the uniqueness condition, the evalu-
ation of structural elements of the differential equation is understood as finding the
sufficient condition for these elements, which would secure the assumed properties of the
solutions (solution).

REMARK 2. The above defined synthesis is different from the one known in the theory
of control (e.g. [1]), which consists in finding the control parameter ¢: R* — R""! for the
given matrices A and B.

THE AIM OF SYNTHESIS. Synthesize the Eq. (2.1) in such a way that the given point p € R"
would be translated to the origin O of the coordinate set along a straight line, according
to the assumed law of motion

(22) x = P(x), P:[p,0]— R
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REMARK 3. It is assumed that the law (2.2) displaces point p to the point O, i.e. that the

segment [p, O] is a subset of the trajectory of Equation (2.2).
REMARK 4. The origin of coordinates does not have to be the singular point of Eq. (2.2).
In the solution of the defined problem the following conditions will be assumed:

(i) The closed segment [p, O] is a subset of a straight line S being the intersection of
(n—1)-dimensional, mutually non-coinciding hyperplanes S; (i = 1, ..., n—1). Its equa-
tion is
(2.3) Kx =0;

K = [si;] is a constant matrix (n—1)xn, such that Kp = 0.
(ii) Every hyperplane S; (i = 1, ..., n—1) is a set of discontinuities of the function f.

n—1
We shall denote S = | S;.
i=1
(iii) The motion defined by the rule (2.2) on the segment [p, O[ is always “towards
0”, i.e. the following condition holds:

(2.4) Yie {l, ...,H}Vx[ E]O,pll, xik[ < 0,

where p = [py, ... Pal-
In the consequence of the assumption (i) it is

rankK =n—1,

what means that the solution x of Eq. (2.3) contains one parameter £ among its coordi-
nates x,, ..., X,; to set our attention assume

(2.5 x = col[x,(&), ..., x,—1(8), &].

It is easy to show that the necessary and sufficient condition for the inequality (2.4)
to hold has the form

(2.6) die {l, evy n} in E]O,pi], xﬁcl < 0.

3. The conditions of choice of the motion law on S

On the basis of Condition (i) we assume

@3.1) S = {x:5(x) =0}, s:R"—> R"!
where
s(x) = Kx.
The condition of motion on the manifold S is that the derivative of s should equal
zero according to Eq. (2.2)
5(x) = KP(x),
i.e. the condition

(3.2) Vxe[p, 0], KP(x)=0.
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This condition and the inference (2.5) about the rank of the matrix X yields the linear

interdependence of the functions P; (i = 1, ..., n)

(3.3) P(x) = col [Py (p(x)), ..., Puoy (9(x)), p()],
which constitute the solution of (3.2) at every point x

(3.4) Vxe[p, O[Vie {1,...,n—1}, Pi(x) = Ci(si) p(x),

where C;:R""!xR"— R" are the functions of the elements sj (j=1,..,a—1,k=1,
..., n) of the matrix K.

REMARK. Arbitrariness of the motion law, to which reference has been made in the
problem of synthesis (cf. Sect. 2), is understood in the sense of relation (3.3):y is a par-
ameter of this law.

In the light of this remark and considering the form of the condition (2.5), condition
(2.6) can be expressed as follows:

(3.5) Véel0,pl, &-p(x(H))<0.
Conclusion. The law (2.2), in which the function P fulfils the conditions (3.3), (3.4)
and (3.5), defines the motion x(p, t) that fulfills the condition (iii).

4. Conditions for choice of the matrix B

To find the elements of matrix B we shall apply the necessary condition of existence
of the sliding solutions of Eq. (2.1) on segment [p, O], making use of the condition, that
the differential Equation (2.2) is the law of motion on this segment.

Assuming that the segment [p, O] is the set of slides of Eq. (2.1), according to the
form of Eq. (2.1) and the conditions (i) and (iii), we obtain a vector field on [p, O] ([2])

(4.1) [Ip, 01> R, f(x) = Ax—B(x)- [KB(x))"'K4x,
where K is a matrix which fulfills the condition Kp = 0 (see Sect. 2).
Considering (2.5) and denoting
¢(x) = [K- B(x)]"'KAx,
we obtain a field equivalent to (4.1)

{f(x(é)) = Ax(&)—B(x(®) - ¢ (x(9).
£e [0, p.].

We have assumed in Sect. 2 (assumption (i)), that S is a one-dimensional intersection
of (n—1) hyperplanes S; in R"—Fig. 1. Every one of them divides the space into two
disjoint parts, and (n—1) hyperplanes divide R" into 2"~* disjoint parts.

