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A hemivariational inequality approach to the delamination effect
in theory of layered plates

P. D. PANAGIOTOPOULOS and G.E. STAVROULAKIS (THESSALONIKI)

THE DELAMINATION effect in layered, laminated or sandwich plates is studied in this paper.
In order to describe the debonding effect between the consecutive layers, the behaviour of the
binding material is described by a generally nonmonotone and possibly multivalued law. Thus
the problem can be formulated as a hemivariational inequality. This inequality is studied, taking
the existence and the approximation of its solution into consideration, by using compactness
and average value arguments. Finally the C°-convergence of the introduced general discre-
tization scheme is investigated.

Rozwaza si¢ zjawisko delaminacji w platach warstwowych, laminowanych i sandwiczowych,
Dla opisania zjawiska utraty sp6jnosci poszczegblnych warstw, zachowanie si¢ materialu wiaza-
cego opisuje si¢ za pomoca w ogdlnodci niemonotonicznej i niejednoznacznej funkeji stanu.
W ten sposdb problem sformulowaé mozna w postaci nieréwnosci pétwariacyjnej. Istnienie
jej rozwiazania oraz jego dokladno$¢ bada si¢ rozwazajac jego zwarto§¢ i wartodci $rednie.
Na koniec bada si¢ réwniez zbiezno$¢ C° wprowadzonego schematu dyskretyzacii.

PaccmarpiBaeTcs ABJICHHE JeJaMMHAUMH B CJIOMCTBIX, JIAMHHHPOBaHHEIX M CaHJBHY00Opa3-
HBbIX JicTax. IS onmucaHus siBJIEHHMs ITOTEPH CBASHOCTH OTAENBHBIX CIIOEB, IOBEAEHHE CBSA-
3BIBAIOLIEr0 MATEPHATIA OIHMCHIBACTCA IIPH NIOMOIH B 00LIEM HEMOHOTOHHOM H HEOXHO3HAUHOM
dbynxrmu cocrosuua. Taxum obpasoMm nmpobieMy MoXKHO chOpMYIHPOBATE B BHAE IOJYBap-
HalMOHHOTO HepaBeHcTBa. CyIleCTBOBAHHME €€ PELUeHMs M ero TOYHOCTh HCCJIeHyeTcs, pac-
CMaTpHBasA ero KOMIAKTHOCTh H CpeqHHe 3HaveHus. Hakoneu, uccnenyercs Toyke CXOAUMOCTb
C° BBEJEHHO CXEMbI JUCKPETH3IAITHU.

1. Introduction

IN THE PRESENT paper we formulate and study the delamination problem for layered plates
in terms of hemivariational inequalities. The developed theory holds for any type of
laminated and sandwich plates allowing for the debonding of the laminae. It is well known
[1] that the interlaminar normal stresses may cause debonding normally to the contact
area as well as interlayer slip. Both these phenomena are responsible for the strength
degradation of the composite plates. Here we shall study the first effect by assuming that
the binding material introduces a nonmonotone, possibly multivalued law, connecting
the interlaminar stresses with the corresponding relative displacement normally to the
interlayer surface. Indeed the interlaminar normal stress is considered (cf. e.g. [1, 2]) to be
the main delamination cause. This law yields the variational formulation of the problem
as a hemivariational inequality which permits the determination of the delamination
fronts.

Due to the nonmonotonicity of the law, i.e. the lack of convexity of the corresponding
“potential”, the variational formulation is no longer a variational inequality (cf. e.g.
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[3D but a hemivariational inequality (cf. e.g. [4]). The theory of variational inequalities
is closely connected with convex analysis: indeed we may obtain variational inequalities
as expressions of the principle of virtual power—or work—if certain “generalized forces”
are monotone, possibly multivalued, functions of the generalized displacements and this
law can be expressed in terms of the subdifferential [5] of a convex, nonsmooth, potential
called superpotential (see e.g. [6] and for relative references [4]). In the case of lack of
monotonicity, i.e. if we have nonmonotone, possibly multivalued laws we may define
nonconvex superpotentials [7, 8, 4] and the subdifferential ¢ has to be replaced by the gener-
alized gradient 5,-a notion recently introduced (cf. e.g. [9]) by F. H. Clarke-R. T. Roc-
kafellar. In this case we get hemivariational inequalities, the mathematical study of which
was initiated in [10, 11, 12, 4]. In contrast to the theory of variational inequalities whose
study is based on monotonicity arguments the study of hemivariational inequalities is
based on compactness arguments. Moreover, we obtain instead of minimum problems
for the potential and complementary energy substationarity problems [8, 4, 13, 14, 15].

