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Noncharacteristic mixed problems for ideal incompressible
magnetohydrodynamics

W. M. ZAJACZKOWSKI (WARSZAWA)

THE EQUATIONS of magnetohydrodynamics describing a motion of an ideal incompressible and
infinite conductive fluid are considered. First, we replace these equations by two kinds of equa-
tions: 1) a system of symmetric hyperbolic equations and 2) a Poisson equation and then the well-
posed mixed problems are formulated. Next, using the results about the existence of solutions
of symmetric hyperbolic equations, the existence of local solutions to the above problems is
proved by using the method of successive approximations. Moreover, these solutions belong
to such spaces that equations of magnetohydrodynamics are satisfied classically.

W pracy badane sa réwnania magnetohydrodynamiki opisujace ruch idealnej, niesciSliwej
i nieskonficzenie przewodzacej cieczy. Najpierw, zastgpujac te rOwnania przez dwa rodzaje roOwnan
1) uklad symetrycznie hiperboliczny i 2) rOwnanie Poissona, znaleziono dobrze postawione
problemy mieszane. Nast¢pnie uzywajac rezultatow dotyczacych istnienia rozwigzan dla uktadu
symetrycznego hiperbolicznego, pokazano istnienie lokalnych rozwiazar powyzszych problemow
stosujgc metode kolejnych przyblizen. Ponadto otrzymane rozwiazania naleza do przestrzeni,
w ktorych rownania magnetohydrodynamiki sa spelnione klasycznie.

B paGore McciienyroTcsl YpaBHEHMA MarHETOTHAPOJHMHAMMKH ONMCHLIBAIOILHE JBHYKEHME HJIe-
aNIbHON, HEOKUMAEMOH N ¢ GeCKOHEUHOH MPOBOAUMOCTHIO MUAKoCTH., CHavaa, 3aMeHss 9TH
YPaBHEHHs JABYMS POJIaMH YpaBHEHHit: 1) cumMeTpuueckn rumnepbonmnyeckoi cucTeMol K 2)
ypaBuenuem IlyaccoHa, HafileHbI KOPPEKTHO IIOCTaBJICHHBIE CMEIIAaHHBIE 33J24H. 3aTeM-
KCITONBb3YA Pe3yNbTATHI O CYILIECTBOBAHMHM PELICHME NIA CUMMETPHUHOH runepbonuuecKoi
CHCTEMBI, MOKAa3aHO CYIIECTBOBAHHE JIOKANBHBIX DPEINEHUIl BBILEYMOMAHYTBIX 33/1ay, NPH-
MEHAA METOJ TocJefoBaTeNbHbIX npubmmiceHnii. Kpome atoro mnosyyeHHble pelleHHS IIpH-
HaJUJIeXKaT K TAKHM IIPOCTPAHCTBAM, YTO YPAaBHEHHA MAarHETOTMIPOAMHAMUKH YIOBJIETBOPEHBI
KJIaCCHUYECKH.

1. Introduction

IN THIS PAPER we consider initial-boundary value problems to equations of magneto-
hydrodynamics describing the motion of an ideal incompressible fluid (see [1]):

(1.1) B,+v-VB—B- Vv =0,
1
(1.2) v,4+v-Vo+Vp+ T BxrotB = f,
(1.3) divB =0,
(1.4) divo =0

in a bounded domain £2 = R3, where B is the magnetic induction, v is the velocity, p is
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the pressure, f is the external force and g, is the constant density. As initial conditions
we assume

(1.5) 9]i=0 = Po(),

(1.6 Bli—o = Bo(%),

hence (1.3) and (1.4) imply

1.7 diveg =0, divB, =0.

Our aim is to add such boundary conditions to the problem (1.1)= (1.6) that the obtained
problems will be well-posed (for which theorems of uniqueness are valid). To do this we
replace the problem by a system of problems for which well-posedness is well known,
80 we can prescribe suitable boundary data. Then, using the method of successive approxi-
mations we shall prove the existence and uniqueness of solutions.

