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Shape design sensitivity analysis in nonlocal elasticity 

R. A. MERI<; (GEBZE) 

SHAPE DESIGN sensitivity analysis of nonlocal elastic solids has been peformed by using the 
material derivative idea of continuum mechanics. The variation of a general displacement 
stress functional whose integrand involves integral expressions is evaluated with respect to shape 
variation through the direct and adjoint variable methods of sensitivity analysis. It is found that 
for the calculation of the functibnal variation, "deformations" are needed in the whole phy­
sical domain, while only boundary perturbations are required in the adjoint variable method. 

Analiz~ wraZiiwosci na ksztaltowanie cial nielokalnie spr~iystych przeprowadza si~ z wykorzys­
taniem poj~cia pochodnej materialnej. Wariacj~ funkcjonalu przemieszczeniowo-napr~i:enio­
wego przeprowadza si~ wzgl~dem zmiany ksztaltu metod(! zmiennych bezposrednich i sprz~­
zonych. Stwierdzono, Ze dla obliczenia wariacji funkcjonalu potrzebna jest znajomosc ,odksztal­
cen" w calym obszarze fizycznym, podczas gdy metoda zmiennych sprz~zonych wymaga jedynie 
znajomosci perturbacji na brzegu obszaru. 

AHa.riH3 qyBCTBHTeJibHOCTit I< <f>opMHpoaaHmo HeJIOI<aJibHO ynpyrux TeJI npoao,z:urrcH c HcnoJib-
30BaHiteM noHHTitH MaTepltaJibHOH npoH3BOAHOH. BapHaqHH o6IQero <f>YHI<qHOHaJia a nepe­
MeiQeHu.H..x II Hanp.SI>KeHH.H..X npOBOAHTCH no OTHOIIIeHHIO I< H3MeHeHHIO <f>opMbl MeTOAOM He­
nocpeACTBeHHbiX H conpiDKeHHbiX nepeMeHHbiX. KoHcTaTHpoaaHo, q-ro AJIH pacqeTa aapua.l.\HH 
<f>YH~IIOHaJia Heo6XOAIIMO 3HaHUe ,,ne<f>opMa.l.\HH" B ~eJIOH <f>H3Hqeci<OH o6JiaCTH, Tor,na I<aK 
MeTo,n conp.IDKeHHhiX nepeMeHHbiX TPe6YeT TOJibi<O 3HaHHH nepryp62.1\HH Ha rpaH~e o6JiaCTH. 

1. Introduction 

IN THE CLASSICAL elasticity, the constitutive equations are differential in nature and the 
stress field at a point is given by the strain tensor evaluated at that point (i.e., a local the­
ory). In contrast to this local approach which excludes the action at a distance, the non­
local elasticity theory, developed independently by several researches in the field (see, 
for example, Refs. [1, 2]) studies the behaviour of structures whose constitutive equations 
are integro-differential equations. In other words, in such structures it is postulated that 
the local state at a point is influenced by the action of all particles in the body. Hence,. 
the stress field in a nonlocal continuum is given by the strain field defined over the whole 
domain, and is mathematically expressed in terms of an integral equation whose kernel 
(i.e., influence) function characterizes the nonlocal effects. 

Nonlocal effects are generally of minor importance in microscopic behaviour of 
materials. However, in some cases they may be dominant as in phonon dispersion in solids, 
in surface physics, in electromagnetic solids and in fracture mechanics. Indeed, it has been 
found that for the Griffith problem in fracture mechanics, nonlocal elasticity must be 
employed to determine stresses at a sharp crack tip [3, 4]. The nonlocal solution to this 
problem, which leads to a finite stress at the crack tip, displays a rather remarkable agree-
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ment with experimental evidence. Recently, mathematical difficulties which usually arise 
from material instabilities in distributed cracking problems have been resolved by descri­
bing the materials as nonlocal continua [5, 6]. In Refs. 5 and 6, the stress field is, however, 
also averaged over characteristic domains leading to the nonlocal theory, which is not 
considered in the present paper. The nonlocal theory, closing the gap between the classi­
cal continuum limit and the atomic theory of lattice, can also be a very useful tool in inves­
tigating the motions and deformations of bodies in wave propagation problems in a wide­
range of frequencies and wave lengths [7, 8]. 