In the present paper the interlaminar action normal to the contact surface is simulated
by a general law derived by a nonconvex superpotential. The arising hemivariational
inequality is studied, taking into consideration the existence and the approximation of
its solution, Then the approximation properties are studied and the C°-convergence of
a general discretization scheme presented here is proved.

2. The interlaminar superpotential law

Let us consider a layered plate consisting of m-layers. Each layer is an elastic plate
and is referred to- a right-handed orthogonal Cartesian coordinate system Ox;x,;x;
(Fig. 1). The plates have constant thicknesses 4,, 45, ..., h,,, and the middle surface of
each plate coincides with the respective Ox, x,-plane. Let 2,, j = 1,2, ..., m be open,
bounded and connected subsets of R? and suppose that their boundaries I'; are Lipschitzian
(C%1-boundary). The domains £2; are occupied by the plates in their undeformed state.
On Q) = 2,nQ;,, (£2; is such that ﬁjnfj =¢ and 2)nTI,, = ¢) the plates j and j+1
are bonded together through an adhesive material. We denote by {;(x) the deflection
of the point x = (x, x;, x3) and by f; = (0,0, f35), f3; = f3;(x) (hereafter called f;
for simplicity) the distributed load of the considered plate per unit area of the middle
surface (Fig. 1). In order to describe the bonding action in the Ox;-direction by means
of a phenomenological law, we split f; into f; € L*(£2,), which is the given external loading
acting on the j-th plate, and fj which denotes the interaction between the plate under
consideration (plate j) and the plates j—1 and j+1, caused by the bonding material, i.e.

2.1) f,-=f,+f:, on Q.

f; consists of two parts: the part f}* describing the influence due to the bonding with the
plate j—1 (upper plate) and the part ﬁ describing the influence of the bonding with the
plate j+1 (lower plate). Obviously f* = 0 and f = 0, i.e. the upper (resp. the lower)
surface of the first (resp. the last) lamina are not subjected to bonding forces.
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F1G. 1. Notations in the theory of layered plates.

Then we make the general assumption that the force f°, of the adhesive material
between the (j—1)- and the j-plate is generally a multivalued nonmonotone function

f;—1 of the relative displacement

2.2) (-1 = 51—
of the plates j—1,j.
We write that
2.3) -2 Eéj—x(ff—l—cf) = éj—l([d]—l) on £,

where

2y =200, Q}-xf‘rj =¢, Q_nl=4¢
(cf. Fig. la). We note (cf. Fig. 1d) that

@24 fi=—f2, and fl=f° on £,
and
=0 on £,-2_,,

2.6) .
=0 on Q,-9.

The simplest law describing the interlaminar forces and the impenetrability of the
laminae is depicted in Fig. 2a. The binding material may sustain a small positive traction;
then rupture occurs, which is ideally brittle (4B) or semibrittle (4C), at the point under
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consideration of the interface. More realistic is the diagram in Fig. 2b which describes
the behaviour of an interlaminar bonding sheet with initial thickness /;, which can be
compressed up to &y < h;. The condition of impenetrability holding for every two succe-
ssive laminae is described by vertical branches OD in Fig. 2a, b. Here we can surpass the
plate theory assumption of the incompressibility of plate in the Ox;-direction by incorpo-
rating such a deformation into the f-diagrams. Thus we allow the line OD of the inter-

a b &
A-77
e L]
/
//
by |D
d e . &
\-fF \-7.B;, B

hl'

A

f3: complete line

7,
& P J3 : dotted line

F1G. 2. Interlayer reaction-displacement diagrams.

