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Threshold crossings in a linear oscillator due to a Poissonian train
of general pulses(*)

R. IWANKIEWICZ and Z. WOJCICKI (WROCLAW)

THE DYNAMIC response of a linear oscillator to a Poisson distributed train of general pulses is
considered. The complete expansion of the joint probability density of the response and its time
derivative in the series of generalized Hermite polynomials is presented in explicit form. The
cumulants of the response, its time derivative and the joint cumulants are evaluated for the
stationary response and are discussed. The truncated series is used to evaluate approximately
the expected rate of threshold upcrossings. The effect of the pulse duration and of the expected
arrival rate of pulses on the mean upcrossing rate is investigated. The reliability estimation
is also discussed.

Rozwazane sg drgania liniowego oscylatora pod wplywem poissonowskiej serii impulséw rozlozo-
nych w czasie. Pelne rozwinigcie lacznej gestosci prawdopodobienstwa procesu odpowiedzii jego
pierwszej pochodnej w szereg uogoélnionych wielomianéw Hermite’a jest przedstawione w jawnej
postaci. Kumulanty procesu odpowiedzi, jego pochodnej oraz faczne kumulanty wyznaczono oraz
zanalizowano w przypadku stacjonarnego procesu odpowiedzi. Srednia liczbe przekroczen
w jednostce czasu wyznaczono na podstawie szeregu o ograniczonej liczbie wyrazow. Zbadano
wplyw czasu trwania impulsu oraz §redniego natezenia pojawiania si¢ impulséw na $rednia
liczbe przekroczei. Omodwiono takze oszacowanie funkcji niezawodnoéci ukladu.

PaccmarpuBaroTca nuHeliHble KoneGaHMA OCHWIIATOPa MOM BIMAHHEM IMyaCCOHOBCKOM CEpPHH
HMMITYJIECOB pacnpenesieHHbIX Bo BpemeHH. [lomHoe pa3norkeHne COBMECTHOMH IJIOTHOETH Bepo-
ATHOCTH IIPOLIECCAa OTBETA U €ro MepBoi NPOH3BOAHOI B pAJ 06001IEHHBIX 3PMHTOBBIX MHOTOWIE-
HOB NPE/JACTaBICHO B ABHOM Bufe. KyMynsHTEI npoliecca oTBeTa, €ro MIpoH3BOJHON U CoBMe-
CTHbIE KYMYJIAHTBI ONPEAE/IEHbl U aHATU3UPYIOTCS B CIIydae CTAaLOHAPHOTO Ipolecca OTBETa.
CpeHee KOJIMUYECTBO MPEBBIIICHMI B €OMHALE BPEMEHM OIIPENE/ICHO HA OCHOBE psma C
OrPaHMYEHHBIM KOJIMYECTBOM wWieHOB. llcciemoBaHo BIMAHHE BPEMEHHM IPOAOJLKHTEIBHO-
CTH MMIIYJIbCA M CPEAHEH MHTEHCHBHOCTH IIOABJICHHS MMIIYJIbCOB Ha CpeOHee KOJIHYECTBO
npesblieHnit. OOCy:KOeHa TaroKe OLEHKa (PYHKUMH HageyKHOCTH CHCTEMBI.

1. Introduction

THE PROBLEM of vibration under excitations consisting of a train of events occurring at
random times (e.g. random pulses) has attracted the attention of investigators for many
years. Based on the theory of stochastic point processes [1, 2], the approach proved appro-
priate to this problem. The papers by LiN [3], ROBERTS [4] and SRINIVASAN et ul. [5] are
some of the first dealing with the dynamic response to random trains of pulses. Later,
many aspects of this problem were examined within the framework of the mean-square
analysis [6-10].

(*) The work presented was supported by the Polish Academy of Sciences through the research
programme C.P.B.P. 02.02./5.3. The results reported herein were presented at the Workshop on Struc-
tural Reliability and Probabilistic Mechanics, Munich, 9.X.1986.
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Nevertheless the evaluation of higher-order statistics of the response appears to be
a much more difficult problem. For example, the equation governing the response one
dimensional probability density has been given only in the case of Dirac delta impulses
[11, 12]. The evaluation of the average rate of threshold crossings is not straightforward,
either. An approach based on the approximate determination of the joint probability
density of the response and its time derivative in the case of Dirac delta impulses was
presented by RoBerts [13].

