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Leakage problem for ideal incompressible fluid motion in bounded 
domain with nonsmooth boundary and vorticity prescribed in inflow 

W. M. ZAJl\CZKOWSKI (WARSZAWA) 

AN IDEAL incompressible fluid motion in a bounded domain in R 3 described by the Euler equa­
tions is considered. A boundary built up of one part is divided into three submanifolds S0 , 

Sl> S2 , between each two of them there is a dihedral angle. The fluid enters the domain 
through S 1> leaves it through S2 and moves tangentially to S0 • Initial and boundary data 
(vorticity on S 1> normal component of velocity on all boundaries) are prescribed such that the 
obtained problem is well posed. The existence and uniqueness of local solutions in Holder 
spaces is proved, so the equations and data are satisfied classically. Upper bounds of magnitudes 
of dihedral angles are found which follow from the theory of elliptic boundary problems in 
domains with edges. 

W pracy jest rozwa:lany ruch idealnego nieScisliwego plynu w obszarze ograniczonym w R3 opisa­
nym przez r6wnania Eulera. Granica, zlozona zjednej c~sci,jest podzielona na trzy podrozmaito­
sci S0 , S 1t S 2 , tak, i:e mi~dzy kai:dymi dwoma z nich jest k'lt dwuScienny. Plyn wplywa do obszaru 
przez Sit opuszcza go przez s2 i plynie stycznie do So. Przyj~te S'l dane POCZ'\tkowe i brzegowe 
(wirowosc na S~o normalna skladowa pr~dkoSci na calej granicy) takie, i:e otrzymany problem 
jest dobrze postawiony. Udowodniono istnienie i jednoznacznosc lokalnych rozwi'lzan w prze­
strzeniach Holdera, r6wnania i dane S'l wi~c spelnione klasycznie. Znaleziono g6me ogra­
niczenie na wielkosc k'lt6w dwusciennych, kt6re wynika z teorii zagadnien brzegowych dla 
r6wnan eliptycznych w obszarach z kraw~dziami. 

B pa6oTe paccMaTpHBaeTc.fl ~BH>J<eHHe H~eaJILHoii HeC>KHMaeMoii iKH~OCTH a orpaHHl.leHHoii 
o6JiaCTH B R3

, ODHcaHHoe ypaBHeHH.fiMH 3iinepa. rpaHH[(a, COCTO.fll.[(a.fl 1{3 O~HOH l.laCTH, paa­
~eJieHa Ha TpH no~Horoo6pa3H.fl So) St' s2' Tal<, l.IT06hi Me~y ~BYM.fl Ka>J<~IMH H3 HHX 
HMeJIC.fl ~ByrpaHHbiH yroJI. :>I<H~KOCTL BTeKaeT B o6JiaCTb qepe3 Sl, noK~aeT ee lJepe3 sl 
H Tel.leT KacaTeJILHo K S 0 • 3a~aHhi Hal.laJihHhie H KpaeBbie ~aHHhie (3aamcpeHHoCTL Ha S1 , 

HOpMaJihHa.fl COCTaBJI.fiiOI.[(a.fl CKOpOCTH Ha [(eJIOH rpaHH[(bi), Tai<He, l.ITO 3a~aqa .fiBJI.fleTC.fl KOp­
peKTIIO llOCTaBJieHHOH. ,UoKa3aHO Cyl.[(eCTBOBaHHe H e~HHCTBeHHOCTL JIOKaJihHhiX peiiiCHHH 
D reJI))~epoBhlX rrpoCTpaHCTBax, 3Hal.IHT ypaBHeHH.fl H ~aHHbie Y~OBJieTBopeHbi KJiaCCHl.leCKH. 
Ha:H~eHo aepXHee orpaHHl.leHHe Ha aeJIHl.IHHY ~yrpaHHhiX yrnoa, KoTopoe BhiTeKaeT H3 

Teo pHil KpaeBbiX 3a~aq M.fl 3JIJIHilTHtleCKHX ypaBHeHHH B o6JiaCT.fiX C rpaH.fiMH. 