laminar law to have a small slope (OD’). It is worth noting that the interlaminar laws
can be more complicated (Fig. 2c, d) and may include local cracking and crushing effects
of ideally brittle or semibrittle behaviour (cf. also [8, 4]). Note the similarity of the sawtooth
diagrams of Figs. 2c, d with Scanlon’s diagram of reinforced concrete in tension [27].
In the present paper we make a very general assumption, i.e. that §:R - 2(R) is a non-
monotone multivalued function which may include “filled in” gaps of finite length (Fig.
2e). Let f; be a locally bounded measurable function f;:R — R, i.e. f; € L3 (R) (dotted
line in Fig. 2c).
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For any ¢ > 0 and £ € R we define the numbers

27 Biu(€) = esssup f(§) and B (§) = o inf §,(¢),

61— E|<e - Hs‘
which are the increasing ancl decreasing function of &, respectlvely Therefore we may
formulate for ¢ — 0 the limﬁ,,,(&) B;(&) and the lim,,(§) = B,(£) and thus we define
the multivalued function /31 R — 2(R) by setting (complete line in Fig. 2(e))

(2.8) Bi(®) = [B,(®), B,(®).

It is proved [16] that if 8;(£,,) exists for every £ € R, then a locally Lipschitz function
@;:R = R can be determined up to an additive constant such that

29) Bi®) = 2p,(®).
Here ¢; is defined by the relation

&
(2.10) ¢ = [ Bit)dr

and 0 is the generalized gradient of F. H. CLARKE [9].
Then Eg. (2.3) can be written as

@11 ~fR1 € B ®) = Bg, (O,
which by definition, is equivalent to the hemivariational inequality
(2.12) gi-16,z2-8 > —f21(z—8), VzeR.
Here ¢? (-, *) denotes the directional derivative of F. H. Clarke which reads ([9])
E+h+iz
2.13) ¢4, 2) = limsup %“(Hhﬂ?"%"‘(“h) = limsup % f Bi-1(6)dE.
"0 haG  &+h

In Eq. (2.11) @;_, is the nonconvex superpotential of the multivalued law ([7, 4]).

3. Derivation of the hemivariational inequality

Further we develop a theory which holds for isotropic, orthotropic or anisotropic
plates which are homogeneous or inhomogeneous. This is due to the fact that in the theory
of laminated plates the laminate may exhibit different orthotropy or anisotropy in order to
“tailor” a composite plate having the required properties. We write for the j-plate, con-
sidered as completely free, the principle of virtual work in the form

G 4G, z) = f fi72d0+ f 0,(¢) 4,
fM(c:) Sar, viez, j=13..m,

assuming that «;(¢;, ;) is the bilinear form of the plate’s elastic energy, Q; and M, are,
respectively, the total shearing force [17] and the bending moment at the boundary I7,
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n = {n;} is the outer unit normal vector to I'; and Z; is the set of the kinematically admis-
sible deflections {;, which, since the plate is free, coincides with the classical Sobolev-space
([18, 19]) H?*(R2,). Equation (3.1) is written for appropriately regular functions and holds
in the framework of the Kirchhoff plate theory and its generalizations for orthotropic or
anisotropic, homogeneous or inhomogeneous plates; i.e. no plate stretching is considered
here. However, interlayer slip may occur in the framework of the theory presented here
only as a result of the Bernoulli assumption. A more complete study of the interconnection
between debonding due to normal stresses and interlayer slip whould require the v. Kar-
man plate theory and this is not the attempt of the present paper. In the case of an isotropic,
homogeneous plate we have that

(3.2) w(,2) = K [ [(1=9)E opz,as+vA0421dQ, o, f= 1,2,
0

(3.3) M) = —KPpAL+(1=v) 2nyny 8, 24018, 14030, 20)],
aM(C)

G4 00 =00)-

= K| 2L 4 (1L tumalCma =510+ 61— |

Here K = Et3/12(1—+?) is the bending rigidity of the plate with E and » the modulus of
elasticity and the Poisson ratio, respectively.
From Eqgs. (3.1), we obtain through addition the expression

m

G5 D) ulnz-8) = 2 [ ee-tpar,

Jj=1 j=1 1Ty
_Z fM, 35’ dr',+ ff,(z ~£)de,

J_

+Z [ r-wa;, vzez,
=1 _Q}

and from Egs. (3.5) and (2.11) we get the variational expression

m

m-—1 "
0O X urn-0+ ) [, b~ > D [BE-tdn
j=1 g_’, j=1 Iy

i=1

S b2,— 2L, (=
- (M By N [ e -tyae, vaez,
=1 J i=1 o,

which, due to the appearance of the terms @J([{], [z]— [{]), is a hemivariational inequality
(see e.g. [4] ch. 4).

