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A hemivariational inequality approach to the delamination effect 
in theory of layered plates 

P. D. PANAGIOTOPOULOS and G. E. STAVROULAKIS (THESSALONIKI) 

THE DELAMINATION effect in layered, laminated or sandwich plates is studied in this paper. 
In order to describe the debonding effect between the consecutive layers, the behaviour of the 
binding material is described by a generally nonmonotone and possibly multivalued law. Thus 
the problem can be formulated as a hemivariational inequality. This inequality is studied, taking 
the existence and the approximation of its solution into consideration, by using compactness 
and average value arguments. Finally the C0 -convergence of the introduced general discre
tization scheme is investigated. 

Rozwai:a si~ zjawisko delaminacji w platach warstwowych, laminowanych i sandwiczowych, 
Dla opisania zjawiska utraty sp6jnosci poszczeg6lnych warstw, zachowanie si~ materialu wicti:cl
cego opisuje siC( za pomoe(\ w og6lnosci niemonotonicznej i niejednoznacznej funkcji stanu. 
W ten spos6b problem sformulowac mozna w postaci nier6wno§ci p61wariacyjnej. Istnienie 
jej rozwi(\zania oraz jego dokladnosc bada si~ rozwai:aj(\c jego zwartosc i wartosci srednie. 
Na koniec bada siC( r6wniez zbieznosc C0 wprowadzonego schematu dyskretyzacji. 

PaccMaTPHBaeTcH HBJieHHe genaMHHaQHH B cnoHCTbiX, JiaMHHHpoBaHHbiX H CaHABKl!oo6paa
HbiX JIHCTaX. ,r(.nH: OIIHCaHIDI HBJieHHH IIOTepH CBH3HOCTH OTgeJibHbiX CJIOeB, IIOBegeHHe CBH-
3b1Ba:IOI.Qero MaTepHana OIIHCbiBaeTCH IIpH IIOMOIIUI B o6II{eM HeMOHOTOHHOH H HeOAH03HatmoH 
<I>YHKIUIH COCTOHHIDI. Ta.KHM o6pa30M rrpo6neMy MO>KHO c<l>opMy11HpoBaTb B Bl{ge IIOJiyBap
HaiUfOHHOrO HepaaeHCTBa. Cyi.QeCTBOBaHHe ee pemeHHH H ero TotJHoCTb HCCJiegyeTcH, pac
cMaTPHBaH ero I<OMrrai<THOCTb H cpegHHe 3HaqcHHH'. Hru<oHeQ, Hccnegye-rcH To>Ke cxogHMOCTb 
C0 BBegeHHOH CXeMbl gHCI<peTH3aQHH. 

1. Introduction 

IN THE PRESENT paper we formulate and study the delamination problem for layered plates 
in terms of hemivariational inequalities. The developed theory holds for any type of 
laminated and sandwich plates allowing for the de bonding of the laminae. It is well known 
[1] that the interlaminar normal stresses may cause debonding normally to the contact 
area as well as interlayer slip. Both these phenomena are responsible for the strength 
degradation of the composite plates. Here we shall study the first effect by assuming that 
the binding material introduces a nonmonotone, possibly multivalued law, connecting 
the interlaminar stresses with the corresponding relative displacement normally to the 
interlayer surface. Indeed the interlaminar normal stress is considered (cf. e.g. [1, 2]) to be 
the main delamination cause. This law yields the variational formulation of the problem 
as a hemivariational inequality which permits the determination of the delamination 
fronts. 

Due to the nonmonotonicity of the law, i.e. the lack of convexity of the corresponding 
"potential", the variational formulation is no longer a variational inequality (cf. e.g. 
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[3]) but a hemivariational inequality ( cf. e.g. [4]). The theory of variational inequalities 
is closely connected with convex analysis: indeed we may obtain variational inequalities 
as expressions of the principle of virtual power-or work-if certain "generalized forces" 
are monotone, possibly multivalued, functions of the generalized displacements and this 
law can be expressed in terms of the subdifferential [5] of a convex, nonsmooth, potential 
called superpotential (see e.g. [6] and for relative references [4]). In the case of lack of 
monotonicity, i.e. if we have nonmonotone, possibly multivalued laws we may define 
nonconvex superpotentials [7, 8, 4] and the subdifferential a has to be replaced by the gener
alized gradient a," a notion recently introduced (cf. e.g. [9]) by F. H. Clarke-R. T. Roc
kafellar. In this case we get hemivariational inequalities, the mathematical study of which 
was initiated in [10, 11, 12, 4]. In contrast to the theory of variational inequalities whose 
study is based on monotonicity arguments the study of hemivariational inequalities is 
based on compactness arguments. Moreover, we obtain instead of minimum problems 
for the potential and complementary energy substationarity problems [8, 4, 13, 14, 15]. 