1. Introduction 

IN THIS PAPER we consider the following leakage problem in a bounded doubly connected 
domain Q c R3

: 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

v,+v· Vv+Vp =f, 
divv = 0, 

t.~lr=o = a(x)' diva= 0, 

v,.lan = b(s, t), J b(s, t)ds = 0, 
an 
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(1.5) 

where v-velocity, p-pressure, w-vorticity, /-exterior forces and v, = v. ii' where n 
is the unit outward vector normal to the boundary. 

The boundary of D consists of three parts: oD = S0 uS1 uS2 such that the condition 
(1.4) can be written in the form 

(1.6) 

and 

(1.7) 

We assume that the domain D has two edges Lt = S;nS0 , i = 1, 2, and S1n~ = 0. 
Therefore there exist dihedral angles between Stand S0 , i = 1, 2. For x e L 1, the magni­
tude of the dihedral angle is equal to D1(x), i = 1, 2. Moreover, {}0 = max max {}1(x). 

1=1,2 xeL1 

Our aim is to prove the existence and uniqueness of solutions of the problem (1.1)-(1.5) 
in the domain D with edges and to obtain a restriction on the maximal dihedral angle {}0 • 

Generally the problem (1.1)-(1.5) hasn't any solution until a certain restriction on x 
is not imposed. In Sect. 2 we shall obtain this restriction. 

The paper is divided in the following way. In Sect. 2 we shall formulate the problem 
(1.1)-(1.5) in the form of a system of three well-posed problems. In Sects. 3 and 4 some 
notations and auxiliary results are formulated. In Sect. 5, using Schauder's fixed point 
theorem, the existence of solutions of the problem (1.1)-(1.5) is proved. The method was 
used in [2]. 

2. Statement of the problem 

At first we introduce some notations. 
Let S, e. C2 , v = 0, 1, 2, L 1 E C2

, i = I, 2. Then by TxS,, xES,, v = 0, 1, 2, and 
by Tx L1, x e L 1, i = 1 , 2 we denote the tangent spaces. 

In a neighbourhood of S 1 we introduce a curvilinear system of orthonormal coordina­
tes T 1 (x), T 2 (x), n(x) such that S1 is determined by n(x) = 0 and T 1(x), T 2(x), x e S1 are 
tangent coordinates on S1 • Moreover, by =f1 (x), =f2 (x), n(x) we denote the orthonormal 
basis corresponding to the coordinate system such that for x e S 1 , :r 1 (x), =f 2 (x) are vectors 
tangent to S 1 and n(x) is the outward unit vector normal to S 1 • 

At last in a neighbourhood of L1 we introduce an orthonormal basis <T(x), ;e(x) such 
that ;e(x) is a vector tangent to L 1 and a(x) is the unit outward vector normal to L 1 • The 
vectors <T(x), x(x), X E sl belong to TxSl. 

Moreover, we introduce the Lame's coefficients determined by ojo-c1 = H1=f1 • V, 
i = 1 ' 2' a I on = H, ii . v. 

Now we shall obtain the restriction on x mentioned in Section I. To show this we repeat 
shortly the considerations from [3, 7]. Hence to prove the existence and uniqueness of 
solutions of the problem (1.1)-(1.5), we replace it by a system of problems 
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(A) 

and 

rotv = ro, 

divv = 0, 

Vnla.o = b, 

rot+v · Vro-ro · Vv = F = rotf, 

(B) rolt=o = ro0 = rota, 

rols1 = X = f} +nii, 

487 

where fJ E TS1 • Now we would like to use the method of iteration. To do this we must 
know that a solution of the problem (B) satisfies 

(2.1) divro = 0, 

because (2.1) is the solvability condition for the problem (A). Introducing the curves 
y = y(x, t; s) determined by 

(2.2) 
dy(x, t; s) ( ( ) ) ds = v y x, t; s , s , 

y(x, t; t) = x, 

from the condition (I .6) we see that there are two kinds of curves such that 
(a) y(x, t; s) E!J for Vs E [0, t]: 
(b) there exists a moment t*(x, t) such that y(x, t; t*(x, t)) E S1 • 

