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Leakage problem for ideal incompressible fluid motion in bounded
domain with nonsmooth boundary and vorticity prescribed in inflow

W. M. ZAJACZKOWSKI (WARSZAWA)

AN IDEAL incompressible fluid motion in a bounded domain in R? described by the Euler equa-
tions is considered. A boundary built up of one part is divided into three submanifolds S,,
S1, 5., between each two of them there is a dihedral angle. The fluid enters the domain
through S,, leaves it through S: and moves tangentially to S,. Initial and boundary data
(vorticity on .S;, normal component of velocity on all boundaries) are prescribed such that the
obtained problem is well posed. The existence and uniqueness of local solutions in Holder
spaces is proved, so the equations and data are satisfied classically. Upper bounds of magnitudes
of dihedral angles are found which follow from the theory of elliptic boundary problems in
domains with edges.

W pracy jest rozwazany ruch idealnego niescisliwego plynu w obszarze ograniczonym w R? opisa-
nym przez rOwnania Eulera. Granica, ztozona z jednej czgsci, jest podzielona na trzy podrozmaito-
§ci Sy, 81, 53, tak, ze miedzy kazdymi dwoma z nich jest kat dwuscienny. Plyn wplywa do obszaru
przez Sy, opuszcza go przez S, i plynie stycznie do S,. Przyjete sa dane poczatkowe i brzegowe
(wirowos$¢ na Sy, normalna skladowa predkoéci na calej granicy) takie, Ze otrzymany problem
jest dobrze postawiony. Udowodniono istnienie i jednoznaczno$¢ lokalnych rozwigzan w prze-
strzeniach Holdera, rownania i dane sa wiec spelnione klasycznie. Znaleziono goérne ogra-
niczenie na wielko$¢ katow dwusciennych, ktére wynika z teorii zagadnien brzegowych dla
rownan eliptycznych w obszarach z krawedziami.

B paGoTe paccMaTpHBaeTCA ABH)KEHHE MICAJIBHOH HEC)KHMAEMOM >XHMIOKOCTH B OrPaHHYEHHOH
obnactu B R3, onucannoe ypaBHennsamu Jiinepa. 'panHmua, COCTOAAA M3 OAHOH YacTH, pas-
JIeJIeHa HA TPHM IOAMHOroo0pasusa So, Sy, 52, TaK, UTOOBI MEXKAY ABYMA Ka)KOLIMK M3 HHX
HMMeJICS ABYrpaHHbLi yroi. JKuakocre BTekaeT B o0JslacTe yepes S, IOKHA2ET ee yepes S,
M TedeT KacaTelbHO K Sp. 3aJaHbl HayajJbHbIE M KPaeBble NaHHbIC (3aBHXPEHHOCTh HA S,
HOPMaJIbHasA COCTABIIAIONIAA CKOPOCTH HA LI€JIO TPaHMIBI), TAKHE, YUTO 33a4a SIBJISETCH KOp-
PEKTII0 mocTaBieHHoi. JloKa3aHo CYLIECTBOBaHHE M €MHCTBEHHOCTh JIOKAIBHBIX peLLEeHMH
B TEIBICPOBBIX MPOCTPAHCTBAX, 3HAUHT YPABHEHUS M JaHUbIE V/OBJIETBODEHBLI KIACCHUYECKH,
HaiineHo BepxHee OrpaHMUEHHE HAa BEJMYMHY BYTPAHHBLIX YIJIOB, KOTOPOE BBLITEKAET M3
TEOPHMH KpPaeBbIX 3a/1ay IS 3/UTMITHYECKHX YPaBHEHHI B o0NacTAX C TpaHAMMU.

1. Introduction

IN THIS PAPER we consider the following leakage problem in a bounded doubly connected
domain 2 < R3:

(L.1)
(1.2)
(1.3)

(1.4

v,+v-Vo+Vp = f,
dive = 0,

V)20 = a(x), diva=0,

valon = b(s, 1), BJ b(s, £)ds = 0,
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(1'5) wlS‘ = x:

where v—velocity, p—pressure, w—vorticity, f—exterior forces and v, = v- n, where n
is the unit outward vector normal to the boundary.