Until now we have not yet specified the boundary conditions of the problem. We shall
assume that the boundary conditions are the classical ones of the plate theory. Note that
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different boundary conditions can be assigned to each plate. Thus if the j-plate is clamped
on I, then we assume that (cf. also [3])

(1]
(3.7) Z = {z,[zJ e H*(2),2, =0 =0 on P,} H*(Q)).

L7
* on
If the j-plate is simply supported on I'; = I'j (z; = 0 and M;= 0 on I)) and free on I';—1I7;
(M; =0, Q; = 0 — or more generally M; = Mjo and Q; = Qjo, M5 and Q0 given—on
I‘_f"—‘F_;)’ then

(3.8) Z_, == {Zjlz_i EHZ(QJ), Z; = 0 on F.;},
and if T, = I} then

0
(3.9) Z; = H*(Q)nH'(2)).

We will study the hemivariational inequality (3.6) on the assumption that for each plate
the boundary conditions guarantee the coerciveness of the bilinear form. We make generally
the following assumption:

AssUMPTION 1. The elastic energy function {{;, z;} = o;(;, z;) is a continuous bilinear
form on H?*(2;)x H*($2;). Moreover the boundary conditions guarantee that oy(¢;, z,)
is coercive, i.e. there is a constant ¢ > 0 such that

(3.10) a(z,2) = cllmll ¥z e HA(Q).

Here || || denotes the classical H2-norm [19].

This assumption is satisfied for isotropic or orthotropic homogeneous plates, if the
boundary conditions do not permit a “rigid-plate” deflection, i.e. a deflection which is
a polynomial of degree one in x; and x, (§ = go+4; X, +49>g;). This is guaranteed, for
instance, in the case of a partially clamped plate or in the case of a simply supported
plate on I';, on the aassumption that I} is nonrectilinear. In this context we refer the reader
to [20, 3].

In the case of nonhomogeneous plates it suffices to assume that the elasticity coefficients
are functions from L*(R2;), taking values in given bounded intervals.

The boundary conditions, considered here nonhomogeneous, are incorporateed into the
kinematically admissible sets Z; which now become closed linear submanifolds of H?(£2,),
i.e. translations of closed linear subspaces of the space H?(£2)). We note that the natural
boundary conditions M; = M, or Q; = Q0 are “complementary” to the boundary con-

oL, ; ;
ditions 6—€1 = g;, &y = h;, where M, Q0 and g;, h; are prescribed functions on I’ as

it is the case in classical variational methods [22]. Of course in the considered functional

L,

framework the foregoing integrals in Eqs. (3.1) shall be written as (M,(()), %, 212

and <Q,(8), {32, where -, + >, denotes the duality pairing on HY*(I") x H~'*(I'),
and (-, - >3, the duality pairing on H*?(I")x H-*>(I'). Note that M,({) e H**(I),

3C e H'(I), 0,(0) e H**(I") and {; € H¥*(I") by the trace theorem [21]. For example,

1f plate £2; is subjected to the boundary conditions
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G.11) z7=0 on IicI,, Q=Q, on TI,—Ij
(3.12) g—if=gj oo I'VcI,, M=M, on I,-I},

where I'; is nonrectilinear, then «;({;, {;) is coercive and Egs. (3.1) can be written, by
taking now into account the boundary conditions, in the form

(3.13) i z) =Lz, Vz€Z;,

where

and /; is a linear continuous functional on H?(£2)), i.e. [; € [H*(£2,)]', defined by

(3.14) Ky zp = fﬁZ,dQ-{-(Qo, z)3p2,r-r;— My, aai’ D12, r5-ry s
Q

where (-, -> denotes the duality pairing on H?(2;)x [H*(2)] and (-, * >y2,ry-r}

denotes the restriction of the corresponding functional to I;—1I7’ (i.c. if MyeL*(I)

then the last term in Eq. (3.14) becomes [ M, %dF).
ry-ry
We note finally that in the case of nonhomogeneous boundary conditions an appro-
priate translation is performed transforming the problem into a homogeneous one; thus
we shall assume that Z; is always a closed linear subspace of H?(£2;). Now we can pose
the general problem. :
ProBLEM 1. Find {;€Z;, j = 1,2, ...,m such as to satisfy the hemivariational ine=
quality
m m—1 m
5 \’ ’ \
G115 Y@=+ Y [, -1 = 3 <, z-8y, VzeZ,
J=1 =1 g j=1
under assumption 1.
In the next section we shall study this hemivariational inequality.