Using the identity BxrotB = L VB2 —B- VB, introducing the total pressure

2
1.8) =p+- : B?
( £ q= P 8”@0
and the new quantities
(1'9) w = “—,*Bi""‘“, Wo = —EL-“—’
V4700 V4moo

we write Egs. (1.1) and (1.2) in the following matrix form:

3

1.10) Eu+ ) Ayu,, = F,
i=1
where u = (v, w) and
| 9, 0 0 —w, O 0
10 0 v; O 0 —-w, O
_ 1 0 0 v, O 0 —w,
E a 1 ¢ A‘ - —w, 0 0 'U‘ 0 0 i
0 1 0 —w O 0 v, O
1 0 0 —-w, O 0 vy
-V
i=1,2,3, F=(f0 q)'
Moreover, Egs. (1.5) and (1.6) imply the initial conditions
_ (”o
(1.11) U0 = U = g

For a given g Eqgs. (1.10) are symmetric and nonlinear. To formulate boundary conditions
for Egs. (1.10) and (1.11) we use the results of [2].
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However, at first we have to formulate an equation for ¢g. Using Eqs. (1.8) and (1.9)
in Eq. (1.2) one has

(1.12) v,+v-Vo—w:-Vo = —Vg+f.

Applying the divergence operator to the equation and using Eqgs. (1.3) and (1.4), one gets

3
(1.13) Aq=dWﬂu;;@mﬂ%ufﬂmn%m}

so the boundary conditions to the Poisson equation (1.13) must also be determined.

Therefore, we replace Eqs. (1.1) and (1.2) by Egs. (1.10) and (1.13). Inversely, we see
that Eqgs. (1.10) imply Egs. (1.1) and (1.2). But Egs. (1.3) and (1.4) must be not satisfied.
Hence we have to find equations which imply Eqgs. (1.3) and (1.4). To do this we apply
the divergence operator to the system (1.10) and using Eq. (1.13) we get

3
(1.14) 1+ D Bige, =0,
i=1
Vi, —wW;
where y = (,9), n =div v, ¢ = divo, B, =( N % ), i=1,2,3. Moreover
—wi, i

Eq. (1.7) gives
(1.15) Zle=0 = 0.

Therefore we have to consider our problem in the case when Egs. (1.14) and (1.15) have
only zero solution, because then Egs. (1.3) and (1.4) are satisfied. In the case of the Cauchy
problem (2 = R?) the problem (1.14), (1.15) has only zero solution if z;, w;, i =1, 2, 3,
satisfy the assumptions of Lemma 4.2 (see Theorem 4.1). In the case of a bounded 2
our aim is to find all and such possible boundary conditions to Eqs. (1.10), (1.11) and (1.13)
that the problem (1.14), (1.15) would have only zero solutions. This is equivalent to the
fact that the obtained mixed problems to Eqgs. (1.1) and (1.2) are well posed.

The paper is organized in the following way. In Sect. 2 four different well-posed mixed
problems (4,), ..., (4,) are formulated. The problems are obtained by replacing the basic
equations (1.1)+ (1.4) by a system of two problems: (1) hyperbolic mixed problems (2.3),
(2) Dirichlet-Neumann problems (2.9), (2.12), (2.20), (2.21) to the Poisson equation (1.13),
where we have added boundary data (2.3); and (2.9). Next the integral type compatibility
conditions (2.22) implied by Egs. (1.3), (1.4) give us correct well posed problems for our
equations of magneto-hydrodynamics. We choose two problems: (P;) and (P;). In Sect.
4 using the results of [2] the existence and uniqueness of solutions of the problem (1) is
proved. At last, in Sect. 5, using the method of successive approximations the existence
and uniqueness of solutions to the problems (P,), (P,) is shown. We prove the existence
of classical solutions. Section 3 has an auxiliary character.

The author thanks the referee for very essential remarks.
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2. Boundary conditions

To formulate boundary conditions for the problem (1.1)+(1.6) we have to find bound-
ary data not only for the hyperbolic problem (1.10), (1.11) but also to the problem (1.14),
(1.15), simultaneously. As it follows from [2], to find boundary conditions to the hyper-
bolic problems (1.10), (1.11) and (1.14), (1.15) we must analyse characteristic polynomials
of the matrices

3 3
~4,=—D'Amn, —B,=— D B, wheren,i=1,2,3,
i=1 i=1

are coordinates of n which is the unit outward vector normal to the boundary. These
characteristic polynomials have the forms

det(—A,— AE) = [(A+v,)*—wl]? = 0,

@1 det(—B,— Al = (A+9,)’—w? =0,

10 _ _
where [ = (O 1), ¥, = U N, w, = 0 -n. Therefore we have the following eigenvalues:
2.2) Ay = —U,Fw,.