The boundary of £ consists of three parts: 22 = S,uS,;US, such that the condition
(1.4) can be written in the form

(1'6) vnfso = 05 vnISl = bl < 09 'vnIS, = b2 >0
and
(1.7 — [sav= {0

S, S,

We assume that the domain  has two edges L; = S;nS,, i = 1, 2, and §,nS, = 0.
Therefore there exist dihedral angles between S; and Sy, i = 1, 2. For x € L;, the magni-

tude of the dihedral angle is equal to #:(x), i = 1,2. Moreover, &y = max max®;(x).
i=1,2 xel,

Our aim is to prove the existence and uniqueness of solutions of the problem (1.1)-(1.5)
in the domain 2 with edges and to obtain a restriction on the maximal dihedral angle 9.

Generally the problem (1.1)-(1.5) hasn’t any solution until a certain restriction on y
is not imposed. In Sect. 2 we shall obtain this restriction.

The paper is divided in the following way. In Sect. 2 we shall formulate the problem
(1.1)-(1.5) in the form of a system of three well-posed problems. In Sects. 3 and 4 some
notations and auxiliary results are formulated. In Sect. 5, using Schauder’s fixed point
theorem, the existence of solutions of the problem (1.1)-(1.5) is proved. The method was
used in [2].

2. Statement of the problem

At first we introduce some notations.

Let §,eC?, »=0,1,2, L;eC? i=1,2. Then by 7,S,,x€S,, »=0,1,2, and
by T.L;, xe L;, i = 1,2 we denote the tangent spaces.

In a neighbourhood of S, we introduce a curvilinear system of orthonormal coordina-
tes 7,(x), 72(x), n(x) such that S, is determined by n(x) = 0 and 7,(x), 7,(x), x € S, are
tangent coordinates on §,;. Moreover, by 7,(x), 7,(x), n(x) we denote the orthonormal
basis corresponding to the coordinate system such that for x € S;, 7,(x), 75(x) are vectors
tangent to S, and n(x) is the outward unit vector normal to S,.

At last in a neighbourhood of L, we introduce an orthonormal basis o(x), %(x) such
that x»(x) is a vector tangent to L, and o(x) is the unit outward vector normal to L, . The
vectors a(x), #(x), x € S; belong to T7.,.S,.

Moreover, we introduce the Lamé’s coefficients determined by d/dr; = H;7;-V,
i=1,2, d/]on = H,n- V.

Now we shall obtain the restriction on y mentioned in Sectlon 1. To show this we repeat
shortly the considerations from [3, 7]. Hence to prove the existence and uniqueness of
solutions of the problem (1.1)-(1.5), we replace it by a system of problems
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rotv = w,
(A) dive = 0,
Unlog = b,
and
w,+?v-Vo—w-Vo = F = rotf,
(B) 0|;=o = Wy = 10ta,

w'Sx =% = "7+7‘ﬁ,
where 5 € TS;. Now we would like to use the method of iteration. To do this we must
know that a solution of the problem (B) satisfies
2.1 divw = 0,
because (2.1) is the solvability condition for the problem (A). Introducing the curves
y = y(x, t; s) determined by

2.2) ﬂ%ﬁ = o(y(x, 1;9), 5),

y(x, 10 = x,
from the condition (1.6) we see that there are two kinds of curves such that
@) y(x, t;5) e for Vse|0,t]:
(b) there exists a moment 7,(x, ¢) such that y(x, ¢; z,(x, 1)) € S;.
Using the curves (2.2), the equations (B,) have the form of ordinary differential
equations:

da)(y(x‘,ist; ), 5) —w*(y(x, t; 5), S)vr (¥(x, 1;5), 5) = F(y(x,1;9),5),

(2.3)

where the conditions (B), and (B); play the role of initial conditions on curves of the set
(2) and (b), respectively. Therefore, on curves from (a) the condition (B), implies (2.1).
But to satisfy the condition (2.1) on curves from (b), we have to impose the following
restriction on y:

@4) divels, = 0.