4. The existence of the solution of the problem and its approximation

We assume, according to [23], that §; “ultimately” increases, i.e. that for some &eR

, Bi(— 00) = esssup f,(£) < essinf §;(£) = f;(+ ),
4.1) (=, &) (+6 +®)

which, without loss of generality and by an appropriate translation of the coordinate
_axes, can be written as

@2) Pi=o0) = esssup B(8) S 0 < essinf §(9) = fy(+ ).

Note that it is possible in the relations (4.1) and (4.2) that 8;(+ 00) = + .
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In ordex to define the regularized problem, we consider a mollifier, that is p € C2(—1,
+1) with p > 0 and

o]

@) [ pyas = 1.

Let also the following convolution product

(44) ,Bjs = Ps*ﬁj; e>0
1
be defined, where p,(§) = oy p(é) The regularized problem le reads:

ProBLEM le. Find ;€ Z;, j = 1,2, ..., m such as to satisfy the variational equality

m m—1 m
(4.5) 2 aj(Cja, Zj)+ Z fﬁja([tz}j) [Z]jdg.ll = Z(lj: Z.i>1 VZJ € ZJ'
j=1 i=1 g3 i=1

By introducing a Galerkin basis of Z;, j = 1, 2, ..., m and by denoting as Z;, the cor-
responding n-dimensional subspace of Z;, we obtain the finite-dimensional problem:
PrOBLEM Yen. Find (jen € Zjn, j = 1, 2, ..., m such as to satisfy the variational equality

m m~—1 m
@6 NG+ D [BelCd)ld = N2y, Yz ez,
=1

j=1 i=1 g} j

ProrosiTION 4.1. Suppose that f, € L?(L2)), that assumption 1 holds for each plate
and that the relation (4.2) is satisfied. Then Problem 1 has at least one solution.
Proof. the equality (4.6) is written in the form

.7 (4¢.),2) =0,

for Z2=(y,...,2m), Y2, €Z4, j=1,2,...,m.

Because of the relation (4.2) we may determine (for each j,j=1,2,..,m—1),
51 > 0and g;; > 0 such that B,,(§€) > 0if & > gy, fss(é) < 0if § < —py; and |B4(8)] <
< oy, if |&] < g;;. Therefore the following holds on each interlayer:

@8) [ Bu(Cal)Calid® = [ Bullwl) s d%

_Q_', I[cBn]Jl >Q1

+ [ BllCl) [ d2; > 001 0 mesE;.

I(ca,,]ﬂ <ej

From the coerciveness assumption (Eq. (3.10)), the boundedness of the external loading
functions and the relation (4.8), we find

m m=1
@9 (ACD, En) = D) esCions G+ D [ BilCend) [y 42
i=1

=1 g}
m m m—1 m

- 2(11; zp 2 &l penll® = 2 0102 mes 2~ ZCJHC,,..H.
j=1 j=1 j=1 j=1

¢,cpconst >0, j=1,2,..,m.

6 Arch. Mech. Stos. 5/87
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Thus, according to Brouwer’s fixed point theorem (cf. e.g. [24], p. 53) the relation (4.7)
has a solution with ||{jell < 15, j=1,2, ..., m.

Further we shall investigate the behaviour of the solution f,,, of the finite demensional
problem 1., as ¢ > 0and n — 0. Due to the fact that {{;.,}is boundedinZ,,j =1, ..., m
we may extract a subsequence again denoted by {{..} such as for ¢ - 0, n » oo to satisfy

(4.10) n—C; weaklyin Z;, j=1,2,..,m.

From the compact imbeddings H?(2,) = L?(£2)), and the relation (4.10), we get that
4.11) lin— & strongly in  L2(Q), j=1,2,...,m

and

(4.12) Cen— & aein £, j=1,2,..,m.