In the present paper the interlaminar action normal to the contact surface is simulated 
by a general law derived by a nonconvex superpotential. The arising hemivariational 
inequality is studied, taking into consideration the existence and the approximation of 
its solution. Then the approximation properties are studied and the C0-convergence of 
a general discretization scheme presented here is proved. 

2. The interlaminar superpotential law 

Let us consider a layered plate consisting of m-layers. Each layer is an elastic plate 
and is referred to · a right-handed orthogonal Cartesian coordinate system Ox1 x2 x 3 

(Fig. 1). The plates have constant thicknesses h1 , h2 , ••• , hm, and the middle surface of 
each plate coincides with the respective Ox1 x2-plane. Let Qh j = I, 2, ... , m be open, 
bounded and connected subsets of R 2 and suppose that their boundaries F1 are Lipschitzian 
(C0•1-boundary). The domains Q1 are occupied by the plates in their undeformed state. 
On !Jj c !J1n!J1+ 1 (Q1 is such that lJjnF1 = 4> and DjnF1+ 1 = </>) the plates j and j+ 1 
are bonded together through an adhesive material. We denote by CJ(x) the deflection 
of the point x = (x1 , x2 , x 3) and by jj = (0, 0,/3J), / 31 = f 3ix) (hereafter called jj 
for simplicity) the distributed load of the considered plate per unit area of the middle 
surface (Fig. 1). In order to describe the bonding action in the Ox3-direction by means 

of a phenomenological law, we splitjj into iJ E L 2 (!J1), which is the given external loading 
acting on the j-th plate, and Jj which denotes the interaction between the plate under 
consideration (plate j) and the plates j- 1 and j + I , caused by the bonding material, i.e. 

(2.1) 

]j consists of two parts: the part ]j describing the influence due to the bonding with the 
plate j-I (upper plate) and the part iJ describing the influence of the bonding with the 
plate j+ I (lower plate). Obviously Jf = 0 and J! = 0, i.e. the upper (resp. the lower) 
surface of the first (resp. the last) lamina are not subjected to bonding forces. 
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FIG. 1. Notations in the theory of layered plates. 

Then we make the general assumption that the force jjo_ 1 of the adhesive material 
between the U-1)- and the j-plate is generally a multivalued nonmonotone function 
[31_ 1 of the relative displacement 

(2.2) 

,af the plates j-l,j. 
We write that 

(2.3) 

where 

(cf. Fig. la). We note (cf. Fig. ld) that 

(2.4) 

and 

(2.6) 

and rl_ ro 
Jj- JJ on 

Ji" = 0 on !J1 -Q)_t, 

lJ = 0 on Q1-Qj. 

Qj_l 

The simplest law describing the interlaminar forces and the impenetrability of the 
laminae is depicted in Fig. 2a. The binding material may sustain a small positive traction; 
then rupture occurs, which is ideally brittle (AB) or semibrittle (AC), at the point under 
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consideration of the interface. More realistic is the diagram in Fig. 2b which describes 
the behaviour of an interlaminar bonding sheet with initial thickness h1 , which can be 
compressed up to hj ~ h1 • The condition of impenetrability holding for every two succe
ssive laminae is described by vertical branches ODin Fig. 2a, b. Here we can surpass the 
plate theory assumption of the incompressibility of plate in the Ox3-direction by incorpo
rating such a deformation into the P-diagrams. Thus we allow the line OD of the inter-
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FIG. 2. Interlayer reaction-displacement diagrams. 

laminar law to have a small slope (OD'). It is worth noting that the interlaminar laws 
can be more complicated (Fig. 2c, d) and may include local' cracking and crushing effects 
of ideally brittle or semibrittle behaviour (cf. also [8, 4]). Note the similarity of the sawtooth 
diagrams of Figs. 2c, d with Scanlon's diagram of reinforced concrete in tension [27] .. 
In the present paper we make a very general assumption, i.e. that p: R --+ &'(R) is a non
monotone multivalued function which may include "filled in" gaps of finite length (Fig. 
2e). Let {J1 be a locally bounded measurable function {J1 : R--+ R, i.e. {J1 E L~c(R) (dotted 
line in Fig. 2c). 
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For any s > 0 and ~ E R we define the numbers 

(2.7) ~,(~1 ) = ess sup fJ1(~) and f!J,(~1) = ess inf /J1(~), 
iEt-EI t~;;e IE t-El <s 

which are the increasing and decreasing function of s, respectively. Therefore we may 
formulate for s ~ 0 the lim~,(~) = fJ1 (~) and the limP1e(~) = Pi~) and thus we define 

the multivalued function p1 : R ~ 9(R) by setting (co~plete lin; in Fig. 2(e)) 

(2.8) 

It is proved [16] that if Pi~.z.o) exists for every ~ E R, then a locally Lipschitz function 
ffJ i: R ~ R can be determined up to an additive constant such that 

(2.9) 

Here fPJ is defined by the relation 

~ 

(2.10) fP1 = f Pit)dt 
0 

and a is the generalized gradient of F. H. CLARKE [9]. 
Then Eq. (2.3) can be written as 

(2.11) -f/-1 E P1-1<~) = affJJ-1(~), 
which by definition, is equivalent to the hemivariational inequality 

(2.12) ffJJ_ 1 (~, z-~) ~ -f/_ 1 (z-~), Vz E R. 