Using the relations (1.2) and (B),, the unknown quantity w,,_,,[ s, 18 eliminated, so instead
of the restriction (2.4) we obtain

2

1 1 - , ,
2.5 a#,+ ; [71:v#ﬂ,,“+n(-ﬁ;v,‘,,ﬂ+v,‘rot,,(nxrﬂ)” =@k, t), x' eS8,
where

and

2
1 -
(26) 'P(xla t) = Z [F ('rfpbl)v 1.'.“+b1 n,urOtn(ﬁ X r,u)] +Fn .
u=1 #
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Therefore, for # = 0 the condition (2.4) implies that

(2-‘0 ‘P(x: t) =0,

which is the restriction on the tangent to S; components # of y. In this case the problem
(A, B) was considered in [6] for a doubly connected domain with a smooth boundary.
For arbitrary tangent to S; components of y, the problem (A, B) was formulated
without any proof of existence in [3] for a non-doubly connected domain with a smooth
boundary. The well-posedness of the last problem in the case of doubly connected domains
with both a smooth and non-smooth boundary was analyzed in [7, chapt. 3].

From the above considerations we see that to prove the existence of solutions of the
problem (1.1)-(1.5), it is necessary to consider additionally the problem for m besides
the problems (A) and (B) for v and w, respectively. Therefore, to formulate the problem
on m we have to get initial and boundary conditions for Eq. (2.5). From the relations
(1.3) and (B), as the initial condition we have

(2.8) i=o = o ls,.
To determine the boundary condition for Eq. (2.5) we consider the characteristic curves
2
for this equation determined by the vector fieldv® = ) o, -r,i, s, qiven by the following
u=1 '

equations:

48, _ 0,(8:(, 1;9), 8:(7, 15 5), 5)
2.9) ds H, i
Ou(z, ;1) = 17,
where T = (7, 75), 4 = 1,2,0 < 5 < t. Using the curves (2.9), Eq. (2.5) can be written
in the form

2
d 1 _
(2.10) d—T; + E [Evﬂ.,”+v,,rot,,(ﬁxr,)]n =gx',1), x'e8;.
p=1

Comparing Eq. (2.9) with Eq. (2.2), we see that in this case there are also two kinds of
curves determined by Eq. (2.9):

@) o(zr,t;5)e S, for Vse[0,1],

(b") there exists a moment 7,(7,t) such that d(z, #; 74(z, 1)) € L,.

If we have only the curves (a’), the problem (2.10), (2.8) is well posed, but if the curves
(b’) appear, it is not. For the second case we must prescribe additionally

2.11) A, = o(x", 1), x"eL,.

For domains with edges we have the following relation:

2.12) —o(x) o(x) = d(x)ctgd (x), xelL,,

where d(x) = —b,(x) > 0. For #;(x) > % 2w+ 0], > 0 and the curves (a’) can appear

4

5 we must consider the curves (a") and (b’).

only, but for #,(x) <
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Therefore for #,(x) < % we shall consider the problem (2.5), (2.8), (2.11) and for

&(x) = —721 the problem (2.5), (2.8). These problems will be denoted by (C).

At last we formulate

LemMMA 2.1

let v, w, & be a solution of the problem (A, B, C). Then v, p is a solution of the
problem (1.1)-(1.4) with rot »|s_prescribed by Eqs. (B); and (2.11), where p is determined
by the following elliptic problem:

dp = divf—olak,
(2.13) 1 op _
—‘H—"ESV= (f,,—‘v'Vv'n—b,)isy, T»’=0,1,2.
3. Notations

We introduce some notations concerning the Holder spaces. By C(£2), C(£2") we
denote spaces of continuous functions with the norms

lullcay = s%plul = lulg, llUllcn = s%plu! = |ulgr, where Q'=80x]0,1].

By CK) and C***(£2) we denote spaces with the norms

[lullexoy = Z SEPID(’”J = |uly, 0, [|ullck+eny = l“]k.a+<Dk">a,9 = |ulkra, 0
|ej<k
where
u(x)—u(x"))
{a,0 = ;. %)— > «€(0,1).