The objective of the present paper is to evaluate approximately the average rate of
threshold upcrossings in a linear oscillator subject to a Poisson distributed train of general
pulses. The approach used is based on the series expansion of the joint probability density
of the response and its time derivative in terms of the generalized Hermite polynomials.
The series for the joint probability density is presented in systematic and explicit form.
Then the truncated series is used to determine the average rate of threshold upcrossings.
Various cumulants and joint cumulants up to the fourth order are evaluated for the sta-
tionary response to square pulses and are shown in figures. The effect of the pulse duration
and of the average rate of pulses occurrences on the average upcrossings rate is investi-
gated. The estimation of the system reliability is also discussed.

2. Statement of the problem

Consider the dynamic response of a linear oscillator to a random train of pulses, gover-

ned by the equation
N(1)

(2.1) §+2awq+w’q = ZF,:(:‘, 1),
i=1

where s(¢, t;) is the pulse shape function vanishing for # < #; and ¢ > t;4+ T and T denotes
the pulse duration. The occurrences of pulses are assumed to be the Poisson events with
the expected rate »(¢); N(¢) denotes the random number of the occurrences in the time
interval (0, t]. The magnitudes of pulses are given by the random variables F;, mutually
independent and independent of the counting process N(r).
From the principle of linear superposition it follows that [14]
N(O)

2.2) a(t) = Y Fiz(t, 1, T),
i=1

where z(¢, #;, T) is the response at time ¢ to the pulse which originated at time ¢;. The
equivalent integral form of the expression for the response is (cf. [5])

H
(2.3) a(t) = [ z(t, =, T) F)aN(2).
0
This representation is crucial for the evaluation of the response statistical moments.
t
Substituting in Eq. (2.3) z(¢, 7, T) = f h(—0)s(0 — v)dd and considering the domain
T

of integration reveals, as was shown by KAwczyXski [15], the splitting of the function
z(¢, 7, T) into two parts:
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[ {
40, © T) = [ h(t—-0)s(O0-7)dd, 1-T <7<t
2.4) 20,1, T) = j

+T
o, w )= [ ht-0sO-7d), 0<t<t-T,

and consequently

t t-T

2.5) 90) = [ z(t, 1, DF@AN@+ [ 2,6, v, T)F()dNG).

-T 0
The cumulants of the response process (displacement response) can be evaluated by
making use of the expressions given by Lin [14]. However, in order to determine the cumu-

lants of the response process time derivative (velocity response) and joint cumulants of

the response and its time derivative, it is expedient to follow the procedure due to ROBERTS
[13]. Then the obvious relationship

(2.6) G(t) = [ 2, v, T)F(z)dN()
0

must be used (cf. [16]).
Taking into account the splitting (2.4), the expressions for the cumulants become

(cf. 13D
(T

@D o) = [ A T, TV@EF @+ [ 2, 7, D) EF(ldr.
t-T

0

t—-T t

(2.8)  x0,(2) = f 23(t, T, T)v(z) E[F"(7)]dT + J 2@, =, Tv(7) E[F"(7)]dT,
t=T

0

t-T

29  x,,Q@) = f z5(t, v, T)Z5(t, v, T)»(z) E[F"*"(v)]d®

0

t
+ [ 2, . DA, v, (D) E[F"*"(2))d,
t-T
where %,9(r), #0,(t) and x,,(¢) denote the n-th cumulant of the response process, the
n-th cumulant of its time derivative and the m, n-th joint cumulant, respectively.
LoNGUET-HIGGINS [17] gave the series expansion for the joint probability density
of the random process and its first time derivative. This is an expansion in terms of the
joint cumulants and the generalized Hermite polynomials. Following the procedure
due to LONGUET-HIGGINS, let us derive this expansion in a complete and explicit form
allowing the systematic generating and truncating of the series.
Expressing the joint probability density function p(x,, x;) as the inverse two-fold
Fourier transform of the characteristic function D(it,, it,)
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Q1O pux) = f f Py, it2)expl— iCes 1y +-x3 )ty dit
substituting