We shall restrict our considerations to the noncharacteristic boundary only so det A, # 0
in the neighbourhood of the boundary what is equivalent to that 4. # 0 in the neighbour-
hood of the boundary. The case of characteristic boundary for linearized magnetohydro-
dynamics was considered in [3].
The mixed problems to the hyperbolic equations (1.10) and (1.14) are formulated in
the following forms:
3

Lu = Eu,+ ZAi(u)u,‘ = F,

i=1

(2.3) Uly=0 = U,
Muls, = g
and
3
Ky = IXt+'Zl‘Bi(u)Zx‘ =0,
(24 Zli=o = 0,

Nx!ag = h.

Now, analysing the signs of eigenvalues (2.2) and using the results of [2] we find the form
of boundary matrices M and N. We can distinguish the following possibilities:

(C) A->0, A,>0 on 22,

what can be satisfied if ©s)ap < —|wal|s0. A particular case is D,lap < 0, @hlag = 0.
Therefore M = E, N = I:

(C2) A_<0, A,>0 on 0Q,
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what can be satisfied if —w,lag0 < ploe < @aloe and w,|ae > 0. As a particular case we
have v,|s0 = 0, w,|se > 0. Knowing that the boundary data which belong to eigenspaces
corresponding to positive eigenvalues of matrices either — 4, or — B,, respectively, must be
prescribed only, we consider ker (4,+ A" E) = {e,, 5, €5}, where e; = {1,0,0,1,0,0),

3

e;=(0,1,0,0,1,0), e; = (0,0,1,0,0, 1), so M = D e;®e;. Moreover, ker(B,+
i=1

+A’+I) = {(Iy I)}a so N = (17 l)

(Cy) A->0, A, <0 on 32,

what is satisfied for w,|an < Valag < —®alag, 80 |2 < 0. As a particular case we have
Unlog = 0, walap < 0. In this case we describe ker(d,+A_E)= {e4,es,es}, Wwhere

6
es = (1,0,0, —=1,0,0), es = (0,1,0,0, —1,0), es = (0,0,1,0,0, =1), 50 M = Y &;®
i=4

®e;. Moreover, ker (B,+A_I)= {(1, —=1)}, so N = (I, —1). At last we consider the
case of negative eigenvalues

(Cy i_<0, 4,<0,

which takes place for v,/ap > |walse|. As a particular case we have v,/ap > 0, w,lag = 0.
In this case M = 0, N = 0, so no boundary data must be prescribed. Summarizing the
above considerations, we get

M=E for(cl):
100100
(2.5) M={010010 for (Cy),
001001
100 -1 0 0
M=|010 0-1 0 for (C,),
001 0 0 -1
M=0 for (C,).

Hence using the problem (2.5) instead of the problem (2.3);, we obtain
ulsg = (b,d)  for (Cy)

(2.6) (@tw)lag=a for (Cy),
(@-w)ag =f for (Cy),

where g is equal to b, d, «, and B, respectively. Moreover, we have
N=1I for (Cp),
N=(,1 for (C,),
N=(,-1) for (Cj),
N=0 for (C,),

2.7
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therefore, assuming # = 0 in Eq. (2.4);, we have
dive)ag = divwlaa =0  for  (Cy),
2.8) div(v+w)lag =0 for (C,).
divie—w)lag =0 for (C,).

Consequently, the problem (2.4), (2.7), (2.8) (2 = 0) implies y = 0 (see Theorem 4.1),
so Egs. (1.3) and (1.4) are satisfied.

However, the boundary conditions (2.8) are not justified. We shall obtain them by
formulating boundary data for the Poisson equation (1.13).

In the case (C,) we haven’t any conditions in Eqs. (2.8) so we have some arbitrariness
in prescribing boundary data for Eq. (1.13). Therefore we assume that

(2'9) 9'|an =n,

where = is a given function.