The shape design sensitivity analysis (SDSA), that is, finding the variation of functio­
nals of the system's response with respect to variations of boundaries of the structure, 
has been developed and reasonably completed for local elastic solids in the literature 
[9, 12]. The SDSA, which may be extremely useful in shape (design) optimization or sh~pe 
identification problems, has not been considered for nonlocal elastic structures in the 
literature so far (to the best knowledge of the present author). The present paper investi­
gates the first variation of a general displacement and stress functional for a nonlocal 
Jinear elastic solid body with respectjto shape variations. Only static conditions are trea­
ted, while geometric discontinuities in the domain and on the boundary of the solid are 
.considered in the study. As such, the present SDSA may be useful for shape inverse (i.e., 
.optimization or identification) problems in nonlocal fracture mechanics. 

In the present investigation, the material derivative (MD) concept from continuum 
:mechanics, which has been previously applied to the SDSA of local elastic structures, 
will be applied to the SDSA of nonlocal structures. The SDSA expressions will be derived 
by using both the direct and adjoint variable methods [13-16]. It has basically been found 
-that the "deformation" velocity field characterizing shape variations is required in the 
whole solid domain in the case of the direct method, while only boundary perturbation 
information is necessary for the case of the adjoint variable method. 

:2. Primary problem 

In the absence of nonlocal (i.e., residual) body forces, the equations of equilibrium 
-for a homogeneous, isotropic nonlocal solid body may be written as 

.(2.1) in V-a: a11,1 = -b, 

where V is the physical domain of the structure to be varied; a is a closed and regular 
~ discontinuity surface (i.e., an interface) within V; a11 is the stress tensor and b1 are the 
.distributed body forces which may depend upon the structural shape. Mixed boundary 
. conditions may be imposed such that 

,(2.2) 

-(2.3) 

on Su: u1 = u?, 

where Su and Stare parts of the varying boundary S of V; ui and t, are the displacements 
. and tractions, respectively; the superscript 0 indicates prescribed quantities. The surface 
-tractions are also given by ti = ai1nh where n1 is the unit vector normal to S. 
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Across the discontinuity surface a, the jump conditions are given in the form of con­
tinuous displacements and tractions as 

(2.4) 

(2.5) 

on a: [u,] = 0, 

on 0': [t,] = [ D'lJ]m1 = 0, 

where symbol [] represents the discontinuity of the enclosed quantity, calculated as 
a difference of the respective values in the domains v- and v+' where v- + v+ = v- 0', 

with [ ui] = u'f- ut for x1sa. The unit vector m1 is normal to a, pointing from v- into 
v+. It may also be shown that the gradient of the displacements and tractions satisfy the 
following jump conditions on a due to Eqs. (2.4) and (2.5): 

(2.6) on a: [u,,k] = [u,,m]mk, 

(2.7) on 0': [t,,k] = [tt ,m]mk. 

The constitutive law associated with an isotropic, homogeneous, linear nonlocal 
elastic solid body is taken as follows [1-4]: 

(2.8) O'ij(xk) = f ex(!x,-x, !; s)[Xuk, k<5u+,u'(u1,1+u1, 1)]dV, 
V-a 

where xi is the observation point where O'tJ is evaluated; ex is a two-point influence (i.e., 
kernel) function which represents the nonlocal character of the solid body; e is an attenu­
ation parameter V denoting the characteristic length of nonlocal influence; x1 is an 
arbitrary point in V- 0' (i.e., a dummy variable of integration); A. and ,u are Lame's con­
stants. Any barred quantity refers to that quantity evaluated at the field point xi. 