Further, we show that under the assumption (4.2) {f;([{.s])} is weakly precompact in
L'(2)("). To this end, and due to the Dunford-Pettis theorem ([25], p. 239), it suffices to
show that for each p; > 0 and 6,;(#;) > O can be determined such that for w; = Q] with
mes w; < 0

4.13) mf 1Bre([Cenl )1 42} < 1.

From the obvious inequality (cf. 1[23])

(4.14) EolBie(®)] < 1B +éo sup [Bu()
we have

@19 [1puCaDa2 < [ allalid2+ [ sup IBuLal)d2.
wy wj ©J

i[%,.(’d]_,'%fn

We obtain the boundedness of f 1B1s([Cenly) [Cen)ild2 as follows., We have that

@16)  [1BuCldCaliid? = [ 1B(Cel) el 42
Qti “CLI(")]ﬂ)E_“
+ Bl = [ a2 [ 14
[[Len()yl <0y, [[Een@)]y| > ey, [[Len®)Nyl <oy

(') For the present specific plate problem we have that H?(2) c C°2) < L* (2) (imbe-
ddings). Moreover feis a C«-function and thus (4.25) results immediately without using the
Dunford-Pettis theorem and the estimates (4.13)-(4.24). However, this procedure is necessary
in most other types of nonmonotone nonlinearity and in any other type of functional setting.
Indeed in any hemivariational inequality formulated in the H'-space the above procedure is
necessary because H'(2) ¢ C° (£2). The same holds for any type of nonlinearity term f}(.) for
which the previous C%imbedding does not hold. For instance, let us consider in a plate problem

A [0
a nonmonotone boundary condition M e ﬁ(a—c—); then
n

g—ieH‘!Z(P) but H'2(I"y ¢ C°(I).

a 7
In this case Z), c Z; = {z}z €eZ;, éfe L (F)}: () Z,. is dense in Z, for the H>-norm.
n I3
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@16) +2 [ a2 < [ a2 [ a2 [ |6

[cont.] I[Cen@)y <050 Een@yl >0y 8,0yl <oy | (E) IR
= [ Bl Eakid@i+2 [ 1l Curlila2;.
!)3 '[ce,,(x)]ﬂ <o

In order to proceed we set in the equality (4.6) z; = Z; € Z,, such that Z, = z, on @,
z, = Z, € Zy, such that 2, = z; on £, ...,2;_y = Z;_; € Z;_,,, such that Z;_, = Cion
on®)_1,2j="{jenon825,2; 1=Cjs16n00 8541, 2j42=Zj42€Z; ;5 n5uch that Z;, , = {5,y
on Q,,, zy = Zy € Z,,, such that Zy = z,,—, on £,,_,

Here we have that [|Zj]| < ¢, j=1,2, ..., m. Thus we obtain from the equality (4.6)
by using the continuity of the bilinear and linear forms and the fact that ||Z;.,]] < ¢

@.17) [ Bl el d2) < ¢
a)
From the relations (4.16), (4.17) and (4.8), we obtain that

@18) [ Bl [Ca), 42 +2 [ 1Bl d2;

“Cu(x)]_’l S0
< ¢ +20;0,mesf;, Vji=1,2,..,m-1,
Since w; < 2],
@19 [ 1Bl Calld? < [ 3Ll )l A< ¢ +20;, 02 mes 2.
wy Q@)
Also from

(420)  sup 1B = sup Ip,X ) = supl jpe(r)ﬁ,(s-z)dz[

< sup lesssupf(E—1)| < sup Iesssupﬁ_,(x)l esssup B,;(),
[§l<éo |f|<e §l<bo |x~&|< |6l <bo+1
we get that
(4.21) [ sup IBu(al)dR < [ esssup 1B,([L.a])IdQ.
o, (9% IES w; [enlyl <Go+1

We can choose &, such that for all ¢ and n
l ’ I ’
4.22) s flﬁjs([Ce..L-) [CalildD) € —— (c+20j1 052 mess @) < £,
o & 2
wy

due to the relation (4.19) and 6 such that (cf. the relation (4.21)) for mesw < &