To consider the time-dependent problems, we have to introduce the following spaces:

llull kst sogiy = lale,ara = O, | DDl ulgr-+{Dstide . o
2
+<D’:‘ru>oc,t.9'+<D1:u>u.x.n'+<D£u>a.r.ﬂ';
where k, I—positive integers and

|u(x, ") —u(x, t")]
u = su su
< >m.f..0’ QP,,"“EE,T] lt:_tfllu s

lu(x’ £)—u(x"" 1))
u += Sup su ;
Wa.x.2 re[og"]x',x"gn |x—x"|*

‘We shall denote C**(Q2") = C*(2") and ||u|c=
space C(0, t; C*+*(Q)) with the norm

@t = |Ula, gr. Moreover, we introduce the

[ltllcco, :ck+aay = |Ulk.a 0t = ZIDJ‘c“lo"i‘(Dﬁ@a.x.a‘-
isk

S Arch. Mech. Stos. 5/87
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4. Auxiliary results

At first we recall some properties of the solutions of (2.2). Integrating the Eq. (2.2),
we obtain :

s
4.1 ¥(x, t;5) = x+f*v(y(x, t; 1), T)dr.
y &
Moreover, we have
d i i
(42) ‘Es—yxk = Z)y.vy',ix,

i o . ay'(x, t; )
where the summation convention is used. Introducing J(x, ¢; 5) = det| ———

ox! *
$ Kk .

we have J(x, t; 5) = exp Mﬂ dt = 1, because divo = 0. Therefore, there

t 3yk

exists an inverse transformation to Eq. (4.1)

4.3) X, 1;7) = y— [o(p(x, 1; ), s)ds
!
such that
d { st
4.4) T = U
From [1, Chapt. 4, § 4 p.3] we have
LemMma 4.1

Let v e C1*=%(QT), « (0, 1), then the following estimates are valid:

[¥<(x, t; 8)| < ce'™lat,  |y,(x, t; 5)| < clv|gre®For,

4.5) Vx,teQT, s€ [t(x, 1),1].

?(x, t) is defined in Lemma 4.3.
<yx(xs t: s)>m.x < ce(2+m)”vx]grt<vx>a.x,n': an te QT9
<

(46) a(x, 25 ), € 81101, 0,0, 0 D 2t "% Vx, 1 € QT

where

S5, D = LELDTCLD - (i, py,,, = VEDTL N

|x1__xn|a

and 0 < gy(x,?) ~x as x = 0.

From [I, Chapt. 4 § 4, p. 3] we also have

LEMMA 4.2

Let v € C1***(Q"), « € (0, 1) such that |v,]s | > Co > 0, and S, be of class C* descris
bed by @D(x) = 0. Then the following estimates are valid:

4.7 e (X, 15 14X, 1)) a,x < cer(1+ D)2y, 0,0, 0" ™%

(4.8) . <yx(x9 1 ty(x, t))>a,t < cg3(19]1, 0.0, 00, 1) 11 % 1101,
where 0 < g,(x, 1) ~x as x » 0.
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Proof. From the definition of t,(x,?) we have that D(y(x, ¢; t.(x,1))) = 0.
Therefore Py (Vii+0*, ) = 0 and P (Vi +2,,)) = 0.
Hence we get

(4.9) o= — Do

P L Py

Assuming that 7,.(x’, 1) < 1,(x", t), we have

(X (X, 1)) =2 (X, 25 te (X", 2
(10 a1 1, D)pe, o & 22l 510 D)2 15 1, 1)
+ Iy:(x’: t; t*(x”9 t))_yx(x”’ t; t*(x”’ t))l
le__xllia

< sup [supo,(¥(x', t; 6), 0)y(X', t5 O)|oerr, e, nutx 0l
X't o

S A I B s M
where we used the inequality (4.6) and |, —1,]| = |t, —1,|* [t; — £, % < et? ¢, L|*|x"—x"'|*
where 7, = t,(x', 1), 1, = t,(x", t). Using the relations (4.9) and (4.5) in the inequality
(4.10) and the assumptions of the Lemma, we get the estimate (4.7). Assuming that #,(x,
t) < t(x, "), we get

(4.11) <yx(x; t; t*(x, t))>a,[ S lyx(xs t’; t#(x5 tl))—-yx(xs t"; t#(x’ t’))|

lt""‘t”la
(X, 17t (e, 1Y) =y (x, t7 5 L (x, t""
+ ’y ( *( Iil)_t):’:ig *( ))] é cgl(]'vll.ﬂ.a,ﬂ': t)

.

x 1t

- L qupsuplr, %1~ suplo, (¥(x, 1} 6), O)px(X, 1} O)loeqrix. il
i o

Using the relations (4.5) and (4.9) in the inequality (4.11) and the assumptions of the
lemma, we get the inequality (4.8). This concludes the proof.