It is noted that for the homogeneous material at hand, the constitutive equations are 
invariant under arbitrary translations of the material of reference so that they depend 
on xi and x1 only through their distance !x1-Xt!, hence~= ex [7]. In the limite-+ 0, 
the nonlocal theory must revert to the classical elasticity theory, i.e., a must become 
a Dirac-delta measure as e -+ 0. This requires that 

J exdV = 1. 
V-a 

In the present analysis, the influence function a will be assumed to be continuous and 
differentiable throughout V, including 0', hence ex= 0 on 0'. However, the dependence 
of oc on the structural shape will not be supressed. The influence function a and attenu­
ation parameter e are usually determined with dispersive wave experiments in solid state 
physics. In the present analysis, no considerations will be given as to the specific functio­
nal form of a for the purpose of generality [3, 4]. 

The nonlocal constitutive equations (2.8) may also be written as 

(2.9) a,1 = f exG,1dV, 
V-a 

where G,1 is simply defined by the classical Hooke's law as 

(2.10) 

http://rcin.org.pl



http://rcin.org.pl

516 R. A. MERle; 

Integration by parts considering discontinuities will be frequently used in the present 
study, and hence is given for two general differentiable functions u and v as follows: 

(2.11) J uv,,dV = J uvn,dS- J vu, 1dV+ j[uv]m1da, 
Y-a S-r V-a a 

where a and r represent discontinuity surface and curve in V and on S, respectively. 
The primary problem may now be given in terms of Gii by substituting Eq. (2.9) into 

(2.1)-(2.5) and utilizing integration by parts, Eq. (2.11), in the following form: 

(2.12) in V-a: f a.Gu.1dV- f a.Gun1dS- fa.[ GtJ]m1da = -b,; 
Y-a S-r a 

(2.13) on Su: u1 = u?; 

(2.14) on Sr: [ f a.Gudv] n1 = tP; 
V-a 

(2.15) on a: [u,] = 0; 

(2.16) on a: ( f a.[ Gu]dv] m1 = o; 
V-a 

where the fact that 

(2.17) 

has been employed, along with a. = 0 on a. It is noted that surface and interface integrals 
are involved in the field equation (2.12) due to the nonlocal character of the primary 
problem. 

3. A general performance criterion 

In inverse problems, for example, shape design, optimization or identification problems, 
integral functionals of the system's response play an important role. A general integral 
functional (i.e., the performance criterion) may now be defined, which could serve as 
a functional to be minimized or simply as an integral behavioural constraint to be satis­
fied. The general performance criterion I is thus given as follows: 

(3.1) I= J f(u1, au)dV+ J g(u1, t1)dS+ j[h(ub t1)]da, 
V-a S-r a 

where f, g and h are continuous and differentiable functions with respect to their arguments 
in their domains of integration; r denotes boundary surface curves on S across which 
discontinuities of boundary data or geometry occur. In particular, for only boundary 
data discontinuity on a smooth surfaceS, S-F would be equal to Su+St, where F is the 
boundary surface curve between Su and S,. 

It is now desired to find the effects of shape variation of S and a on the functional I, 
while the primary problem defined in the last section is satisfied, i.e., the so-called SDSA. 
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Once the SDSA is completed, iterative mathematical programming methods can be uti­
lized for any structural optimization or shape identification problem at hand in nonlocal 
linear elasticity. 

4. Material derivative concept 

The problem of any sensitivity analysis is to compute explicitly derivatives of perfor­
mance criteria with respect to decision variables. In the present study, the structural shape 
itself represents the decision variable. This type of problems are inherently more complex 
than the structural optimization problems where the shapes are defined by cross-section 
and/or thickness variables, which appear explicitly in the system's (primary) equations 
.and performance criteria. 

It is noted that the integral functional /, Eq. (3.1), has a nonlocal character in that 
it has integrals as well as differentials as its arguments, as dictated by the nonlocal cons­
titutive equations (2.8). 

The SDSA for local structures has been investigated throughly in a recent book [1]. 
An excellent interpretation for the SDSA has also been given in a recent paper [I 0]. In the 
present SDSA. the material derivative (MD) concept (or interpretation) of Refs. [11 
and 12] will be utilized. Discontinuities across a and r, and their variations will also be 
{;Onsidered [9, 14]. 