Here cpJ_ 1 ( • , ·) denotes the directional derivative of F. H. Clarke which reads ([9]) 

(2.13) 

In Eq. (2.11) cp1_ 1 is the nonconvex superpotential of the multivalued law ([7, 4]). 

3. Derivation of the hemivariational inequality 

Further we develop a theory which holds for isotropic, orthotropic or anisotropic 
plates which are homogeneous or inhomogeneous. This is due to the fact that in the theory 
of laminated plates the laminate may exhibit different orthotropy or anisotropy in order to 
"tailor" a composite plate having the required properties. We write for the j-plate, con· 
sidered as completely free, the principle of virtual work in the form 

(3.1) rx/C1 , z1) = J jjz1d!J1+ J Q/C1)z1dF1 

DJ TJ 

f OZJ T 
- M1(C1) on. d 1 , 

TJ J 

assuming that rxiC1 , z1) is the bilinear form of the plate's elastic energy, Q1 and M1 are, 
respectively, the total shearing force [17] and the bending moment at the boundary rh 
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n = {n1 } is the outer unit normal vector to F1 and Z1 is the set of the kinematically admis
sible deflections C1 , which, since the plate is free, coincides with the classical Sobolev-space 
([18, 19]) H 2 (Q1). Equation (3.1) is written for appropriately regular functions and holds 
in the framework of the Kirchhoff plate theory and its generalizations for orthotropic or 
anisotropic, homogeneous or inhomogeneous plates; i.e. no plate stretching is considered 
here. However, interlayer slip may occur in the framework of the theory presented here 
only as a result of the Bernoulli assumption. A more complete study of the interconnection 
between debonding due to normal stresses and interlayer slip whould require the v. Kar
man plate theory and this is not the attempt of the present paper. In the case of an isotropic,. 
homogeneous plate we have that 

(3.2) 

(3.3) 

(3.4) 

a(C, z) = K f [(1-Y)C,apZ,cx,:J+YL1CL1z]dQ, a, {3 = 1, 2, 
{} 

M(C) = -K[YL1C+(l-y) (2ntn2C, 12 +n~C. 11 +n~C,22)], 

Q(C) = Q(C)- aM(C) aT 

= K[ a~c +(1-v) :. [n,n2(C. 22 -C,u)+ (nl-nDC. d]. 

Here K = Et 3 /12(1-Y2
) is the bending rigidity of the plate with E and Y the modulus of 

elasticity and the Poisson ratio, respectively. 
From Eqs. (3.1 ), we obtain through addition the expression 

m m 

(3.5) 21 
a1(C1 , z1 - C1) = 2 J Q1(z1 - ; 1)dF1 

i=l i=1 rJ 

m m 

-2 J MJ azl a~ acl dFJ + ~ f f.lzJ- CJ) dQj 
i=l rJ 1 

i=l nJ 

m-1 

+ 2 J f1°([z]1 - [C]1)dQ~, Vz1 E Z1 ,. 

j=l D} 

and from Eqs. (3.5) and (2.11) we get the variational expression 

m m-1 m 

(3.6) 2 a1(C1 , z1-C1)+ 2 J cpJ([C]1 , [z]1-(C]1)dQj ~ 2 J Q.J(z1 -C1)dFJ 
i= 1 i= 1 nj i= 1 rJ 

which, due to the appearance of the terms cpJ([C], [z]- [C)), is a hemivariational inequality 
(see e.g. (4] ch. 4). 

Until now we have not yet specified the boundary conditions of the problem. We shall 
assume that the boundary conditions are the classical ones of the plate theory. Note that 
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different boundary conditions can be assigned to each plate. Thus if the j-plate is clamped 
on F1 , then we assume that ( cf. also [3]) 

(3.7) { az } o zj = zjlzj E H 2 (Qj), Zj = 0, a~ = 0 on rj = H 2 (Qj). 