Using the curves (2.2), the equations (B1) have the form of ordinary differential 
equations: 

(2 3) dro (y( X, t; s), s) k ( ( • ) ) ( ( • ) ) _ F( ( · ) ) · ds - ro Y X, t, S , S Vyt Y X, t, S , S - .Y X, t, s , S , 

where the conditions (Bh and (Bh play the role of initial conditions on curves of the set 
(a) and (b), respectively. Therefore, on curves from (a) the condition (Bh implies (2.1). 
But to satisfy the condition (2.1) on curves from (b), we have to impose the following 
restriction on x: 
(2.4) divroj51 = 0. 

Using the relations (1.2) and (B)1 , the unknown quantity ron,njs
1 

is eliminated, so instead 
of the restriction (2.4) we obtain 

where 

and 

(2.6) 

2 

'fl(x', t) = 2..: [ ~ ( '7,b1)," +b1 11, rot.(li x T,)] +F •. 
#'= 1 II 

http://rcin.org.pl



488 w. M. .Z.U.\CZE:OWSKI 

Therefore, for n = 0 the condition (2.4) implies that 

(2.7) q;(x, t) = 0, 

which is the restriction on the tangent to S1 components 'YJ of X· In this case the problem 
(A, B) was considered in [6] for a doubly connected domain with a smooth boundary. 
For arbitrary tangent to S1 components of z, the problem (A, B) was formulated 
without any proof of existence in [3] for a non-doubly connected domain with a smooth 
boundary. The well-posedness of the last problem in the case of doubly connected domains 
with both a smooth and non-smooth boundary was analyzed in [7, chapt. 3]. 

From the above considerations we see that to prove the existence of solutions of the 
problem (1.1)-(1.5), it is necessary to consider additionally the problem for n besides 
the problems (A) and (B) for v and ro, respectively. Therefore, to formulate the problem 
on n we have to get initial and boundary conditions for Eq. (2.5). From the relations 
(I .3) and (B)2 as the initial condition we have 

(2.8) nlt=O = Wo • nls1 • 

To determine the boundary condition for Eq. (2.5) we consider the characteristic curves 
2 

for this equation determined by the vector field v" = ~ vP Tpls
1 

qiven by the following 
p=l 

equations: 

(2.9) 

~p(T, t; t) = Tp, 

where T = (T1 , T2), p, = 1, 2, 0 ~ s ~ t. Using the curves (2.9), Eq. (2.5) can be written 
in the form 

2 

(2.10) ':;; + L [~. v •. T. +v.rot.(iix T,)]n = q>(x'. 1), x' E sl. 
p=l 

Comparing Eq. (2.9) with Eq. (2.2), we see that in this case there are also two kinds of 
curves determined by Eq. (2.9): 

(a') ~( T' t; s) E sl for Vs E [0, t], 
(b') there exists a moment T*{T, t) such that ~(T, t; T*(T, t)) e L1 • 

If we have only the curves (a'), the problem (2.10), (2.8) is well posed, but if the curves 
(b') appear, it is not. For the second case we must prescribe additionally 

(2.11) 

For domains with edges we have the following relation: 

(2.12) -v(x). a(x) = d(x)ctgDl(x), X ELl, 

where d(x) = -b1(x) > 0. For D1·(x) ~ ; :v · <TIL
1 
~ 0 and the curves (a') can appear 

only, but for 01 (x) < ; we must consider the curves (a') and (b') . . 
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Therefore for 111 (x) < ; we shall consider the problem (2.5), (2.8), (2.11) and for 

D1 (x) ~ ~ the problem (2.5), (2.8). These problems will be denoted by (C). 

At last we formulate 
LEMMA 2.1 
Let v, w, n be a solution of the problem (A, B, C). Then v, p is a solution of the 

problem (1.1)-(1.4) with rot vis. prescribed by Eqs. (B)3 and (2.11), where pis determined 
by the following elliptic problem: 

LJp = divf-v~v!t, 

-
1
- aa'P I = (f,.-v. Vv. n-br))s' , = 0, 1' 2. 