To formulate boundary conditions to Eq. (1.13) for the cases (C,), (C,), (Cs), curvi-
linear coordinates in the neighbourhood of 82 must be introduced. Let n(x), 7,(x), 7,(x)
be orthonormal vectors determined in the neighbourhood of 02 such that for x € 42 n(x)
is a unit outward vector normal to a2 and 7,(x), 7,(x) are tangent to 92. Let n(x),
7;(x), 7,(x) be an orthonormal system of curvilinear coordinates corresponding to the
above vectors such that n(x) = O describes 942 locally and then 7,(x), 7,(x) are locally
parameters on 92. Moreover, the following relations are valid:

- 1 2~ = 1 0 .
n-V=‘#"H, V= — i=1,2,

where #;, i =1, 2, #, are Lame’s coefficients. Using the curvilinear coordinates, we
can write the equation diva = 0 in the form

2
(2.10) i+ Va,+a,divi+ Y (%, Va,, +a,dive,) = 0,

i=1

where @, = a-n, a;, =a 7, i =1,2.
Let us consider the case (C,). Projecting the normal component of Eq. (1.12) on 012,
using Eq. (2.6), and the projection of Eq. (2.10) on 922 for a = v and a = w, we obtain

. |
H, on

3
= filsa—bui+ D) & Vb, —d- Vndy)
k=1

Q@.11)

02

2 2
= Y (bu T Vbu—d, T V) +b, [b.divai+ Z: @, - Vbo,+ by, divT)
i=1 i=

2
—divolso] - dy[d,divAi+ ) (&, Vi, +di,divE) — divola|
i=1
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To determine Eq. (2.8),, we assume the following condition:

3
1 dq|
Q) Gh = flaa=buet 3 6 Vnbe—d- Vndy)

k=1

2 2
= N b7 Vb,—doTi- Vd) +b,[budivii+ ) (- Vi, +b,divE)|
i=1 i=1

2
—d[d,diviit Y @ Vo +dedive)).
i=1

Comparing Eq. (2.11) with Eq. (2.12), we see that Eq. (2.8), is not implied, so we project
the normal component of Eq. (1.1) on 422 and use Eqgs. (2.6), and (2.10). Therefore we get

2
@13)  d, + Y (b T Vdy—di T Vb)—b- VAd+d- Vib
i=1
2
+ bl divols— (dydivi+ ) G- Ve, +di,div)) |
i=1

2
—d,[diveleg— (b,divii+ X G Vb +8edive)| = 0.

i=1

Assuming the compatibility condition

2
@14 d,,+ Y (b Vd,—d, 7, Vb,)~b - Vad+d- Vib
i=1

2
+ ) [ (dy Ve~ b,Vde) + (dybe,—~byd ) divE] = 0,

i=1
by comparison of Egs. (2.12) and (2.14) with Egs. (2.11) and (2.13), respectively, we get
b,, —d,\ (dive
~d,, b, diveo|aq

so Eq. (2.8), is satisfied because b2 —d? # 0 (see the relation (C;)).

To obtain boundary conditions for the cases (C,) and (C;), we must reformulate
Eqgs. (1.1) and (1.12). Taking the sum and difference of Eqs. (1.1) and (1.12), we obtain,
respectively,

(2.16) @+w),+(@-—0) Vw+w) = f[—Vq,

@.17) @—0)+(+0) - V(o—0) = f-Vq.

In the case (C,), in order to obtain the condition (2.8), we have to use Eq. (2.16). Projec-
ting the normal components of Eq. (2.16) on 0£2 and using Eq. (2.6),, we get

1 3q'

3
@18) —-5l = f;,lag—ot,,,:+k2=; (0—0) - Vi o,
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2
(2.18) — D (@0-0) T Va,— (@=w)ni - V(@ +0),.
[cont.] i=1 .

Using Eq. (2.10) for a = v+w and Eq. (2.6),, the last term in Eq. (2.18) can be replaced
by expressions with «. Hence one gets

2

3
= floa—tnet Y, @—0) Vma— D (@ —w) 7+ Vo
k=1

i=1

1 odq
em G,

2
— (=) dive+ o) oo adiviie D) G- Vote,+ e, div)].
i=1

Demanding the boundary condition in the form

2

3
1 -
= floa—taut Y (@—0) Vno— Y @) 7 Vot
k=1

.
H

e
on

(2.20)

aQ

i=1
2
+ -l [adivit D @ Vo, + 2 dive)|,
i=1

we obtain that Eq. 2.8), is satisfied because (v,—ws)|a0 # 0, what follows from the rela-
tion (C,). In the case (C,) similarly as above by using Egs. (2.17) and (2.6);, we get

1 dgq

(2.21) % 3,—1—.69

3 2
= flsa=Buit D @+0) - VnBi— Y @+0) T VB,
k=1 i=1

2 ”
+ @+l pudivat D G Vi +fr,dive))]
i=1

and (z+w),div(v—w)|se = 0 so by (C;) it follows that Eq. (2.8); is satisfied.