If the j-plate is simply supported on FJ c F1 (z1 = 0 and M1 = 0 on F1) and free on F1 - Fj 
(M1 = 0, Q1 = 0 - or more generally MJ = M1o and Q1 = Q1o, M1~ and Q1o given-on 
F1 - Fj), then 

(3.8) 

and if F1 = Fj then 

(3.9) 

We will study the hemivariational inequality (3.6) on the assumption that for each plate 
the boundary conditions guarantee the coerciveness of the bilinear form. We make generally 
the following assumption: 

AssUMPTION 1. The elastic energy function {CJ, z1 } ..__. rxJCCb z1) is a continuous bilinear 
form on H 2 (Q1) x H 2 (Q1). Moreover the boundary conditions guarantee that rxJ(Ch z1) 

is coercive, i.e. there is a constant c > 0 such that 

(3.10) 

Here II· II denotes the classical H 2-norm [19]. 
This assumption is satisfied for isotropic or orthotropic homogeneous plates, if the 

boundary conditions do not permit a "rigid-plate" deflection, i.e. a deflection which is 
.a polynomial of degree one in x 1 and x 2 (q = q0 +q1 x 1 +q2 q2 ). This is guaranteed, for· 
instance, in the case of a partially clamped plate or in the case of a simply supported 
plate on r;, on the aassumption that r; is nonrectilinear. In this context we refer the reader
to (20, 3]. 

In the case of nonhomogeneous plates it suffices to assume that the elasticity coefficients 
are functions from L00 (!J1), taking values in given bounded intervals. 

The boundary conditions, considered here nonhomogeneous, are incorporateed into the 
kinematically admissible sets ZJ which now become closed linear submanifolds of H 2 (QJ), 
i.e. translations of closed linear subspaces of the space H 2 (Q1). We note that the natural 
boundary conditions M1 = M1o or Q1 = Q1o are "complementary" to the boundary con-

ditions ~~ = gb CJ = hj, where Mjo, Qjo and gj, h) a~e prescribed functions on rJ as 

it is the case in classical variational methods [22]. Of course in the considered functional 

framework the foregoing integrals in Eqs. (3.1) shall be written as (MiC1), ~~~ ) 112 

and (Q1(CJ), C1) 312 , where ( ·, · ) 112 denotes the duality pairing on H 112 (F) x n- 112 (F), 
and<.' . )3/2 the duality pairing on H 312 (I') X H- 312 (F). Note that MJ(C) E n-l/2(F), 
ac Tn e H 112 (I'), QAC) e H- 312 (F) and C1 e H 312(F) by the trace theorem [21]. For example, 

if plate Q1 is subjected to the boundary conditions 
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(3.11) 

(3.12) 

where r; is nonrectilinear, then rx1(Cb C1) is coercive and Eqs. (3.1) can be written, by 
taking now into acc~unt the boundary conditions, in the form 

(3.13) 

where 

on on 

and /1 is a linear continuous functional on H 2(!J1), i.e. 11 E [H2 (Q1)]', defined by 

(3.14) (/J, ZJ) = J jjzJd!J+(Qo, z)3J2,r1-r;-(Mo, ozJ )1J2,r1-r}', 
DJ On 

where < · , ·) denotes the duality pairing on H 2(!J1) x [H2(Q1)]' and < · , · ) 112 ,r1-r} 

denotes the restriction of the corresponding functional to F1 - Fj' (i.e. if M 0 E L 2 (I') 

then the last term in Eq. (3.14) becomes J M0 ~z dr). 
" un 

FJ-FJ 

We note finally that in the case of nonhomogeneous boundary conditions an appro-
priate translation is performed transforming the problem into a homogeneous one; thus 
we shall assume that Z1 is always a closed linear subspace of H 2 (Q1). Now we can pose 
the general problem. 

PROBLEM 1. Find C1 E Z1 , .i = 1 , 2, ... , m such as to satisfy the hemivariationa1 ine
quality 

m m-1 m 

{3.15) _2;rxiChz1-C1)+ _2; f qJJ([C]1 , [z]1 -[C]1)dQj;;:;: };<lhz1-C1), Vz1 EZ1 
i=l j=l nj j=l 

under assumption 1. 
In the next section we shall study this hemivariational inequality . 