L o ity ) (it)*
.11 &(ity, it,) = exp{ Z -(—w;)tﬁc'—ﬂ xj,‘}

N3
(J+k=1,2,3,..)

and expanding the exponential in the series yields

Q1) Pl = e i ) i exp |~ iCEusi+ 6252

2]

1 LI -
—5 (142485, +S%)}>< {1 > Ty Cisa)’ Gs2)*

(+k=3,4,5,...)
o]

1 N
T37 2 ﬁ(ml)”'(zsz)“mr ...}d.n ds,,
’ Jyk,,m 42 Bkl b
(U+k=34.5,.)
where
— X —x
= Sl/l/”zo, o Bl L AP Eis
l/"zo
— X, — %
I; = Sz/l/"oz, 2 % =&y
l/”oz
(2.13) Ao = 2]V #5053

Substituting into Eq. (2.12) the relationship

1 r . 1 o
(2.19) »2;]- fexp{—r(§1s1+52s2)—2(sf+2ﬂuslsz+s§)}(:31)”(152)"d51ds2

—® —

1 1
= ﬁﬂp{—j(&i—ﬂn & §2+E§)/(1”lix)}Hm(§1, &),
where H,,(&;, £5) is the generalized, or bivariate, Hermite polynomial, gives the result
1
2.15 XisXp) = —————— eXp | _ _ (£2_ _
(2.15)  p(xy, x3) = . I/’fzo%oz =y P{ (E1—224, & &+ 8D/ — 23 1)}
[+ o]
A Y Apdim
'{1+ Z 'k'ij(El’ 52)+ 2 #Hju k+m(€1s €2)
gk, l,m

(i+k=3,4,5,..)

LN A
+§_ Z 1k[j;| :n' nlrl Hl+l+mk+m+r($19 52)'*‘ }-
lL,m,n
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The generalized Hermite polynomial Ha.(&,, &,) satisfies the relationship

(2.16)  Hu(é,, Ez)exl)[ —% (E1—2211 6 &6+ ED)/(1— %1)]

m+n

d 1
MexP[“E(S%—ZAM& E+E&)/1 '—'1:1"1)] .

The form (2.16) of the expansion is complete and general and allows the systematic
generation of the series up to any order required and its truncation.

= (=

3. Steady-state response to a Poissonian train of square pulses. Joint cumulants of the
response and its time derivative

Confining our attention to the steady-state response to the stationary train of square
pulses, we have: s(t) = 1for t; < t < t;+ T, »(t) = v = const, E[F"(t)] = E[F"] = const.

After the change of variable u = 1— 7, the expressions (2.7), (2.8) and (2.9) for the
cumulants take, respect vely, the forms

°) T
G.1) #u0 = VE[F" [ 23(u)du-+vE[F [ 21(u)du,
T 0
© T
(3.2) #ou = vE[F") [ 23 du+vE[F") [ £,
T 0
o T
(3.3) Mo = VE[F™] f 25 (W) 25 du+vE[F" " | 27wz} (u)du,
T 0
where
o
3.9 2 (u) = m“z[l—e‘“‘“"(-——.i_az- siné‘u+costu)],
(3.5) z,(u) = w (o, w, T)e *"sinlu+w™ *c(a, w, T)e™*“cosfu.
o
(3.6) P +( — —— cos{T+sinT|e*7,
s(at,w, T) = Vi ¢
3.7 e, 0, T)= —1 +(— if“ = sinCT+cosCT)ew"T,
—o
. |
(3.8) Z(w) = 4_c 4 sinlu,
3.9) z(u) = 12_‘—— e*“‘”"sinCquv?‘e‘“‘“"cosCu,
(3.10) vy = 1—e*TcoslT,
(3.1D) v, = sin{Te*T

and { = o J/1—a? is damped natural frequency.
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The same results for z, (1) and z,(u) are given in the reference [8].

It is interesting to note that in the case of the stationary response (steady-state response
to the stationary train of pulses) the following cumulants vanish: %y, = 0, »,; =0,
#y, =0, 23, = 0.