Summarizing, our problem is replaced by a system of two problems: mixed problems
for symmetric hyperbolic equations (2.3), (2.5), (2.6) and Dirichlet-Neumann problems"
(2.9), (2.12), (2.20), (2.21) for the Poisson equation (1.13). Moreover, the boundary con-
ditions (2.12), (2.20), (2.21) imply Eq. (2.8) so from the hyperbolic problems (2.4), (2.7),
(2.8) it follows that Eqgs. (1.3) and (1.4) are satisfied. Therefore we have obtained the
following types of mixed problems:

(A (2.3), (2.5)5, (2.6)5, (1.13), (2.12), (2.14);
(Az)  (23), (2.5)2 (2.6); (1.13), (2.20);

(As)  (23), (2.5)3, (2.6)s, (1.13), (2.21);

(A (23), (2.5)s (2.6)s (1.13), (2.9).

In order to prove the existence of solutions of our problem, the above formulation suggests
the method of successive approximations. However, Egs. (1.3) and (1.4), which do not
explicitly occur in the problems (A,)- (A,), must be satisfied. They imply the following
compatibility conditions:
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2.22) [vus,0)ds =0, [w,(s, )ds =0,
o o

which have a global character. Now, considering the problems (C,) = (C,) we see that

vniaﬂ <0 for (Cl)s vn[af) >0 for (C4)s

(2.23) wlog >0  for (C,), wlse<0 for (C,),

therefore Eq. (2.22) implies that we have to consider domains with a boundary which con-
sists of at least two disjoint parts with different kinds of boundary data coorresponding
to different initial-boundary value problems (A;)+(A,). Considering the boundary
composed of disjoined parts helps us to omit real difficulties connécted with a jump of
either ¢, or w, which must appear in the case of a connected boundary (see Eq. (2.23)).
The last possibility implies that we have to look for solutions @,  in a class of noncontinu-
ous functions because they have jumps on the boundary, but it is not possible because
proving the existence the nonlinearity of our problems needs morej regularity. These
jumps can be avoided if we consider domains with edges (dihedral angles). However,
in this case we are faced with difficult problems solving boundary problems to the elliptic
equation and mixed problems to hyperbolic equations in domains with dihedral angles
(see for example [4, 5]).

In the end we have to examine a condition which selects the problems from the set
(A;)+ (A,) which may be considered simultaneously. We recall that the problems (A,) =+
+ (A,) enclose the Neumann problem to the Poisson equation (1.13).Therefore, to solve such
a problem a compatibility condition is needed. By some examples we show why this con-
dition cannot be satisfied. Let us assume that on a part S, of the boundary the condition
(A,) is given, » = 1,2, 3,4, Let us consider the problem (A,), (Aj;), so dQ2 = S,US;
and S,NS; = 0. In this case the condition (2.22) can be satisfied (see Eq. (2.23)). From
Eq. (1.13) we have

3
(2.24) Dfdivf— _Zl(ai,ﬁvj,x'—w,,xjwj_x‘) - [ 7-vq
i, j=

§:nSs

Using Egs. (2.20) and (2.21), we see that Eq. (2.24), besides the given boundary data con-
tains traces of unknown quantities v and w. Hence we do not known how to satisfy Eq.
(2.24). Similar considerations can be done in other cases in which the problems (A,)=(A3)
appear only. Therefore we assume:

(2.25)  Equation (1.13) with the Neumann condition only will not be considered
in this paper.