Let x € S. Then, there exist in x exactly 2"~ boundaries f(x) of the function f

fi(x) =limf(y), j=1,..,2"1,
Jetr
where 2; (j =1, ..., 2" ") are the largest regions of R", which do not contain the points
of S. Hence, according to Eq. (2.1), the continuous functions are defined,

“4.2) fiS— R, fi(0) = Ax+B®)-col[§(0)], j=1,..,2071,
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Xe 4\ 2
AY) )
S1
X
a -
g / X1
X3
FiG. 1.

where [p)]:S — R*"1, [@,] € C°(S). Thus, every index je {l,...,2" '} corresponds to
a certain vector function [;]:
[@,(0)] = iimw(y), F 5= Ly gvuy 200,
yeQ;

We shall denote the sequence of function with elements [¢;] by {[@;]}2»-1. Let us denote
the sections of the functions ¢ to the regions £2, by

(4-3) (PIQ; = 'pj'
Then, evidently
[9:(x)] = limg!().

yox
In view of the assumptions from Sect. 2, concerning Eq. (2.1) [¢;] are constant vectors.
It is easy to notice that

4.4 VxeRNS 3je {l,.., 21}, o) = ¢/(x).
Let us fix a sequence {S;},_;, and form a sequence {n;},_y

ni—(x)y si(x) < Os

7, s(x» >0, i=1,..,n-1,

where s; (i = 1, ..., n—1) are the linear functions defined by (3.1). It is easily seen that
VxeRNS 3L, ¢ = collny (), ... mi=i(d],

where ;€ {—, +} (i=1, ...,n—1). From this and from (4.4) it follows that

(4.5) Vie{l, .., 3{l}Y,_,, ¢ =collgl,. .., giril.

By {{li}a-1(j)}.—; we shall denote the sequence the elements of which are the sequences
consisting of (n— 1) elements. Since ¢’:2; - R"~!, then, in view of (4.3) and (4.5)

Vie{l, .,2'} 3{l,},.,VxeQ,, @) = collnh, ..., nixil,

NiRNS, = R, (%) = {

9 Arch. Mech. Stos. 5/87
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so that
VXeRNS, @) = col[ny(x), ..., a1 (*)].

The necessary condition for the Eq. (2.2) to represent the law of motion on S is (cf.

[2D:

2n-1
(4.6) VxeSAlms, 3w f(x) = PR
j=1
with the conditions
4.7 Vje{l,..,2"1}, = €eR'
2n-1
(4.8) Y =1.
j=1
Due to Egs. (4.2) and (4.5) we have from (4.6)

2n-1

VxeSaylms, D %Ax+B® - ¢W] = PR), i=1,.. n—1
j=1

together with the conditions (4.7) and (4.8). Since, from (4.8),

2n-1
@3) 3w Ax = Ax
j=1
then, in view of (4.5)
2n-1
@49) VxeS3 fglar, Y % B col O] = —Ax+P(x), i=1,..,n—1.

i=1

Let us observe that {{/;},_,(j) }2»-1 contains all the possible sequences {/;},_,, resul-
ting from the division of the space. Let us also notice that, for every index i, index / in the
sequence {{l;},_1(j)}2n-1 assumes the value (+) exactly 2"~2 times, and the value (-)
the same number of times. Because of this, and considering the assumptions for the values
of control functions @;(x) € {—1, 1} (cf. Sect. 2), the statement (4.9) can be expressed
as follows:

4.10) VxeS, Bk ¢ =Px)—Ax,
where ¢ =col [¢], i=1,...,n—1,
2n-1

v= D (xx), —1<¢ <l
j=1

Therefore, Eq. (4.10) constitutes the condition of choice of the matrix B. Note that, in
general, condition (4.10) does not define B uniquely, representing the set of () ident-
ities, while n(n—1) elements of B are sought. More precisely, (4.10) is the set of n ident-
ities, combining n(n— 1) elements of matrix B, n? elements of matrix 4, 2"~ —1 independent
coeflicients x; fulfilling the conditions (4.7) and (4.8), and the parameters of the vector
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function P. From this set, m(m < n(n—1)) elements b;; of B can be found as the functions
of & and of the remaining parameters.
Equations (2.5) and (3.2) yield the condition (4.10) the form

(4.11) VEe[0,pl, B(x(9) ¢ = P(p(x(9))—4x(@).