Hn n s, , 

(2.13) 

3. Notations 

We introduce some notations concerning the Holder spaces. By C(D), C(D1
) we 

denote spaces of continuous functions with the norms 

lluiiC<m =sup lui = lul.o, llullcw'> =sup lui = lul.o'' where !Jt = Dx [0, t] . 
.0 .0 

By Ck(!J) and Ck+IX(!J) we denote spaces with the norms 

llullckc.o> = .2; sup IU'ul = lulk,.o, llullck+acm = lulk,.o+(Uu)l%,.0 = lulk+oc,.o, 
jtXjE;k .0 

where 

(u)l%,.0 = sup 
x',x"e.O 

lu(x')- u(x")l 
lx' -x"lcx 

(X E (0, I). 

To consider the time-dependent problems, we have to introduce the following spaces: 

llu iick+tX,I+cx<.o'> = lulk,l,tX,.O' = .2; ID~D{ul.or+(D~u)tX,x,.o' 
i<k 
j<.l 

+(D!u)l%, t, .or+(D!u)cx,x,.o' +(D!u)IX, t,.O'' 

where k, /-positive integers and 

(u)l%. r . .o' = sup sup 
.0 t' ,t" e [0, T] 

lu(x, t')- u(x, t")l 
It' -t''ICX 

iu(x' t)- u(x" t)l 
(u)cx,x.n' = sup sup I , "II% • 

t e [0, T] x' ,x'' e .0 X -X 

We shall denote Cl%·a(D') = ~(D1) and llullcl%w'> = lull%, .or· Moreover, we introduce the 
.space C(O, t; Ck+tX(!J)) with the norm 

llullc<o,t;ck+cx<.o» = lulk,tX,.O' = .2; ID~ul.or+(D~u)cx,x,.o'· 
i<k 

5 Arch. Mech. Stos. S {81 
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~· . Auxili~ results 

At first we recall some properties of the solutions of (2.2). Integrating the Eq. (2.2)1 

we obtain 

s 

(4.1) y(x, t; s) = x+ J v(y(x, t; t'), -r)d-r. 

Moreover, we have 

(4.2) 

(
oy'(x, t; s)) 

where the summatio~ convention is used. Introducing J(~, t; s) = det ()xi 1 

we have J(x, t; s) = exp j ovk(y(xa 
1j -r)' -r) d-r = 1, because divv = 0. Therefore, there: 

t y 
exists an inverse transformation to Eq. (4.1) 

T 

(4.3) x(y, t; t} = y- J v(y(x, t; s), s)ds 

such that 

(4.4) 

From [1, Chapt. 4, § 4 p.3] we have 
LEMMA 4.1 
Let v e ct+cx,cx(.Ql), a e(0, .1), then the following estimates are valid: 

lyx(x, t; s)l ~ ce11"a1D', IYr(X, t; s)l ~ clvlnret!Oalo', 

Vx, t e .QT, s E [t(x, t), t]. 
(4.5) 

i(x, t) is defined in Lemma 4.3. 

(4.6) 
(Y.~(x, t; s))a,x ~ ce<l+CX)tiO.xlntt(vx)a,x,n'' Vx, t E .QT, 

(Yx(x, t; s))cx,t ~ cgt(lvlt,o,a,n',t)ectlv.xfott1-a, Vx, t E .QT,. 

where 

<Ji( t)> 
= lf(x', t)-f(x", t)l lf(x, t')-f(x, t")l 

X' a,x lx' -x"lcx ' <f(x' t))a,t = It'- t"l<X 

and 0 < g1(x, t) """ x as x ~ 0. 
From [1, Chapt. 4 § 4, p. 3] we also have 
LEMMA 4.2 
Let v e C1 +a,a(.Q1), a E (0, 1) such that lvnls

1
1 ~ C0 > 0, and S1 be of class C1 desc.ri• 

bed by 4>(x) = 0. Then the following estimates are valid: 

(4.7) 

(4.8) (Yx(x, t: t*(X, t) ))a, t ~ cg2 (1vl 1 , o.a,n'.t) t 1 -cxe.:1111
.x

1o', 

where 0 < g2 (x, t) """x as x ~ 0. 
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Proof. From the definition of t.(x, t) we have that f/>(y(x, t; t*(x, t))) = 0. 