(4.23) esssuplﬁj(£)|
16| <éo+1
Then
(4.24) f sup  |B;e([Een))d2 < esssup  |B;([Cen);) mesw; < 7‘” d= —;i
6 1enll <o [[8en@)l <o+ 1

6‘
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The relations (4.15), (4.22) and (4.24) yield the relation (4.13), i.e. that {8;([Ccal))} is
weakly precompact in L!'(£2)), for j=1,2,...,m—1,

Thus, as € - 0 and 7 — o, a subsequence again denoted by {f8;.([{..];)} can be
determined such that

(4.25) Bie(llenl) = 2;  weaklyin  L'(£2)).
By passing to the limit n — o0, ¢ — 0 in the Galerkin form (4.6) and since

[z;€eZ, c H* () = L*(2)) for Q;cR> j=1,2,...,m-1,
we find that

(4.26) Z a,(cj,z,)+2 f 2,[21,d2 = Z(l,.,z,>, VzeZ,.
=1

Jj= j=1 g}

To complete the proof we shall show that

.27 1 €B(ED  ae in Q)

From the relation (4.11) and by applying Egoroff’s theorem (see e.g. [19]) we can find
that for every « > 0 we can determine w, and w, with mesw; < « and mesw, < « such
that {yn — ; uniformly in 2;—w;, j =1,2,...,m—1, where {; € L*(2;—w;). Actually
Cjen — C; strongly in L*(2;) due to the compact imbedding H*(2;) c C°(£2;) and the
imbedding C°(Q)) = L*(£2;). Due to the uniform convergence for any ¢ > 0, we can

2 2
determine ¢, < i, ny > . such that for ¢ < ¢g, n > ny

2
(4.28) |¢m—¢,1<_29_, VxeQ—w, j=1,2,..,m—1.

Therefore for every « > 0 we can determine w with mesw < o such that for any 4 > 0

andfora<ao<%andn>no>~/2;

(4.29) [Eal; =[] < % ¥ x e 2—w).
But since we have used a mollifier to construct S, the following hold:
(4.30) Bie(§) = (p%B) (§) = f Bi(E—Dp()dr < eiﬁsupﬂj(é—t),
and analogously
(4.31) essinff,(£—1) < B;:(8).

|t]<e

Due to the relations (4.29) (see also the numbers (2.7))
(432)  fu(llal) < esssup fi(0) < esssup  f,(0) < esssup fi(8) = (21,

CE"]J fi<e I(ce,,].‘—51</1/2 c &l <n
and analogously

(4.33) Biu(E]) < essinf B;(0) < Bre([Senl))-

€1—=¢l<n
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For e > 0 a.e. in 2j—wj, arbitrarily chosen with e € L*(£'—w}), we obtain from the
relations (4.32) and (4.33):

(4.34) | gu@ed2 < [ pultal)ed? < [ Bultlpede,
9;—‘”.'1 2)-wj 2)-w)
and in the limits as ¢ > 0, n &> ®©
(4.35) [ Buied2 < [ ged2< [ Buig])ede.
.Q",—wfr Q.’i—m.'r Q.lf—“’.’i

By Lebesgue’s theorem, as u — 0, we take

(4.36) [ e < [ ged2< [ BiLl)ede.
Q)—w) Qf—w) -0y

Since e > 0 is arbitrary, the relation (4.36) implies that

“4.37) i eﬂ,([{]j) ae. in Q—w;, j=1,2,...,m-1

and by taking « as small as possible we get Eq. (4.26).

5. The CC-convergence of the approximate solution. Substationarity

In the previous section we have shown that {j,, = {; weakly in Z;. Here we shall study
the strong convergence, by introducing an additional assumption.

ProposITION 5.1. Let all assumptions given in the previous section be valid and suppose
that there exist g; > 1 and constants ¢; > 0 such that

(.1 1B:(®] < (1+101%), VEeR, j=1,..,m-1.