5. Additional conditions for the parameters of Eq. (2.1)

The law of motion on the segment [p, O], under the assumption that this segment
is a sliding set of the solutions of Eq. (2.1), has according to [2] the form
(51} X = fT(x)a
where function f is defined by Eq. (4.1). This means that for every solution x(x°, ¢) of Eq.
(4.1) with the condition x°e[p, O[:

>0 Ve 0, 7], x(x°1)€e[p, O]
and x(x°, 7) is the sliding solution of Eq. (2.1).

On the other hand, the given motion law on the segment [p, O] is the differential
equation (2.2). Comparing the laws (5.1) and (2.2) and taking into account (2.5) and (3.3),
we obtain
(5.2) VEE0,pl,  Ax(§)—B[KB]™' - Kdx(§) = P(p(x(9)),

being the set of n scalar identities interrelating n(n—1)—m elements b;; of B, n? elements
a;; of A, n(n—1) elements s;; of the matrix K and 2(n—1)—1 coefficients #, fulfilling the
conditions (4.7) and (4.8).

6. Conclusions

It can be shown that the set of two vector identities (4.11) and (5.2) is the necessary
and sufficient condition for existence of the sliding solutions on [p, O], which would move
the point p to the origin of coordinates set O according to the law of motion (2.2).

A question arises whether, within the considered structure of the differential Eq. (2.1),
the synthesis is possible with the motion law (2.2) arbitrary in the sense of the remark
made in Sect. 3, i.e. whether the problem of synthesis from Sect. 2 is correctly formulated
in the general case. In other words, is it possible that function P could lead to the set
of equations being contradictory with respect to the parameters of Eq. (2.1). This question
will be left without answer here.

7. An example of synthesis of the differential equation on the plane

Assume that we have a set of two differential equations of the form
X, = x2+b 9,
.%2 == a21x1+a22x2+b2¢,

(7.1)

g*
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where a,;,@;, €R, b,:R* > R, b,:R> > R, ¢:(R®\S) » {—1,1}, uS = 0, which
is a particular form of Eq. (2.1)

0 1 =
X = COI[xI,sz A =[ ]s B = col[blx bl]a ‘P:(RZ\S) - R'

dzy zp

We shall solve the problem of synthesis formulated in Sect. 2, assuming p = (1, 1). Then

(7.2) S=28= {x:5(x) =0}, s(x)=s1%+52%;, S51+55=0
and
@.3) K = [t 53l.
s(x)<0
x| ex)=-1
(sp0) /55
s(x)>0
p p P()=1
(s70)
p /%
0 1 X1
FiG. 2.

Formulae (2.3), (2.5), (7.2) and (7.3) imply that x = col [£, &] (Fig. 2), and formulae
(3.1), (3.2), (7.2) and (7.3) imply that
Vxelp,0l, P() = colly(x), p(x)].
From the assumption on the point p we have
vée[0,1],  P(x(8)) = collp(x(), (x()]
yielding the class of functions admissible by the conditions of the problem of synthesis.

Assume the functions admissible by the conditions of the problem of synthesis. Assume
the function p to be linear,

p:[0, 11> R, 9 = ak+p.

Then
(7.4) P(&) = col[aé+ 8, ab+f].
From the condition of movement “towards the point O (see (3.4)):

VEel0, 1], &(@é+p) <0
the parameters « and f are found

<0, a< -4

for the function P from (7.4).
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Let us determine the matrix B according to the Sect. 4. Assuming (see Fig. 2)
-1, s(x) <0,
7(x) ={ 1, s(x)>0
and using the condition (4.8)
%y =1—2,, 0<x, <1
we find ¢
O =u 9T +us97 = 1-2x,.
Equation (4.11) assumes the form

b, 0 117]¢
lbz} (1=2%2) = L’zl azz] [5]’

By = ~—1—;-- [(—1)&+ 51,

from which

1—2%

1
b, = jm [(¢—az;—az)§+ B].

(7.5)

We shall find the additional conditions for the parameters of Eq. (7.1) according to
Sect. 5. Identities (5.2) for the Eq. (7.1) are as follows

1 b, () l—ay —a;, . aé+p
veelo, if, [a21+au]5‘lbz(§)l b,—b, ‘5‘[af+ﬁ

for b,—b, # 0. Taking into consideration the formula (4.9) we have

[1_ 1"‘721_‘122(a_1)]§_ wﬂ,ﬁ - gf 4,

0—0as1 —dss A—dy; —as;

oot 2=~ — 22 g gk

together with the condition a,, +a,, # 1. Comparing the coefficients for the same powers
of £, we get the condition for the elements of the matrix 4

o+1
ayy+dy; = T
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