Therefore fl>yt (Yx• +ift.,x•) = 0 and fl>yt (Tt+vkt., 1) = 0. 
Hence we get 

(4.9) 

Assuming that r.(x', t) ~ t.(x", t), we have 

(4.10) < ( ( ))> IYx(x', t; t*(x', t))-y¥(x', t; t*(x", t)) 
Yx x, t; t* x, t cx,x ~ lx' -x"lcx 

IYx(x', t; t*(x", t))-Yx(x", t; t.(x", t))l 
+ lx' -x"lcx 

~ sup [suplvy(y(x', t; a), a)yx(x', t; a)lae[t.(x',t'.t.(x",t)J' 
x',x'',t a 

. tl-«lt •. xi(X] + ctectjv.~l.ot<v>cx. x, ,.at, 

where we used the inequality (4.6) and lt1 -t2 1 =Itt -t2 1cx Itt -t2 11 -cx ~ ctt-cxlt •. xlcxlx' -x"lcx 
where tt = t.(x', t), t 2 = t.(x", t). Using the relations (4.9) and (4.5) in the inequality 
(4.10) and the assumptions of the Lemma, we get the estimate (4.7). Assuming that t*(x, 

t') ~ t.(x, t"), we get 

(4.11 ) < ( . ( ))) ~ IYx(x, t'; t.(x, t'))-y~(x, t"; t*(x, t'))l 
YxX,t,t*x,t cx,t-.::: . lt'-t"lcx 

IYx (x, t"; t*(x, t'))-Yx (x, t"; t.(x, t") )I (I I ) 
+ lt'-t"lcx ~ cgl V t,o,cx,.o'' t 

·l'ivxl.o't 1-cx+supsuplt.,,lcxtt-cx. suplv>'(y(x, t"; a), a)y.x(x, t"; a)lae(t.(x,t'),t.(x,t">JI· 
x t',t" . a 

Using the relations (4.5) and (4.9) in the inequality (4.Il) and the assumptions of the 
lemma, we get the inequality ( 4.8). This concludes the proof. 

LEMMA 4.3 
Let v E ct+cx,CX(.Q'), 1] E CCX(SD, n E CX(SI), WoE c«(.Q), sl e C1, (X E (0, 1), t ~ T 

and (B)2 ,3 be satisfied. Then the following estimate is valid: 

(4.12) (w(y(x, t; t(x, t)), t(x, t)))cx,.x+(ro(y(x, t; t(x, t)), t(x, t)))cx.t 

~ c[g3(1vlt. O,cx,!l'' t)t 1-cx+ I]ectjvxi.ot(lwolcx.D+ 117lcx,st + lnlcx,st +tl-CXIFicx,.O') 
1 l 

for Vt ~ T and 0 < g 3 (x, t) "' x as x-+ 0, where i(x, t) = 0 for curves (a) and t(x, t) 
= t*(x, t) for curves (b). 

Proof. Let i(x', t) ~ t(x", t), then 

(4.13) (w(y(x, t; t(x, t)), t(x, t)))a, x 

lw(y(x', t; t(x', t)), t(x', t))-w(y(x", t; t(x", t)), t(x', t))l 
~--~----~--~--~~~~--------~----~ 

lx' -x"lcx 

+ lw(y(x', t; t(x", t)), t(x', t))-w(y(x", t; t(x", t)), t(x", t))l 
lx' -x"I<X 

~ ((ro{x, t))cx,x.sf+(roo(x))ct,x . .o)(y(x, t; t(x, t)))cx,x+(w(x, t))cx,r,sdt*,.xl11
• 

s• 
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Let t(x, t') ~ i(x, t"), then 

(4.14) (w(y(x., t; t(x, t)), i(x, t)})(X,t 

~ lw(y(x, t'; i(x, t')), t(x, t'))-w(y(x, t", i(x, t")), t(x, t'))l 
~ It'- t"I(X 

+ !w(y(x, t"; t(x, t")), t(x, t'))-w(y(x, t", i(x, t")), t(x, t"))l 
It'- t"I(X 

~ ((w(x, t))cx.~.st+(w0(x))(X,~,.a)(y(x, t; t(X, t)))cx,r+(w(x, t))!X,r, 51 lt.,,!(X. 