The non-zero coefficients 4;; corresponding to all the cumulants of the order up to
Jj+k = 4 are expressed as

(3.12) fiis (x—’::)iﬁ - ;(f%% g -{%3],—2« ;
(.13) haz = (xm’;ifzxm = 3(81?;5,) ]/ ? {E%%,T e
(.14) - (%:‘2")’3,2 = s(zlﬁgg) g{;}‘gli Fo3s
(3.15) e 2(112&)‘? {;[;} Js0,

(3.1 O vminl (e ol {5[55%2 422,

S s = G = TYSE {flgll} s

61 == S e

It may be shown that as T — 0 in such a way that T2E[F?] = const, T3E[F3] = const,
T*E[F*] = const, the expressions for the cumulants x;, and coefficients 1;, approach the
respective expressions for Dirac delta impulses. The expressions (3.12)-(3.18) are nor-

malized in such a way that lim iﬂ‘ = [,
T-0

150

100 —

50 -
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The coefficients 1, evaluated for the damping ratio a = 0.01, plotted against the
pulse duration (wT) are shown in Figs. 1, 2 and 3.

It is seen that the skewness coefficient 4, of the response process (dashed line in Fig. 1)
is always positive and greater than in the case of Dirac delta impulses (w7 — 0). The
behaviour of the skewness coefficient of the response time derivative is different (solid
line in Fig. 1); it assumes positive values only at the values of wT in the neighbourhood
of n'2x (n=1, 2, 3,...), otherwise it is negative. This means that while the marginal
probability density curve of the response process has always positive skewness, the skew=
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ness of the distribution of the velocity process may be either positive or negative. At the
value of wT = n- 2n both coefficients reveal very much pronounced maxima.

The coefficients of excess 1., (for the response) and Ay, (for the response time deri-
vative) shown in Fig. 2 are both positive. They also reveal high maxima at wT = n* 2=z,
moreover the coefficient 1,, assumes the minima at (0T = 2n+Dm, n=0,1,2,..)
the values of which are lower than in the asymptotic case T — 0.

The coefficients 7,, and 7,, corresponding to the joint cumulants are again always
positive. The coefficient /"flg assumes, however, also negative values. Also these coefficients
attain high maxima at w7 = 2zn, n=1,2,3, ....

It may be concluded that the departure of the joint probability density p(x,, x,) from
the Gaussian distribution is the largest when the pulse duration is equal to the natural
period of the structure; wT = 2x.

4. Analysis of the average upcrossings rate for the stationary response

The series (2.12) for the Poisson distributed train of pulses can be shown to be the
expansion in powers of (ew/v)!/? (cf. [13]). The approximate solution for p(x,, x,) is ob-
tained herein by retaining the terms of the order (w/¥)}/? and (w/v)'only. It is worth noting
that in the stationary case the series (2.12) simplifies because some cumulants vanish.
In particular, 4,, = 0 which implies that the generalized two-dimensional Hermite poly-
nomials split into the product forms

Hmn(El ’ 52) = HM(EI)Hn(Ez)

The expected rate of upcrossings (i.e. crossings with the positive slope) of a threshold
X; = a is given by the formula due to RICE [18]:

“.1) e = f x,p(a, x;3)dx,;.
0

Substituting into Eq. (4.1) the truncated series obtained from Eq. (2.15) and integra-
ting yields

4.2) py = Zln exP( y2/2){1+ [A30 H3(¥) 43412 Hi(¥)]

1
+ E[Z‘w Hy(y)+6422 Hy(y) — Ao}

1 1
+ == A0 He(¥)— o 3 sz()’)+ /130 A2 H )+ 5+ 2 Aos}»

where
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In the subsequent analysis the pulses magnitudes are assumed to be Gaussian distri-
buted with og/E[F] = 1, hence JEF Y2 and EIF]
F =y {E[F2]}3/2 - {E[Fz]}z

2.5. The light damping
is assumed, ie. o« = 0.01.

The non-dimensionalized expected rate of threshold upcrossings 27y /@ is plotted
against the pulse duration (wT) in Figs. 4 through 10 where the solid line represents the
Gaussian asymptotic case (wfv = 0, i.e. » - o), the dotted line is for w/r = 2 and
the dashed line—for w/y = 5.