. 4. The existence of the solution of the problem and its approximation 

We assume, according to [23], that f3J "ultimately" increases, i.e. that for some e E R 

{31(- oo) = esssupf3J(~) ~ essinf {31(~) = f3i + oo), 
.-(4.1) (-oo, -e> (+E. +oo) 

which, without loss of generality and by an appropriate translation of the coordinate 
. axes, can be written as 

·(4.2) {31(- oo) = ess sup {31 (~) ~ 0 ~ ess inf {31 (~) = f3i + oo). 
(-oo, -~) (H.+oo) 

. Note that it is possible in the relations (4.1) and (4.2) that {31( ± oo) = ± oo. 
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In order to define the regularized problem, we consider a mollifier, that is p e C~( -1, 
+ 1) with p ~ 0 and 

00 

(4.3) f p(~)d~ = 1. 
-oo 

Let also the following convolution product 

(4.4) f3Je = Pe* fJJ, E > 0 

be defined, where p,(~) = + p ( ! ) . The regularized problem I e reads: 

PROBLEM le. Find C1e E Z1 , j = 1, 2, ... , m such as to satisfy the variational equality 

m m-1 m 

(4.5) 2 rxACJe' ZJ)+ 2 J f3Je([Ce]J)[z]Jd.Qj = 2 (/J, ZJ), VzJ E Z1 • 
j= 1 1= 1 .oj j= 1 

By introducing a Galerkin basis of Zb j = 1, 2, ... , m and by denoting as Z1,. the cor
responding n-dimensional subspace of Zb we obtain the finite-dimensional problem: 

PROBLEM ~en. Find C18,. E Z1,., j = I , 2, ... , m such as to satisfy the variational equality 

m m-1 m 

(4.6) 2 rxJ{CJen' zJ)+ 2 J f3Je([CenlJ)[z]Jd.Qj = 2 (/J, ZJ), Vzl E ZJn• 
J=l J=l n} 1=1 

PROPOSITION 4.1. Suppose that iJ E L 2 (.Q1), that assumption holds for each plate 
and that the relation ( 4.2) is satisfied. Then Problem 1 has at least one solution. 

P r o o f. the equality ( 4.6) is written in the form 

(4.7) (A(Ce,.), z) = o, 
for z = (z1 , ••• , Zm), Vz1 E Z1,., j = 1, 2, ... , m. 

Because of the relation (4.2) we may determine (for each j,j = 1, 2, ... , m-1), 
e11 > 0 and e12 > 0 such that f31e(~) ~ 0 if~ > f!JI, f3Je(~) ~ 0 if~ < -e11 and 1{31,(~)1 ~ 
~ e12 if 1~1 ~ f2ll· Therefore the following holds on each interlayer: 

(4.8) f f3Je([Cen]j)[Cen]Jd.Qj = f fJJe([CenJJ) [C,,.)Jd.Qj 
.o} I£C611JJI >~Jl 

+ f f3Ja([C,,.Jj)_[Ce,.]1d.Qj ~ 0-e11 e12 mes.Q]. 
I£CBnJJI ~I!Jl 

From the coerciveness assumption (Eq. (3.10)), the boundedness of the external loading 
functions and the relation (4.8), we find 

m m-1 

(4.9) (A(Ce,.), Cen) = 2 rxiCJen' Cjen)+ 2 f f3je([CenlJ) [Cenljd.Qj 
1=1 1=1 n} 

m m m-l m 

-2 (/J, zJ) ~ 2 cJllCJanll 2
- 2 f2Jtf2J2mes.Qj- 2 c}IICJenll, 

J=l }=1 j=l }=1 

c1 , cj const > 0, j = 1, 2, ... , m. 

6 Arch. Mech. Stos. 5/87 

http://rcin.org.pl



506 P. D. PANAGI010FOUlOS AND G. E. STAVROUlAK 

Thus, according to Brouwer's fixed point theorem ( cf. e.g. [24], p. 53) the relation ( 4. 7) 
has a solution with IIC1enll < r1 , j = 1, 2, ... , m. 

Further we shall investigate the behaviour of the solution fen of the finite demensional 
problem I en as e -+ 0 and n -+ oo . Due to the fact that { C1en} is bounded in Z1 , j = I , ... , m 
we may extract a subsequence again denoted by { C1en} such as for e -+ 0, n -+ oo to satisfy 

(4.10) C1en-+ C1 weakly in zb j = 1, 2, ... , m. 
From the compact imbeddings H 2(Q1) c L 2(Q1), and the relation (4.10), we get that 

(4.11) C1en-+ C1 strongly in L 2 (!J1), j = 1, 2, ... , m 

and 

(4.12) 

Further, we show that under the assumption (4.2) {,818([Cent)} is weakly precompact in. 
L 1 (Qj)e). To this end, and due to the Dunford-Pettis theorem ([25], p. 239), it suffices to 
show that for each p,1 > 0 and ~1 (p,1) > 0 can be determined such that for w1 c !J; with 
roes w1 < ~1 

(4.13) 
WJ 

From the obvious inequality (cf. [23]) 

(4.14) 

we have 

We obtain the boundedness of J i,81e([Cen]1) [CenlildQ as follows. We have that 
Wj 

(4.16) f i,8Js([CsnJJ)[C,nJJid!J; = f 1,8Je([Cen]J)[Cen]J id!Jj 
n} I£C£•<x>J11 > (!Jt 