From the relations ( 4.13) ~d ( 4.14) we have the relation ( 4.12). This concludes the proof. 
From Eq. (2.9) we have 

a 

(4.15) ~p{r, t, 0') = rP+J vP(~(r, t;s),s)ds 

and 

(4.16) ,u,v,e=1,2 

and the summation convention is used. We formulate 
LEMMA 4.4 
Let v E Cl+!X,(X(!J)T, ex e(O, 1)', .then the following estimates are valid fort~ T: 

(4.17) 

(4.18) 
< ~.T( T' t; s))(X,'r ~ cectivxl.att(vx>!X.~,.at, 

(~.-r(-r, t; s))!X,t ~ cgl(lvll,o,cc,.a', t)ectivxl.ar. 

P r o o f. The proof is the same a~ . the proof of Lenima 4.1. 
LEMMA 4.5 
Let v E c~+cx,cx(!JT), ex E (0, 1), such that lv · O'IL

1
1 ~ c0 > 0 and L 1 be a curve of class 

C 1 described by 1p(x) = 0. Then the following estimates are valid: 

(4.19) (~.-r(T, t; T*(l', t)})cx,~ ~ cg4(1vll,O,cx,Qt, t)t 1 -(Xltivxlnt, 

(4.20) (~,-r( T, t; r*(r, t)))cx,t ~ cg5(lvl 1,o,cx,D'' t)t 1 -ccecr:vx!nr, 

where gi(x, t) "' x as x-+ 0, i = 4, 5. 
From the definition of -r*(r, t) we have 1p(~(r, t; r*(r, t))) = 0, so 

. ~ ~ 
1p,~p p,'r 1/'.~1-' /lof 

(4.21) T•,-r = - v r •. r = - v · 
J-'V'.~p p'/).~p 

The remaining part of the proof is the same as the corresponding one in the proof of Lem­
ma 4.2. This concludes the proof. 

LEMMA 4.6 
Let v E Cl+CX,<X(.Q'), WoE c«(!J), e E ccx(LD, Ll E Cl, ex E(O, 1), t ~ T and the rela­

tions (2.8) and (2.11) be satisfied. Then the following estimate holds: 

(4.22) (n(~(-r, t; i(-r, t)), i(r, t)))cx,T+(n(~(r, t; T(l', t)), i(r, t)))cx,t 

~ c[g6(1vll, o,cx,D'' t)t 1-cx+ I]lt lvxlnr(lwolcc,D+ lela, sf), 
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where g6 (x, t) "'x as x--. 0, "T('r, t) = 0 for the curves (a') and r('r, t) = -r*(-r, t) for 
the curves (b'). 

Proof. The proof is the same as the proof of Lemma 4.3. 
We recall from [4]. 
THEOREM 4.1 
Let (J) E c«(QT), bE C«(Sf), i = 1' 2, (X E (0, 1), Sv E C2 , v = 0, 1' 2 and 

(4.23) 2+a < A(-80 ), 

where A(-80 ) = ;
0 

-1 because -80 < n. Then there exists a unique solution of the problem 

(A) such that v E ct+«,cc(Q1) and 

(4.24) 

2 

lvlt,o,cx,.aT ~ c(lwlcx,.aT+ };lblcx.sf)· 
1=1 

For the dihedral angle equal to nfn, n > !-natural, the condition (4.23) can be omitted 
but b satisfies the compatibility condition which is described in Theorem 3.2 of [5]. 