Lemma 4.3

Let v e C1*»*(2Y), n e CYS}), me CHSY), woeC*(), S,eCY, a(0,1), t<T
and (B),,; be satisfied. Then the following estimate is valid:

(4.12) Lo ((x, 15 10x, 1)), 1(x, )P, e +<0 (¥(x, 15 21(x, 1)), 1(x, ) )a.
< C[g3(|vfl-0,ﬂ.ﬂ'9 t)tl_“'*' 1] ectlv“ﬂt(lwola.!)'i' |7]|a:s$ £ Iﬂfa-s'l +‘1-uIFfu,.Q')

for V¢ < T and 0 < gs(x, 1) ~ x as x — 0, where #(x, t) = 0 for curves (a) and #(x, 1)
= t,(x, t) for curves (b).

Proof. Let t(x, 1) < #(x", t), then
@.13)  (o(p(x, £ 10x, 1)), 1(x, O)a, »
(e, 15 0(x', ), 17, D) —o(y(x", 1; 167, 1)), Hx', 1))
= ix,_xuia

4 lo(y(x', t; 1(x", 1)), 1(x', 1) =0 (", t; 1(x", 1), t(x", D)
lx’_'xllia

< (Ko Cx, O, x. 53+ 00 (e, x.0) ¥ (%, 15 10¢, 1)a, x @0, 1)a, ¢, 51lbx, 5™

5+
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Let #(x, ') < t(x, t"), then
4.19) <o ((x, t; t(x, 1)), 1(x, D)),
& o (y(x, t'5 t(x, 1), t(x, ) —w(¥(x, ", 1(x, 1)), 1(x, "))
=1
% l(pCx, 5 1(x, 1)), 1(x, t)) —w (¥(x, t”, t(x, t")), t(x, t"))
="
< (<w(x’ t))a,x,s[“l'(wo(x))a.x.a)(y(xy t; t_(x, t)))a,t+<w(x: t)}a_,,s‘|t‘.,|°‘.

From the relations (4.13) and (4.14) we have the relation (4.12). This concludes the proof.
From Eq. (2.9) we have

(4.15) Ou(z,1,0) = 7,+ fv‘u(é(r, t;5), s)ds
4
and
dé,,.,

(416) T= vﬂ.dgag.r,,s “,v,0 = 192
and the summation convention is used. We formulate

LEmMma 4.4

Let v € C1+**(QT, & (0, 1), then the following estimates are valid for t < T:
(4.17) 18,.(7, £; 9)| < €™, [8,(, t;5)| < clojgee’l?,

(3,47, 15 ey < VKD, g, s

(4.18) (7, £:9) w4

(8,T, ; )aye < €81(10]1, 0,005 1)

Proof. The proof is the same as the proof of Lemma 4.1.

Levma 4.5

Let v € C****(Q7), o € (0, 1), such that [v- o[, | > ¢; > 0 and L, be a curve of class
C*! described by ¢(x) = 0. Then the following estimates are valid:

(4.19) (5_,(1’, t, T*(‘t, t)))u.x < Cg4(|v|1.o,¢,gf, t)t]—aeﬁil(lxr_or,

(4.20) (8,7, 15 Tx(T, D) < €85([l1, 00,00 )11,
where gi(x,t) ~xas x—0,i=4,5.

From the definition of 7,.(7, t) we have w(d(z, t; T4(7, 1)) =0, so
4.21) Ta,p = — w""‘—a’”, Te,p = ——w'd"—ag't.

Uu¥. 0, 'Uull).d#

The remaining part of the proof is the same as the corresponding one in the proof of Lem-
ma 4.2. This concludes the proof.