Since !he shape of domain V of the nonlocal elastic solid body is treated as the decision 
(or design) variable, it is convenient to think of Vas a continuous medium and utilize 
the MD idea from continuum mechanics. Thus, the general formula pertaining to the 
MD of a domain (or volume) integral tp1 containing a discontinuity surface a and defined 
by 

(4.1) 

is given as follows: 

(4.2) 

tp1 = J udV 
V-a 

tp 1 = J u' dV + J u Vn dS + J [ u] Vm da, 
V-a S-r a 

where u is a general (differentiable) function; (·) and ( )' denote the material and partial 
derivatives of ( ), respectively [11, 12]; Vn and V m are the normal components of the design 
perturbation velocity Vn on S and a, respectively. It is noted that the pointwise MD of 
a general function u is defined by 

(4.3) 

where the partial derivative (PO) · operator commutes with the space derivatives, i.e. 

(4.4) (u, 1)' = (u'), 1• 

The MD of a general (piecewise smooth) surface integral tp2 defined by 

(4.5) tp2 = J udS 
s-r 
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is given in the following form: 

(4.6) ip2 = J [u'+(u,n+Hsu)Vn]dS+ f[u]V14dF+}; J (u+V14++u-V14-)dFk, 
s-r r k r" 

where ( ),n represents the normal derivative of() on S; Hs is the curvature of the boundary 
S in R2 and twice the mean curvature of S in R3 ; V is the unit vector normal to r and 
tangent to S; ti?.e symbol [ ] in this case indicates a discontinuity across r E S; the plus 
and minus signs attached to quantities denote that they are evaluated at the plus and 
minus sides of r, respectively; the summation is taken over all the surface curves rk 
bounding piecewise regular surfaces of S [14]. 

S. Direct method of SDSA 

It is possible to use different methods of SDSA, one of which is the direct method. 
In this method, the local variations (i.e., the PD's with respect to T) of functions are 
directly evaluated in terms of an auxiliary problem, and then substituted into the MD 
form of the performance criterion I. The procedure for the direct method of SDSA may 
be given in the following form: 

Step 1: Take the MD ·of/. 
Step 2: Take the PD of the field equations. 
Step 3: Take the MD of the boundary and jump conditions. 
Step 4: Take the PD of the constitutive equations. 
Step 5: Define an auxiliary problem. 
Step 6: Obtain the MD of I in terms of the primary and auxiliary variables. 
It is noted that, although the PD forms of the functions may be expressed in terms 

of variations of some decision parameters, such an approach will not be adopted at the 
outset. The above-outlined procedure will now be applied to the performance criterion 
I, Eq. (3.1), subject to the primary problem equations given in Sect. 2. 

5.1. The MD of I 

Step 1: The MD of/, Eq. (3.1), can be formally taken by employing the general 
MD formulas (4.1), (4.2), (4.5) and (4.6) as 

(5.1) i = J (;~ u;+ a~, u;,)av+ J [(f+g.,+H,g)V,+ ;~ ul+ ~:. t;]as 
V-a S-r 

+ f [g]V,.dF+ 2 f (g+V14++g-V14-)dFk, 
r k rt 

where ( ),rn is the normal derivative of () on a; Ha is the curvature of a. The functions 
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u;, t; and ai1 may be taken as denoting the auxiliary displacements, tractions and stresses, 
respectively. For the evaluation of i, Eq. (5.1), the auxiliary variables must be evaluated 
in the direct method. 

Step 2: The PD of the equilibrium equation (2.1) may simply be given by 

(5.2) 

where the commutative property of the PD operator is understood. It is also assumed 
that the distributed body forces b1 depend on the structural shape. 

5.2. The MD of the boundary and jump conditions 

Step 3: By using the general MD formula for continuous functions, Eq. (4.3), 
the MD of the boundary conditions (2.2) and (2.3) yield the following expressions: 

(5.3) 

(5.4) on st: t; = i?- t,,k vk. 