Then (e — £; strongly as ¢ = 0, n = co in Zj.
Proof. Problem 1 (Eq. (2.28)) implies by setting z; = {jgm, j=1,...,m—1 that

G2 D a6, 8) < D oG L+ 2 f P32 el — [21,) 42, — Zaj, Croa— 03
j=1 j=1 Jj=1

From problem 1en (Eq. 3.6)) we obtain

(5'3) 2/ J(gjﬁn’ Cjen) - S (C_un» ZJH)+ f ﬂjc( CBH]J) ([ZH]J [Cen]j) dg}
i=1 J=l J g

<t
- 2, <1.19 zjn_cjan>’ Vzw€Zy,, j=1,2,..,m.
ji=1

The coerciveness of the problem together with the relations (5.2) and (5.3) implies

G4 D olll=Gmll? < 5‘ Y (T P T T W ()
j=1 j=1

* Z aj(Cjcnv Cjzn) - 2 aj((:j: stn) v aJ(CJGI” Cj) Z aj(Cj » Cjen)
i=1 Jj=1 = j=1

J
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. m—1 m m
(54 + ) [ @00 L= 81— X <l Gy £+ ) Cens 230)
cont, i=1 .Q; j=1 j=1
m-—1 m m
R S X ([ DY(CA P (o DY A S AT S S SN (S &)
j=1 Q; ji=1 Jj=1

- Zaj(gjs Cjan), VZJnEZ_M, _] = 1, 2, Ly m,
i=1

We take z;,, j= 1,2, ..., m such that as n —» o
(5.5) z,, = (; stronglyin Z; < H*(2), j=1,2,...,m.

From the right-hand term of the relation (5.5) it remains for us to calculate for ¢ — 0,
n — co the terms

66 fim [ @912l Ll — [21)dQ+lim [ Bi((Zul) ([2a)y — [Zenl ) a2}
j=1 Q) 2]

Using the hypothesis (5.1) and the definition of ¢} (Eqg. (2.13)), we have for each j
1+ A A[Ce,]y+ (1))

; 1
6D [ B, Gl-tpde = [imwe [ pddo
QJI o) h—»(; [CJJ+h
8+ h+ [, 1+ 181}
<¢ | limsup -1 f (1 +11]9) drde2
Y s W)y th

= o [ Q129 (@ - D42,
Qj

Due to the compact imbedding H2(2;) = L4(2)), ¢; = 1, the fact that 2; = 2; and by
means of Minkowski’s inequality, we obtain

(5.8) [Coonl; = [C];  strongly in LU(Q), g; > 1.
Since [£]; € L*(£2)), we obtain for ¢ - 0, n -
(5.9) lim [ @9([2), (o~ [£1)d2 = 0.
Qj
From the expression (4.25) we have
(5.10) [Bss([Cenl )l 1)y < €5
Moreover the compact imbedding H?(2;) < C°(2;), implies that
(5.11) [Cend; = [E];  strongly in  L¥()).

Therefore, we have that

G12) | [ 18l (i~ 42| < IB( (el ol znls— Lkl le=caly
2y

< ¢ill[zaly = Landillezaly € eillzay— [E1l| L@y + I E] = [Lenlil 2@ -



A HEMIVARIATIONAL INEQUALITY APPROACH TO THE DELAMINATION EFFECT 511

This inequality, for ¢ - 0, n — oo, yields
(5.13) lim f Bis([Lenl)) ([22);— [eal D d2 = 0.
o)

Thus the relations (5.4) with the relations (5.8) and (5.12) imply the strong convergence
of Ljento £;in H3(R2)) forj = 1,2, ..., m, and since H*(2)) < C°(§j) is compact, we will
have convergence in the Co(ﬁj)-norm.

This last result may be interpreted in the language of the Finite Element method by
choosing the finite dimensional spaces Z;, appropriately [26].

The study of the hemivariational inequality (3.15) leads to a substationarity problem
(cf. [8, 4] p. 146) for the potential energy

m m—1 m
(5.14) 1@ =+ Mot 0+ Y [ erae- Y, o,
j=1 i=1 g J=1
of the laminated plate. The substationarity problem may be put in the form
0 e IUIE) + L),
(5.15) ¥ w fF  a niey B B =2 By R B R o BT

where I;({) = {0if L e Z, oo if { ¢ Z}. Each solution of the problem (5.15) is a solution
.of problem 1. The conditions under which the converse is true may be found in [4] p.150.
We note here that every local minimum of the potential energy /7 over Z is a substationarity
point and thus a solution of the hemivariational inequality (3.15). Due to the lack of
convexity, the problem has not generally a unique solution.
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