Summarizing the above considerations, we shall restrict ourselves to the following
two kinds of problems:

(Pl) (A, Al), 02 = §,US,, SinS, =0,
(P2) (A, A3, A), 99 =5085US;, S:nS3=0, S$nS=0, S5:nS; =0,

where the boundary data are prescribed in such a way that Eq. (2.22) is satisfied.
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3. Notations

To simplify the next considerations we introduce the following spaces and notations.
At first we introduce the ordinary Sobolev spaces H®(27) with the norm

||ul|psery = (Zf f | Dy}, Jculzdxa't)

Ir|<s0
where
d d” am

D}, =
BE T g% X oxin’

[¥] = vo+vi4+ ... 5, QT = Ox [0, 11,

and » is the multi-index. Similarly spaces H*(2), H5(222") can be introduced. The norms
of spaces H*(22), H*(Q7), H*(32") will be denoted by || |ls,a, Il lls,ars || |lse0er, respec-
tively. Moreover, we introduce L,(27) = H°(QT), L,(éQ2T) = H°(d27) and so on
with the norms || |lgr, || |lsor, respectively.

Using the above notations we define L,(0, T; H*(Q)), Li(0, T; H*(L2)), where p>1
is real, by the following norms:

T T
([umizad)™, ([ 1DIullz 0d)".
[} 0

Therefore we can introduce

!
I (27) = QL:,"(O, T; H'(2)) with the norm | |y, ,,0r.

For p =2 we have IT}(Q") = IT; ,(Q7) and | |1z, o7.
Introducing the space of traces H*~1/2(92), H*~'%(3QT), we can define

I
I 020Q7) = MY L0, T; H-2(8Q)), k > 1,  with the norm | |,_y/3,4, p, 207
i=k

Moreover, we introduce the weighted Sobolev spaces H3(27), « > 0, with the norm

lullageary = Willsar = 3 [ 107 cue-axar)

v <s QT

We also define H2(Q7) = L,,.(27), and so on.
At last we introduce L,(2) with the norm |[| [o,,,0 and a Banach space I'}(£2) with
the norm

llullrtey = lultia = D, 11D} ull. .
i=k
For convenience the following spaces will be introduced:

1
I (@n = p L0, T, H'-(R)), 11} ,(Q") =I}(Q") and TkQ)
=k
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with the norm

il
lullFg@ = D, IDiulli-i.a-

i=k

Further, by |u| we denote the Euclidean norm, where # may be a vector or matrix.

4. Existence of solutions of the problem (2.3)

In this section we shall consider the following problem:

1
Lu = Eu,+ ZA,(x, Due,+D(x, t)u = F(x, t),
i=k

“@.1) Ultmo = Uo(X),
Mulgg = g(x', 1), x'€dQ,

where M is described by Eq. (2.5). By [2] the proof of the existence of solutions to the
problem (4.1) can be restricted to getting an a priori estimate only. Moreover, using
a partition of unity it is sufficient to obtain this estimate in a half space only. Therefore,
in this section we assume that Q = {xeR3:x, > 0}, 2 = {x eR3:x;, = 0}; more-
over, we denote x’' = (x,, x3). To obtain an a priori estimate we assume that a solution
of the problem (4.1) is sufficiently smooth.

LEMMA 4.1.

(a) Let A~ and A* be sets of negative and positive eigenvalues of the matrix —A4,,
respectively. Let u~ e ker(4 + A~E) for each A~ e A~ and u* eker(d,+A*E) for each
Ated*r.

Let
(4.2) 0 < ¢ < minmin(—417),
ant A~
and
4.3) maxmax At < ¢,
T A+

where ¢y, ¢; are constants.
(b) Let De L,(0,1; H*(2)), A;eLo(0,t; H3(®Q)), i=1,2,3, and there exists a
constant « such that

3 3
44) max (2D1+ 3 14;.,)) € ¢ 3 141155, 0.0+ 1Dlz.2,0.0) < 5
i=1 i=1
(c) Let Fe L, (2*). Then the following estimate

4.5) f w?e=2dx|i o+ f u2e~ 2 dxdt+c, f e dx'dt
Q ot a9t
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2

4.5) < (co+¢y) f (u+)2e-2°“dx’dt+-a

{cont.] aat

holds, when u* = Mu.
Proof. Multiplying Eq. (4.1), by ue~2* and integrating by parts, we obtain

f |F|2e~%dxdt
at

gt_fuze—zatdx_{_za fuze—zaudx+ fA,,u-ue'z“‘dx’
2 Q2 on

3
= J (2Du-u—ZA,,x‘u-u)e‘“‘dx+2 fFvue'z“'dx.
o i=1 Q2

Using the Young inequality and the assumptions (b), (c) we get

fuze‘z"“dx|§=o+a J ute= 2 dx dt+ fA,,u' ue™2*dx'dt < % fIFJZe‘z“'dxdt.
af

2 ot anr

At last the assumption (a) implies the estimate (4.5). This concludes the proof.