Since t1 = a11 n1 = t1° on Sr, the MD of this equation also gives 

(5.5) 

Introducing the MD of n1 in the form [10, 14] 

(5.6) 

it may be shown that 

(5.7) 

Similar expressions may be obtained for the MD forms of the jump conditions (2.4) 
and (2. 5) resulting in 

(5.8) 

(5.9) 

(5.10) 

on a: [u;] = -[ut,m]Vm; 
on a: [t;] = -[t1,m] Vm; 

on a: [a~1]m1 = [a11](~1z-mJmz)mkVk,z- [au.k]mJVk, 

where Eqs. (2.6) and (2. 7) have been utilized. 

5.3. The PD of the constitutive equations 

Step 4: _ The stress a11 at a point x1 is given by Eq. (2.9) in terms of a volume integral. 
Hence, due to this nonlocal property of a1b its PD form will be evaluated by the general 
MD formula for a volume integral, i.e., Eqs. (4.1) and (4.2), in contrast to the local 
theory. Thus, · 

(5.11) a;1 = J (cxG~1 + cx'G,1)dV + J cxG11 ~dS + J cx[Gu] Vmdii. 
V-o S-r a 

The PD form of G11 is, in turn, given by 

(5.12) 

where A.' = f.t' = 0 have been taken. 
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5.4. Auxiliary problem 

Step 5: The auxiliary stress alb given by Eq. ( 5.11 ), is now inserted into the aux­
iliary equations (5.2), (5.7) and (5.10). Using integration by parts, Eq. (2.11), and Eq. 
(2.17), the auxiliary problem is stated in terms ofui (and Gi1) as follows: 

(5.13) in V-a: J rxG;1,1dV- J rxGI1n1dS- J rx[G~1]m1 da 
V-a S-r a 

-bl- f rx'G,1,1dV+ f (rx'GI}-rx,kG,k~Yn1 dS 
V-a s-r 

a 

(5.14) on Su: ui = uf-u,,t Vk; 

(5.15) on Sr: [ J rxG~1dV]n1 = t,0 +alJ(~1,-n1n,)nkVk,,-atJ,kn1 Vt 
-a 

- [ f rx'GI}dV+ f rxG,}VndS+ f rx[GtJ]vmdi1Jn1 ; 
V-a S-r a 

(5.16) on a: [u;] = -[u1,m]Vm; 

(5.17) on a: [ J rx[Gi1]dv]m1 = [au](d1,-m1m,)mkVk,,-[au,t]m1 Vt 
V-a 

-( f rx'[G11]dV+ f rx[G,1]v;;as]m1 • 
V-a S-r 

It is noted that the expressions on the righthand sides of Eqs. (5.13)-(5.17) are treated 
as known, since the primary problem is solved first for a structural shape configuration. 
For the solution of the auxiliary problem, the V1 distribution in the whole domain is 

· , , • o "o necessary, along With b1, oc , ui and t1 • 

If the auxiliary variables are assumed to be given in terms of some decision parameters 
</Jk, they can be expressed as, for example, [13] 

(5.18) u'· = au, dl/Jk = ~ dl/Jk• 
' a4>k 

Introducing similar expressions for the other auxiliary variables, the auxiliary problem 
can be expressed and solved in terms of "'. It is important to realize that in that case for 
each decision parameter l/Jk, one auxiliary problem will have to be constructed and solved. 

Step 6: If the solutions of the primary and auxiliary problems are introduced into 
Eq. (5.1), the MD (i.e., the total variation) of the performance criterion I may be ob­
tained, thus concluding the direct method of SDSA. 

6. Adjoint variable method of SDSA 

The local variations of the primary variables in a SDSA may be eliminated by using 
adjoint variables in the so-called A VM of SDSA, instead of directly calculating them as 

http://rcin.org.pl



http://rcin.org.pl

SHAPE DESIGN SENSITIVITY ANALYSIS IN NONLOCAL ELASTICITY 521 

in the previously studied direct method. The procedure for the A VM may be outlined 
in the following form for nonlocal elastic structures: 

Step I: Augment the performance criterion I by incorporating the equilibrium 

Step 2: 
Step 3: 
Step 4: 
Step 5: 

equations. 
Integrate by parts. 
Take the MD of the augmented functional. 
Substitute the PD form of the constitutive equations. 
Interchange the order of integration and rename the dummy variables 
of integration. 