LEMMA 4.6

Let v € C*H*%(2%), wye C*(2), 0 e CX(LY), L, €CY, xe(0,1), t< T and the rela-
tions (2.8) and (2.11) be satisfied. Then the following estimate holds:

(4.22)  <{zm(8(z, t;7(7, 1)), (7, ) Pu. e +<{7 (3(7, t;T(7, 1)), T(T, 1) Pu,:
< clge(?ly, 0.0, 0t 1) 1174+ 119 (|wolu, 0 + 0], 51)
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where ge(x, ) ~ x as x =» 0, 7(7, t) = 0 for the curves (a') and 7(7, 1) = v4(7, t) for
the curves (b").

Proof. The proof is the same as the proof of Lemma 4.3.

We recall from [4].

THEOREM 4.1
Let weC*HQT), be CYSN), i=1,2, xe(0,1), S,eC?, v=0,1, 2 and
(4.23) 24a < A(dy),
where A(9y) = —— % _1 because By < 7. Then there exists a unique solution of the problem

(A) such that v e C”“‘ *(Q27) and

2
4.24) ©]1, 0,007 < (l@]y, o7+ 2 |Bla. 57).
i=1

For the dihedral angle equal to /n, n > 1—natural, the condition (4.23) can be omitted
but b satisfies the compatibility condition which is described in Theorem 3.2 of [5].

5. Existence of solutions of the problem (A, B, C)

At first we obtain an a priori estimate. Integrating Eq. (2.3) we have
G1) o', ) = Ap(x, 110, 0)) [y (x, 1 1(x, 1); 1x, 1))

t
+ [ A0 ) (3 159), 5)ds,

T(x,0) .
where A% = (8J)/(8y%), t(x,t) = 0 and t(x, t) = ty(x, t) for curves of the family (a)
and (b), respectively. Similarly integrating Egs. (2.10), we get

2
52 a(r,1) = {exp f 2 [H;’vy_ay(é(r, t;0), 0)+2,(6(z, 1; 0), 0)

1 e=1

t
- rot,(n x ;c)] do} [ f ¢(8(z, 1; 0), o‘)dcr-{-ﬂ((S(T, t; (7, 1)), 7z, t))],
z(r,1)
where 7(7, t) = 0and 7(z, t) = 1,(7, t) for curves of the family (a’) and (b"), respectively.
Now we estimate w(x,?).
Lemma 5.1
Let n € C*SY), 7 e CXS}), FeC(0, t; C*(Q)), v € C1+**(2), wy € CH2), S, € C?,
then the following estimate

(53)  |®la,0r < e(In]a, st + 17w, st +|00lw, 0+ 2| Flo, e, 0r) - 2 [1 411796, ([l;, 0,0, 0 D]

is valid, where G,(x,?) ~ x as x = 0.
Proof. From Eq. (5.1) we have

Bl g, < e(Inlsy+ |lsy +lwola-+11Flai) e,
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Let 7(x', £) < #(x", t). From Eq. (5.1) we also have
(5.5  (0Daxar < ey (X, 1, 0)larlo (P&, 15 2 (X, 1), 21X, 1)
* <yx(x5 t, t(x: t))>¢,x.!)'+Clyxlé'<w(y(x’ t; ?(x, t))’ t_(x: t)))u.x.!)'

0 t
W =x17 [ A 59O, 159, 5)ds|+e [ v, 159
1,0 X' 0)

t

AR 159), KPR, 15 D xds e [ 17", 15 )IKF(E, 155), S)ax, S,
Tet!

Using Lemmas 4.1-4.3 we get
(5.6) {@q,x,0r < Cllwola, 0+ 9la, st + |7, st + [ Flo,a, ot
: emu“!-”'(l +t'7%2(1l1, 0000005 1))s
where g,(x, t) ~ x as x — 0. Now we shall estimate {w), . From Eq. (5.1) we have
(5.7 {@Da,r, ar € ce™2t[(|owg|g+ 7[5t + [7]sD)
Ly (%, 1106, 0, .00 +<0 (0%, 15 1(x, 1)), 1%, D)Daye, 0t
+|Flot* =" + 1500, 1, atl Flot+ FDa, 1, 1]

Using Lemmas 4.1-4.3 in the relation (5.7) we obtain that {(w)q,,,q is estimated by the
right-hand side of the relation (5.6). Therefore, we obtained the relation (5.3). This con-
cludes the proof.