It is of importance to notice (cf. [19]) that when the pulse duration T approaches the
multiple natural period, i.e. T > n-2n/w (n =1, 2,3,...), then the response becomes
quasi-static; the induced free vibrations are not essential. In the reference [19] it has also
been pointed out that the first-order probability density curve reveals positive skewness.
Both observations are helpful in explaining the behaviour of the expected upcrossings
rate.

When the response becomes quasi-static, there are small oscillations about the rela-
tively high level. However, these oscillations do not frequently correspond with the crossings
of the zero (Fig. 4), of the low positive level (y = 1, Fig. 5) or negative level close to zero,

bpjom

04 1 :

Fic. 4.

(v = —1, Fig. 7). Therefore, as wT approaches n - 2z, the expected upcrossings rate u;
decreases (Figs. 4, 5, 7). The behaviour of u is different in the case of the high positive
threshold y = 3 (Fig. 6). Since in the quasi-static case the oscillations are about a certain
relatively high positive level, the crossings of the high threshold become more frequent,
hence the expected upcrossings rate increases as wT — n - 2x.

The comparison made between Figs. 4, 5 and 6 shows that as the threshold height
increases, the average rate of upcrossings decreases, what might have been intuitively
expected, except for the value in the vicinity of oT = n- 2x.
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The mean rate of upcrossings of a threshold y = —3 (Fig. 8) is very low; unfortuna-
tely in this case the results are poorly interpretable because the rate p; assumes negative
values in some regions. This should be regarded as the result of an insufficient number
of terms of expansion.

As the ratio w/» increases (the mean occurrence rate » decreases), so does the skewness
of the probability distribution. This means that the probability of small positive values

uylm
as w
y=-3

FiG. 8.

of the response (e.g. y = 1) decreases and the probability of large positive values increases
(cf. [19]). These large positive values of the response may or may not correspond to the
crossings of the zero or low positive threshold. Einally it appears that as w/» increases,
the crossings become less frequent; the expected rate u, for thresholds y = 0 (Fig. 4)
and y=1 (Fig. 5) decreases. On the other hand the large values of the response (displace-
ments) correspond to the crossings of the high threshold; the rate uf(y = 3 Fig. 6)
increases. At the same time the probability of close to zero negative values of the response
increases, consequently the average upcrossings rate of the negative level close to zero
increases (Fig. 7).

The comparison between the expected upcrossings rate of threshold y = 1 and y = —1
made for w/r = 5 (Fig. 9) reveals that the upcrossings of a negative threshold are more
frequent than the upcrossings of a symmetric positive threshold. This is in accordance
with the type of probability distribution since the small negative values are more probable
(more frequent) than small positive ones. On the other hand, in the case of barriers fairly
distant from zero (y = 3 only y = —3), the situation is different (Fig. 10). The upcrossings
of a high positive barrier (y = 3) are much more frequent than those of an equally distant
from zero negative barrier. The large positive values are more probable than large nega-
tive ones, hence there are also more upcrossings.

Knowledge of the expected rate of upcrossings would be sufficient to evaluate the
reliability function of the system (defined as the probability of no upcrossing in the time
interval (0, ¢)) if the upcrossings were Poisson (independent) events. However, the upcros-
sings are only asymptotically Poissonian (cf. e.g. [20]).

For a highly reliable system the following rough estimate of the lower bound of the
reliability function [20] can be made

4.3) R(t) > 1 -E[M(2)],

8 Arch. Mech. Stos. 5/87
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b 2n 3m 41 S 67 T
FiG, 10,
where
13
E(M(®)] = [ pf(z)dr.
0
Otherwise a better estimation may be used [20]:
4.4 1—-16—1E[M(t)]+E[M2(t)]—€E[M3(t)] < R(2)
1 4
E[M*(1)].

<1 —%—E[M(t)] + %%E[(Mz(t)] - fl%fE[M3(t)] STy

The use of this estimation requires, however, knowledge of high-order statistics of the

upcrossing process (two-point, three-point, e.t.c. time statistics).
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