As it was mentioned in Sect. 2, we have to use a method of successive approximations
to prove the existence of solutions of the problem (A;)=+(A,). The nonlinearity of these
problems needs sufficiently high regularity which must be such that x — u(z, - ) € H3(2).
Therefore the aim of this section is to get an a priori estimate for solutions of the problem
(4.1) in H3. To do this we consider the problems

LD? .y = D . F+(LDZ ;u—D¢ . Lu),

(4.6) Df ulico = DY o tili=o,
MD?.xruTan . D:,,x’gﬂ
where
a _6"0 9%t aa:_ |a-| e ey " = (0' e ) lGr| =0, +0
Lx 9t axﬁl axgza — Yo 1 2 - 25 Y3/, = v2 3
lo] =1,2,3

and the right-hand side of Eq. (4.6), must be calculated from Eq. (4.1),.
LemMMma 4.2.

Suppose that L = (d, A,, A3, D), A; eIl (@), i=1,2,3, Dell} (2" and
that there exist numbers &, §, such that

3

@.7) D 14ils,0.m.0¢+ Dl3,0,m,00 < 8,
i=1
(4.8) max|A7'] € 6.
Ql
Suppose

(4.9) Fe HY(2), geH(92), where o=1,2,3, u,ecH* Q).
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Then there exist polynomials p = p,(d,, 6) and ¢ = q,(,, J) such that the following
estimate

o
(4.10)  |ul3 0,07+ 5 Il 13, 9% 2+ Collul13, 00« < Po(1, O) (IIFIIZ, at,a+1FIZ_1,0,0],_,)

+45(d;, 5)”8’”3.69',«'1"luig.,o.n]ho

is valid, where o = 1,2, 3 and there exists a polynomials r,(d), ¢,(d,, d) such that g,(d,,
d) < o and

4.11) lula,0.0)_o < ro(8) [llolls, 0+ [Flo-1,0,0],_,]-

Proof. Let us consider the case ¢ = 1. Considering the problem (4.6) for ¢ = 1 from
the estimate (4.5), we get

4.12) f |D}, 5 u|?e= 2 dx|{_o+ o f |D! . ul?e=**dxdt
Q2 ot

+¢o f ID} . ul?e™2dx' dt < (co+¢;) f DL ,.g|2e2dx'dt

o0t a0t

+ 2 [ DLk dcdr+ 2 [ LD} u= DLy Lute~*dxat,
at QF

where the last term is estimated by

(4.13) ] fID},,,E|2(ID},,IZ+Iulz)e"'“‘dxdt.
% o

Using

(4.14) u,, = A7'(F—A'u,.— Du)

and the assumptions (4.7) and (4.8), the expression (4.13) is bounded by
(4.15) —Z— 62[(6f 62+1) f (1D} cout]® + |u|2) e~ 2 dx dt + f |F|2e™2%dxd ]
ot foLd

Assuming

a).

(4.16) cb* (836 +1) < -

by Egs. (4.5), (4.12), (4.13) ad (4.15), we obtain

@.17) f (ID},xru|2+Iulz)de'Z“'l§=o+% f (ID} ott]? + u|?) e~ **dxdt
Q ot

+eo [ (DY +) 2 axdt < (cote)) [ (Dhgl +lgl)em 2
ot ant

4 Arch. Mech. Stos. 5/87
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4.17) : f(|D,.,, F|>+|F|¥) e~ *dxdt.

[cont.] ot
From Eq. (4.14)
(4.18)  |uel13,0 < clllFIl5,0+ 8*(1ID7, xull5, 0+ [1ul13,2)],
lux, 13,0t < €llFIIG, 00,0+ 8> (|1Df, < ull3, 0t + 14113, 0¢,2)]

so Eqgs. (4.17) and (4.18) imply the estimate (4.10) for ¢ = 1 where c(x+1) < p,(6?),
c(co+cy) < g4(0) hence p,, g, are polynomials of the first and sixth order, respectively,
because ¢; < cmax|detd,| < cé®.