+ f i,8Je([Cen])[Cen]Jid!Jj = f j ••• jd!Jj- f J .. . jdQ} 
llCen(x)JJ I ~llJt !lCen(x)JJ I > e11 llCsn(x)JJ I ~e11 

C> For the present specific plate problem we have that H 2 (D) c C0 (Q) c L 00 (.Q) (imbe
ddings). Moreover Pe is a Coo-function and thus (4.25) results immediately without using the 
Dunford-Pettis. theorem and the estimates (4.13)-(4.24). However, this procedure is necessary 
in most other types of nonmonotone nonlinearity and in any other type of functional setting. 
Indeed in any hemivariational inequality formulated in the H 1-space the above procedure is 

necessary because H 1(.Q) ¢ C0 (Q). The same holds for any type of nonlinearity term p (.) for 
which the previous C0-imbedding does not hold. For instance, let us consider in a plate problem 

a non mono tone boundary condition Me p (::); then 

;g e H 1 12 (I) but H 1 ' 2 (F) ¢ C0 (F). 
ou . 

In this case Z1n c :i1 = { zlz e ZJ> oz e L 00 {F)}: U Z1~ is dense in Z1 for the H 2 -norm. on ,. 
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(4.16) +2 f , ... ld.Qj~ f ... d.Q)+ f ... d.Q)+2 f , ... ld.Q} 
(cont.] I!C6,(x)J11 :s;;e11 !IC611(x)JJI >e11 llC611{x)JJIE>eJ1 I£C6,(X)J1t:s;;"Jt 

= f /Jje([Cen]j)[C,n]jd.Qj+ 2 f 1/Jje([C,n]j)[C,n]Jie<.Qj • 
.o} I£C,,(x)JJI :s;;eJt 

In order to proceed we set in the equality (4.6) z1 = z1 E Z 1, such that z1 = z2 on .Q~, 
Zz = Zz E Z2n such that z2 = z3 on .Q~, ... 'Zj-1 = Z]-1 E ZJ-1,n such that ZJ-1 = CjeJt 
on.Qj_l' Zj = Cjen on.Qb Z]+l = ci+1en on.Qi+1' Zj+2 = ZJ+2 EZJ+2,n such that Zj+2 = c}+l,en 
on .QJ+l' Zm = Zm E Zm,n such that Zm = Zm-1 on .a;,._l. 

Here we have that ll.i111 < c, .i = 1, 2, ... , m. Thus we obtain from the equality (4.6) 
by using the continuity of the bilinear and linear forms and the fact that IIC1,,jj < c 

(4.17) f /Jje([Cen]j)[Cen]jd.Qj ~ C • 

.oj 

From the relations (4.16), (4.17) and (4.8), we obtain that 

(4.18) f /Jje([Cen]J)[C,n]jd.Qj+2 f 1/Jje([Cen]J)[C,,.]jjd.Qj 
.oj lfC8,{x)JJI :l;;flJt 

~ c +2e11 e12 mes.Qj, V j = 1, 2, ... , m-~. 

Since w 1 c .Qj, 

(4.19) j IPJe([Cen]J)[C,n]Jid.Qj ~ J i .1Je([Cen]J)[C,n]Jid.Qj~ C +2!?Jt !?J2mes.Qj. 
WJ .OJ 

Also from 
8 

(4.20) sup 1/11.(~)1 = sup IPe*P1 1 = sup I j p,(t)fJJ(~-t)dtl 
l$1 o;:;;o 1;1 :s;;Eo lEI ~Eo -e 

~ sup lesssup/Ji~-t)l ~ sup lesssup/Jix)j ~ esssup PA~), 
IEIE>Eo ltl~e IE!:s;;eo lx-;j:s;;t IEI:s;;Eo+l 

we get that 

J sup IPJe([C,nlJ)Id.Q ~ j esssup 1/JA[C,n]J)Id.Q. 
w

1 
I£C6,JJI :s;;Eo CJlJ ![C611]Ji E>~o+ 1 

(4.21) 

We can choose ~0 such that for all e and n 

(4.22) L J IPJe([C,,]i) [Cenlild.Qj ~ ;
0 

(c + 2Qit Q)2 mess.Qj) < i , 
WJ 

due to the relation (4.19) and 15 such that (cf. the relation (4.21)) for mesw < 15 

(4.23) 

Then 

I' esssup IPA~)I ~ -2~ . 
!e!E>Eo+ 1 u 

(4.24) J sup IP1,([C,,]1)1d.Q ~ esssup 1Pi[C,]1)1mesw1 ~ ~ 15 = ~ . 
CJlJ ![C611(X)]JIE;;Eo I[C6,(x)]JI"'Eo+l 
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The relations (4.I5), (4.22) and (4.24) yield the relation (4.13), i.e. that {,818([C8,]1)} is 
weakly precompact in L1{!J;), for j = I, 2, ... , m-I. 