S. Existence of solutions of the problem (A, B, C) 

At first we obtain an a priori estimate. Integrating Eq. (2.3) we have 

(5.1) wk(x, t) = AHYx(x, t; t(x, t)))w1(y(x, t; t(x, t); t(x, t))) 
t 

+ J A~(yx(x, t; s))F1(y(x, t; s), s)ds, 
t(x,t) 

where AJ = (8J)f(8~J), t(x, t) = 0 and i(x, t) = t*(x, t) for curves of the family (a) 
and (b), respectively. Similarly integrating Eqs. (2.1 0), we get 

t 2 

(5.2) n(-r, t) = {exp J }; [n; 1 v11 ,c5JA(~(-r, t; o'), a)+v11 (~(-r, t; a), a) 
T(T,t)JI=l 

t 

· rotn(nxr)] da} [ J <p(~(-r, t; a), a)da+n(~(-r, t; r(-r, t)), r(-r, t))], 
T(T,t) 

where r( -r, t) = 0 and r( -r, t) = -r*( -r, t) for curves of the family (a') and (b'), respectively. 
Now we estimate w(x,t). 
LEMMA 5.1 
Let 'YJ E cx(si), n E ccxcsn, FE C(O, t; ccx(Q)), v E Cl+CX,CX(Qt), WoE ccx(Q), sl E Cl, 

then the following estimate 

(5.3) lrolcx, .or ~ c(I'YJicx, s~ + lnlcx,S! + lroolcx,.a+ t!Fio,cx,Qr) · i' iv~l.at [I+ tl-rxGl (l·vlt, o,rx, D'' t)], 

is valid, where G1 (x, t) "' x as x --+ 0. 

Proof. From Eq. (5.1) we have 

(5.4) 
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Let i(x', t) ~ t(x", t). From Eq. (5.1) we also have 

(5.5) (ro)«, x, a' ~ c/Yx (x', t; t(x', t))l.orlro (y(x', t; t (x', t)), t(x', t) )I .or 

· (Yx(x, t, t(x, t)))«,x,.o'+c/yx/~r(w(y(x, t; t(x, t)), t(x, t)))«,x,.o' 

t(x", t) t 

+ lx'- x"l-«j J A (Yx(x', t; s) )F(y(x', t; s), s )dsj + c _ J /yx(x', t; s)l 
t(x', t) t (x'', t) 

t 

· /F(y(x', t; s), s)/(yx(x, t; s))cx, xds+c J IYx(x", t; s)/ 2(F(y(x, t; s), s))cx.x,.o'ds. 
i(x'' ,t) 

Using Lemmas 4.1-4.3 we get 

(5.6) (ro)a.,x,.O' ~ c[lroola.,.o+ I?Jicx,Sf + lnla.,S1 + t/Fio,IX, .or] 
• ect!Vxl.ot(1 +t1-a.g7(1VIl,O,IX,.Ot, f)), 

where g1 (x, t) "' x as x--. 0. Now we shall estimate (ro)a.,t,.o'· From Eq. (5.1) we have 

(5.7) (ro)cx, t, .o' ~ cect!oxl.ot[(lwol.o + I?Jisi + lnls1) 

·(Yx(x, t; t(x, t)))a.,t,.o'+(w(y(x, t; t(x, t)), t(x, t)))IX,t,n' 

+ IFI.ort1-a.+ t2(Vx)cx, t, .or/F/.or + t(F)cx, t, .or]. 

Using Lemmas 4.1-4.3 in the relation (5.7) we obtain that (ro)a.,r,.o' is estimated by the 
right-hand side of the relation (5.6). Therefore, we obtained the relation (5.3). This con­
cludes the proof. 

LEMMA 5.2 
Let v e cl+a.,a.(.Q'), cp e ca.csn, roo e ca.(.Q), e e ca.(LD, L1 e cl, sl e C 2 , then the 

following estimate holds: 

(5.8) /nl«, s~ ~ cectJvlt,o,a.,.o'[t/cp/a, sf+ /roo lex, fJ +lela, sf]· [l + G2{lvl1. o. oc,.o'., t) 11 -cx], 

where G2 (x, t) "' x as x--. 0. 
P r o o f. From Eq. 5.2 we have 

(5.9) /nisi~ cect J vlt,o,a,.o'[tlcpls~+lwol.o+lelq]. 