Step 6: Integrate by parts again. 
Step 7: Substitute the MD forms of the boundary and jump conditions. 
Step 8: Define the relevant adjoint problem. 
Step 9: Obtain the MD of I. 
In the following subsections, the above given procedure will be employed for the pre­

sent nonlocal elasticity problem. 

6.1. Augmentation of I and integration by parts 

Step I and 2: In the AVM of optimization, the equilibrium Eqs. (2.1) are incorpo-
rated into I in terms of the adjoint displacements uf as follows: 

(6.1) I= I+ J uf(O'u,1+b1)dV. 
V-a 

Integration by parts, Eq. (2.11), is then used for the stress term in the above equation 
yielding f as 

(6.2) I= J (f-O'iiu~1 +b,ui)dV + J (g+t1ut)dS+ J [h+t1ut]d0', 
V-a S-r a 

where Eq. (3.I) has been substituted. 

6.2. The MD of I 

Step 3: Using the general MD formulas, Eqs. (4.I), (4.2), (4.5) and (4.6), the MD 
of J may be written as follows: 

(6.3) /;.. J [ of , ( *' of ) ' *' b *' *b']av = - -U·- U· 1--- 0'11 -0't1 U · ·+ ,u. +U· ,. au ' ,, 0(] , ,J • ' ' 
V-a l l} 

+ J { [{- a,1ut,1+h1u,* +(g+t1ut}..+H,(g+t1ut)]V. 
s-r 

og , ( og *) , *'} ds +au, u,+ at, +u, ti +t,u, 

+ f~[f-O'tJU~J+b,ut + (h+t,ui),m+Ha(h+t,u~)]Vm 
a -

7 Arch. Mech. Stos. S /87 
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(6.3) 
(cont.] 

oh , ( oh *) , *'-11.-J + OUt Ut+ -Ott +u, t,+ttui - uCf 

+ j .. [g+ttui';]V"dF+ ,.2; J [(g+ttut)+v"++(g+ttui)-v"-]dFk,. 
r k r" 

where the discontinuity surface (i.e. interface) a in V has been assumed as smooth and 
closed, as before. 

6.3. The PD form of the constitutive equations 

Step 4 and 5: The second integral term in Eq. (6.1) can be treated separately for 
convenience, thus define n' as 

(6.4) n' = f {u~}- a!Ja·:}av. 
V-a 

The PD form of the constitutive equations, Eq. (5.11), is then substituted into n' yielding 

(6.5) n' = j ( ut1- a!J [ j ( cxG;1 +a<' G;J)dV + f cxGI} V. aS+ j ex[ G,1]Vm au] av. 
V-a V-a S-r a 

Now, changing the orders of integration and renaming the dummy variables of integra­
tion, n' can be transformed by employing Eq. (5.12) into the following form: 

(6.6) n' = J {a~ui.1 +ut,1 [ J tX'G~dV]}dV+ J u1 , 1 a~V"ds+ J[ut, 1a1j]Vmda, 
V-a V-a S-r a 

where the adjoint stress tensor afJ is defined by the equations given below: 

(6.7) arJ = f £XG~dv, 
V-a 

(6.8) 

6.4. Integration by parts 

Step 6: Integration by parts, Eq. (2.11), is utilized for the third integral term in 

Eq. (6.3) and for the first term of n' in Eq. (6.6) yielding j as follows: 

( 6.9) j = j { < "1}.1 + h,) ut' + ( a:io1 + ::. ) u; + ut hi - u,,1 [ j cx'GMV]} av 
V-a V-a 
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(6.9) 
[cont.) 

+ f I[ [f- criJ ur,r u, ,J cr:J + b, ut + (h + t 1 ut) ,.,+H.(h+ t1 ut)] V,. 