Thus, as e -+ 0 and 'YJ --+ oo, a subsequence again denoted by {P1e([C8,]1)} can be 
determined such that 

(4.25) 

By passing to the limit n-+ oo, e -+ 0 in the Galerkin form (4.6) and since 

[z]1 E Z1 c: H 2(Q) c: L 00 (!J;) for D; c: R2 j = I, 2, ... , m-1, 
we find that 

m m-1 m 

{4.26) }; (l.iC1 , z1)+}; J x1 [z]1dQ = }; (li, z1), V z1 E Z1 • 

J=l )=1 D} i=1 

To complete the proof we shall show that 

(4.27) x1 E ~([C)) a.e. in !Jj. 

From the relation (4.11) and by applying Egoroff's theorem (see e.g. [19]) we can find 
that for every <X > 0 we can determine w1 and w2 with mesw1 < <X and mesw2 < <X such 
that Cjen--+ c) uniformly in Qj-Wj, j = I' 2, ... , m-I' where cj E L 00 (!Jj-Wj). Actually 
C1e, --+ C1 strongly in L 00 (!J1) due to the compact imbedding H 2(Q1) c: C0 (li1) and the 
imbedding C0 (Q1) c: L 00 (!J1). Due to the uniform convergence for any e > 0, we can 

determine e0 < ~ , n0 > : such that for e < eo, n > n0 

(~.28) 

Therefore for every <X > 0 we can determine w with mesw < <X such that for any p, > 0 

and for e < e0 < i and n > n0 > ~ 

(4.29) 

But since we have used a mollifier to construct Pie' the following hold: 

8 

(4.30) PJe(;) = (Pe*Pi) (;) = J Pi;-t)Pe(t)dt ~ esssupf1J(;-t), 
-e lt i <B 

and analogously 

(4.3I) essinf,Bi(;-t) ~Pie(;). 
!tl <B 

Due to the relations (4.29) (see also the numbers (2.7)) 

(4.32) ,81e([Ce,]1) ~ esssup PAC)~ esssup Pi(C) ~ esssup {11(;) = ~~([C]), 
llCen1r~i <e llCenJrel <~/2 llCJrel <p 

and analogously 

(4.33) 
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For e ~ 0 a.e. in D;-w), arbitrarily chosen with e E L 00 (Q' -wj), we obtain from the 
relations (4.32) and (4.33): 

(4.34) j Pjp([~]1)edQ ~ j Pie([~en]J)edQ ~ j flJp([~]J)edQ, 
~-~- ~-~ ~-~ 

and in the limits as s ~ 0, n ~ oo 

(4.35) J ~1p([~]1)edQ ~ j x1edQ ~ 
~-~ ~-~ 

j P1JS([ ~]1) edQ. 
.o}-w) 

By Lebesgue's theorem, as p, ~ 0 + we take 

(4.36) J ~1([~]j)edQ ~ j x1edQ ~ j Pi[~]j)edQ. 
~-~ ~-~ ~-~ 

Since e ~ 0 is arbitrary, the relation (4.36) implies that 

(4.37) x1 E P~([~]1) a.e. in Qj-wj, j = 1, 2, .. . , m-1 

and by taking oc as small as possible we get Eq. (4.26). 

5. The C0-convergence of the approximate solution. Substationarity 

In the previous section we have shown that ~Jan~ ~1 weakly in Z1. Here we shall study 
the strong convergence, by introducing an additional assumption. 

PROPOSITION 5.1. Let all assumptions given in the previous section be valid and suppose 
that there exist q1 ~ 1 and constants c1 > 0 such that 

(5.I) IPi;)j ~ cii+I~Iq1), v; E R, j = 1, ... , m-1. 

Then ~J•n ~ ~1 strongly as s ~ 0, n ~ oo in Z1• 

Proof. Problem 1 (Eq. (2.28)) implies by setting z1 = ~1"" j = I, ... , m-1 that 

m m m-1 m 

(5.2) 2 rxi~j' C1) ~ 2 rxi~1, ~jan)+ 2 j <TJJ([~]j, [~snlj- [C]j)dQJ- 2 (IJ, C1a,.-C1). 
j=l j=l )=1 .o} j=l 

From problem I sn (Eq. 3.6)) we obtain 

m m m 

(5.3) 2 rxi~jen' ~len)= 2 rxi~Jen' Zjn)+ 2 f PJs([~enJj) ([zn]j- [~en]j)dQ; 
j=1 )=1 j=1 .o} 

m 

-2 (/}, Zj,- Cjen), v Zjn E Zjn' j = I' 2, ... 'm. 
J=l 

The coerciveness of the problem together with the relations (5.2) and (5.3) implies 

m m m 

(5.4) _l. c1 11~1 -Cjenll 2 ~ 2 rxiCJ-~jen' ~}-~}en)= 2 rx1(Cj, ~J) 
)=1 )=1 )=1 

m m m m 

+ 2 rxi~1en, ~jan)- 2 rxA~j, ~jan)- 2 rxi~jsn, C1) ~ 2 rxi~h Cjen) 
. j=l )=1 j=1 j = l 
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m-1 m m 

(5.4) 
(cont.) 