LeMMA 5.2

Let v e CH**%(Q"), ¢ € C*(S1), wo € C*(RQ), o e C*(L}), L, € C', S, € C? then the
following estimate holds:
(5.8) |7lg,st < Cealvh'o’“'m[tifpja.s{+lwo|a,n+ lole, sl [14+G2(l2]1, 0,a,0t,, )17,

where G,(x,t) ~ x as x = 0.
Proof. From Eq. 5.2 we have

(5.9) |els: < eI 02 [t g] g + wol o+ ol el
Denoting the expression under exp in Eq. (5.2) by K(z, t), from Eq. (5.2) we have

(5.10)  {Dy,.,st < Cemull‘o’“’m{‘(K(T: Ve, st[t@lsi +]oolo
+ |l + 1@lsi{T(T5 DDa,x, s+ t5uplp(d(7, 1; 0), 0))a,x, st
o3

+<{m (8(z, 1;7(7, 1)), T(7, 1)), .5t

From Lemmas 4.4-4.6 we have

(5.11) CK (T, Da.r,st < ce™100Lge (o], o 400, 81175
where gg (x,¢) ~ x as x — 0.
(5.12) Ty ayr, 51 < et V0,0 Q01—

(513) <(p(6(1’, t; U)’ 0)>a.r,s{ < c<¢>a.r.si ecrlv“’o’“'”r[q.
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Moreover, the last term in the right-hand side of the relation (5.10) is estimated by
(KwoDa,0+<0a,)88(17]1,0,0.09°5 t)t1=% where » is the parameter along L, connected
with 7, which is the tangent vector to L.

Therefore we obtain
(14 (Da,r 51 < €02 1oy, 51+ l0ole, 0+ 0k, 1] - 8901011, 0,a, 0 )%,

where go(x, ) ~ x as ¥ — 0. Similarly we obtain

(5.15)  @as, st < Ceﬂlﬂh'o’a'm[fl‘ﬂa,sg+lmo|a.a+]9|a.r_;] » G4(|9l1. 0,00t )T

From the relations (5.9), (5.14) and (5.15) we get the relation (5.8). This concludes the
proof.
From Lemma 5.1 and 5.2 we have that

(5.16) @]y o < €02 t|g], o1+ |wola, 0+ 0l g
+ |l st +21Flo, 0, o] (1 +G(I?l1,0,0,0t> 1) 11™%),

where G(x, ) ~ x as x — 0. Assuming that 8 = c[t|@ls, si+|@ols, 0+ |0le, Lt + [1]e, st +
+2|F|g,q, ot ] and using Theorem (4.1), we get

(5.17) |0, ot < €702 IL022998 11 4 G(|w]w, g1+ 1By, 0,201, )12~
and

T
(5.18) do < 54> *€OD.

From the relation (5.17) for ¢ < ¢,, where ¢, is sufficiently small, we obtain the estimate

(5.19) ]y, 0t < Go(B, 1B1,0,a,80t5 to),

where Go(f, », ty) ~ p as 1, — 0.

Let N < C*(£2%) be a set determined by the inequality (5.19). The elliptic problem (B),
(5.1) and (5.2) determine an operator S:N — N, which is continuous in C(2"). But
N = C(") is compact, therefore, by the Schauder theorem we have (similarly as in [2]:

THEOREM 5.1

Let wg € C*(Q), n e C1H*%*(S)), p € C*(LY), be C*+**(SY), Fe C(0, t; C*(R)), S; e C?,
i=0,1,2, LieC, ae0,1), t < ty, where ty is so small that the inequality (5.19) is
satisfied. Let the maximal angle ©, be less than m|3. Then there exists a solution of the
problem (A, B, C) such that w € C*(2Y), v € C13**(QY), = e C*(5Y).

Uniqueness can be proved in the standard way.
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