+ {;;,- tt}u; +{:~ +ut) t;]ldcr+ j [g+t,ur]V.dl' 

+ ,2 J [(g+tlut)+v~+ +(g+tlun-v~-JdFk, 
k rk 

where tt = a~nb denoting the adjoint tractions. 

6.5. Adjoint problem 

Step 7 and 8: The MD form of the boundary conditions, Eqs. (5.3) and (5.4), and 
of the jump conditions, Eqs. (5.8) and (5.9), may be inserted into Eq. (6.9). On the discon­
tinuity surface a, proper jump conditions for the adjoint displacements and tractions 
are also imposed. 

The coefficients of the local variations of the primary variables (i.e., u; and t;) are 
equated to zero, hence defining the adjoint problem corresponding to I as given below: 

(6.10) in V-a: * of 
aij,J = - oul ' 

(6.11) on Su: * og u, = -at;, 

(6.12) on Sr: * og t, = --
OU;' 

(6.13) on a: [ur] = -1[;~]1' 
(6.14) on a: [t:] =I[:;. Jl· 
Substituting the adjoint constitutive equations (6.7) into the above equations, the adjoint 
problem may also be given in expanded form for comparison purposes as 

(6.15) in V-a: f aG;*j,jdV- f aG~njis- f a[GiJ]mjdU = - of 
oul ' 

V-a S-r a 

(6.16) on Su: * og u, = -ar;, 

(6.17) on S,: * og 
ti = au,' 

(6.18) on a: [u:] = -1[;~]1• 
(6.19) on a: L£ <~[G:J]dV ]m1 =I[ ;;.JI. 
7* 
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6.6. The MD of I 

Step 9: Assuming that the primary and adjoint problems are satisfied for a current 
shape configuration of the structure, the MD (i.e., the total variation) of the general 
performance criterion I is finally given as follows: 

+ f [f-GtJuf.J-ui,JGtj+b,uj +(g+t;ui) ,n+Hs(g+tiut)] VndS 
s-r 

+ 1 (::,- rt) (U? -u,,, V,)dS+ 1 (~~+ut) (t~0 -t1 ,,V,)dS 

+ J [fr- ""ut,1- u,,1u/j+b, ut + (h+ t1ui) ,m 

a -

+H.(h+t1ur>- (::, -t~)u,,m- ( Z~+uT) 11,m][ Vmdu+ f [g+t,ur]V,dl' 

+.}; J [(g+t,ur>+v~++(g+t;ui)-v~-]dFk. 
k r" 

It is noted that i, as given by Eq. (6.20), is expressed solely in terms of boundary per­
turbations V,., Vm and V~, requiring no assumptions on the distribution of V1 in the whole 
space. This fact serves as an example of the most important feature of the present A VM 
of SDSA regarding the efficiency of any numerical calculations. In the case of parameter­
constrained variation of the boundaries, the boundary perturbations can also be expressed 
in terms of finite number of decision parameters, as has been done in the direct method 
of SDSA. 

7. Concluding remarks 

A few conclusive remarks regarding the SDSA procedures for nonlocal elastic solids 
are due at this point and are outlined in the following: 

1) In the direct met~od of SDSA, the (local) variations of the primary field variables 
are evaluated explicitly by means of the solution of auxiliary problems. In the case of the 
AVM, however, they are not evaluated but eliminated through the introduction of adjoint 
variables satisfying the adjoint problem [13]. 

2) An auxiliary problem is defined for each decision parameter, while adjoint problems 
are constructed corresponding to each of the integral functionals present in a specific 
situation. 

3) The local variations b; and rx', and the total variations it? and ip are known due to 
assumed forms of the body forces, influence function and boundary conditions, respec-
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tively. In particular, when the boundary conditions are conservative and do not depend 
on the surface configuration, their total variations are given only by "convective" de­
rivatives [10]. 

4) Any geometric singularities of the interface surface a can also be attended for by 
following a similar procedure as for the boundary surface S. 

5) The SDSA procedures presented in the paper should prove to be useful for physical 
problems described by integral equations, as well as integro-differential equations. 
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