Denoting the expression under exp in Eq. (5.2) by K(r, t), from Eq. (5.2) we have 

(5.10) (.n)cx, T,Sf ~ c/' lvlt,O,IX, .O'{(K( T, t))oc,-c, s~ [tlcp/sf + lrool.o 

+JelL!]+ lffJisi(r( T, t))oc,-c,s~ + tsup( cp( <5( T, t; a), a))oc, r, s~ 
(1 

+(7t{b(T, t; T(T, t)), T(T, t)))oc,r.S~· 

From Lemmas 4.4-4.6 we have 

(5.ll) <K( )> __,. ctJvlt 0 IX gt (J I ) 1-oc T, t oc.T,s!:::::: ce ' · · · gs v l.O,oc,.o'' t t , 

where g8 (x, t) "' x as x--. 0. 

(5.12) 

(5.13) 

<T(T t)) ~ cltJvJt,O,oc,.O'tl-oc ' ex, T, Sf -..:: ' 

< (~{ . ) )) __,. ( ) ctJvlt 0 IX Qt cx cpu T,t,a ,a oc,r,si:::::: c cp oc,T,sfe • • · t. 
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Moreover, the last term in the right-hand side of the relation (5.10) is estimated by 
(<w0)cx,n+(e)cx,~,Lf)g8 (lvl 1 , 0 ,cx,nt, t)t 1 -a:, where u is the parameter along L 1 connected 
with u, which is the tangent vector to L 1 • 

Therefore we obtain 

(5.14) (n)cx,•,Sf ~ cectlvl!,o,a:,nt[t!<p!a:,sf+!wola:.n+leloc,Lf] · gg(lvlt,o,oc,nt, t)t 1 -oc, 

where g9 (x, t) ,...., x as x ~ 0. Similarly we obtain 

(5.15) (n)oc, t, sf ~ cectjvl!,o,cx,nt[t 197lcx, s1 + lwoloc. n+ leloc, Ld · G4(1vlt. o, ex, ,at, t) tl-cx. 

From the relations (5.9), (5.14) and (5.15) we get the relation (5.8). This concludes the 
proof. 

From Lemma 5.1 and 5.2 we have that 

(5.16) lwlcx,nt ~ cectlvlt,o,oc,nt[ti<plcx,si + lwolcx,n+ lelcx,LI 

+ lr;lcx,Sl + t/F/o,cx,nt] {1 + G(ivlt, o,oc,nt, t) t 1 -cx), 

where G(x, t) "'x as x ~ 0. Assuming that {3 = c[tJ<p/cx,sf+lwolcx,n+lelcx,Lf+lr;lcx,s~+ 
+tlF!o,a,nt] and using Theorem (4.1), we get 

(5.17) 

and 

(5.18) 
n 

Do < -
3
-, a E (0, 1). 
+a 

From the relation (5.17) fort~ t 0 , where t0 is sufficiently small, we obtain the estimate 

(5.19) 

where G0 ({3, y, t 0 ) ,...., {3 as t 0 ~ 0. 
Let N c cx(f.!£) be a set determined by the inequality (5.19). The elliptic problem (B), 

(5.1) and (5.2) determine an operator S:N ~ N, which is continuous in C(Qt). But 
N c C(Qt) is compact, therefore, by the Schauder theorem we have (similarly as in [2]: 

THEOREM 5.1 
Let WoE ccx(Q), r; E Cl+cx,cxcsn, e E CC((LD, bE ct+cx,occsn, FE C(O, t; ccx(Q)), si E C2 , 

i = 0, 1, 2, L 1 E C\ ex e(O, 1), t ~ t0 , where t0 is so small that the inequality (5.19) is 
satisfied. Let the maximal angle {}0 be less than n/3. Then there exists a solution of the 
problem (A, B, C) such that wE c:x(Qt), v E ct+cx,cx(.Qt), n E ccxcsn. 

Uniqueness can be proved in the standard way. 
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