+ L J 9JJ([C]1, [Csn11- [CL)d.Q;-}; (11, .C1sn- C1> + L Ci1(C1an' ZJn) 
)=I .o} )=I i=l 

m-1 m m 

+ }; J p1,([C.n]1) ([zn]j- [Cen1J)d.Qj- }; (11, Zjn- cj,n)-}; etiCJsn' CJ) 
J=l .o; J=l J=l 

m 

-}; rxiC1, C1en), v Zjn E Zjn' j = 1' 2, ... , m, 
i=l 

We take z1n, j = 1, 2, ... , m such that as n ~ oo 

(5.5) 

From the right-hand term of the relation (5.5) it remains for us to calculate for E ~ 0, 
n ~ oo the terms 

m 

(5.6) }; {lim J l/JJ([C]J, [Csn]1- [C]1)d.Q+lim J P1s([Cen]1) ([zn]J- [C,n]J)d.Q}. 
J=l .oj .o) 

Using the hypothesis (5.1) and the definition of l/JJ (Eq. (2.13)), we have for each j 

[CJJ+h+.'.{[C841J+ [CJJ} 

(5.7) f 9JJ([C1Jt [C,n11- [C]1)d.Q = J li~~~P ~ f Pit)dtd.Q 
.o/ .oj h-+0 (CJ1+h 

[CJJ+h+.l.{[C811)J+ (CJJ} 

~ c1 J lim sup ! J (1 + lt/fJ)dtd.Q 
I A-+0+ A .o1 h-+0 lCJ1+h 

= CJ f (1 + [C]11) ([Cen]j- [C]j)d.Q . 
.a} 

Due to the compact imbedding H 2 (.Q1) c LqJ(.Q1), q1 ;::: 1, the fact that .Q} c .Q1 and by 
means of Minkowski's inequality, we obtain: 

(5.8) 

Since [C]1 E La;(.Qj), we obtain for s ~ 0, n ~ oo 

(5.9) lim J l/JJ([C]b [Cen]J- [C]J)d.Q = 0 . 
.o} 

From the expression ( 4.25) we have 

( 5.1 0) · II fJJe( [ CanJJ) II L1 (.0~) < C1 • 

Moreover the compact imbedding H 2 (.Q1) c C0 (Q1), implies that 

(5.11) [Cenl1 ~ [C]1 strongly in La;(.Qj). 

Therefore, we have that 

(5.12) I J lfJJe([Csn]1) ([zn]1- [C,n]1) d.Ql ~ IIPJe([Cen]1)llv(.o;) ll [zn]i- [C,"]JI I L CXJ (.O~) 
.a} 
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This inequality, for t -+ 0, n -+ oo, yields 

(5.13) lim j IJJe([Can]J) ([zn]J- [Ce11]J)d.Q = 0. 
n} 

511 

Thus the relations (5.4) with the relations (5.8) and (5.12) imply the strong convergence 

of C18,. to C1 in H 2 (.Q1) for j = 1, 2, ... , m, and since H 2 (.Q1) c C0 (Q1) is compact, we will 
have convergence in the C0 (Qj)-norm. 

This last result may be interpreted in the language of the Finite Element method by 

choosing the finite dimensional spaces Z1n appropriately [26]. 
The study of the hemivariational inequality (3.15) leads to a substationarity problem 

{cf. [8, 4] p. 146) for the potential energy 

m m-1 m 

{5.14) II(C) = ~ 2 rxiC1 , C1)+ 2 f cp1(C1)d.Q- 2 (11 , C1), 

J=l J=l .n; J=l 

.of the laminated plate. The substationarity problem may be put in the form 

0 E 8[17(~) + lz(C)], 

{5.15) 

where lz(C) = {0 if C E Z, oo if C ¢: Z}. Each solution of the problem (5.15) is a solution 
.of problem 1. The conditions under which the converse is true may be found in [4] p.150. 

We note here that every local minimum of the potential energy II over Z is a substationarity 
point and thus a solution of the hemivariational inequality (3.15). Due to the lack of 
·Convexity, the problem has not generally a unique solution. 
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