Let us consider the case ¢ = 2. From Egs. (4.5) and (4.6) we have

(4.19) f \D? .ul*dxe=?™|t_o+a f D2 ,.u|%e~ *dx'dt
Q

+¢o le, wul2e”2dx'dt < (co+¢y) fIDﬁx.glze‘Z“‘dx’dt

et ant
-+ i f]D .F|?e '”‘dde—— f|D, wLu— LD} c.u|?e™ *dxdt,
% s
where the last term is estimated by

2
(4.20) - f (1D} 54 D}zl + Dy v AI* |D}, 5 D} cu|* +|D} . D|? |uf?
ot

+ 1Dy, D|* |Dj, cou* e dxdt < — 62[IID¢ 13,0t t lullf, 00,0l

To estimate the first term at the right-hand side of the inequality (4.20), we shall consider
the following inequalities (where Eq. (4.14) is used):

(4.21) |ID{ 5 D3, ullg, ot « < €61 811D7, o ullf, a0+ cra(83, 63)(|[ul11, o, a+ | FlIT, 0, )5
where r, is a polynominal of the & degree.
(422)  |IDZ,ull3, 01, < €07 6%(8* + DD, ull3, ar, atcra(61, 6°)[UlI3, 0r,

+cr3 (63, 0)IIFI1}, ot
Using

2

4.23) c83(83+1) 6482 +1) < E%

from Eqgs. (4.19) +(4.22) we have

@24) [ D2 uldre2),_ ot 5 f |D? . ul?e™ > dxdt
2

+eo [ D2 e dx'dt < (co+¢,)| | DE o 8113, a0t

ot

+cra(83, IFIZ, o at lullf, o1, 4]
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Moreover, we have to calculate

425)  |ID}. Dk ulld, o+ |1D3ull3, 0 < ors(83, 8)[IF 0,0+ D, 11D ull3, o]

s<2

Therefore from Egs. (4.24) and (4.25) we get
t

o
(4.26)  |ID7ull§, ae™ e 5 I8 <ulld, gt at €ol D7, xulld, oat,

< (co+c)l|D? 8113, 00t, a +ers(8F, 03)(|F113, a1, a +|F1%, 0, 06~ 2
+cr5(c‘5§, 62)“”“%.0'.1-
From the energy inequality for the operator d/dt we have

c
4.27) |F|2 0,07 2% < ?[F'v2+l,9',n:+iFlvz.0,.Q|t=0’ vr=1,2,
so by Eqgs. (4.26) and (4.10) for ¢ = 1, we obtain the estimate (4.10) for ¢ = 2, where

ca”lrs (07, 0)q1(01, 0) < g2(dy, 9), clrs(0%, 83 +a~trs(07, 6%) pi(8y, 8)] < p2(dy, 0).
Let us consider the case ¢ = 3. From Eqgs. (4.5) and (4.6) we obtain

(4.28)  [ID] culld, ae™* [ < o+ al| D, wulld, ot 0t ColID? 1 13, 00t,

< (co+e)|ID) v gll}, oot at — ”D: «Fll§, at,a+ — HDr woLu—LD? u||3, g, «

where the last term is estimated by

cd? 080§ -
(429) ”Dr x'D;,u“() .Q’,u+”“”2 2 a <c } ”Dr,x'uno,ﬂ',a
o

# ——.ux(éu NIFIIZ, et — /"2(61’ lull3, o,
where u,, 1, are polynomials. Assuming that
(4.30) c6%0f < ——
Eq. (4.28) and (4.29) imply
@31) 11D cull3, 06 - o —- 1D 13, gr, 0+ oI D3 w13, a0, o

< (co+¢)l|D2 18113, 20, a+ 13(81, O)IFII3, o, at s (61, O)Iul[3, 0%, s
where u;, p, are polynomials. At last we have

3
@32 DD} Dsul3 0 < psdr, UIDE wulld, o+ IF13,0,0) +ps(d1, O)lul3, 0,0,
v=1

where 15, pig are polynomials. Using Eq. (4.27) forv = 2, from Eqgs. (4.29), (4.31) and (4.32)
we get Eq. (4.10) for ¢ = 3. This concludes the proof.

4%
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Using [2] we get

THEOREM 4.1.

Let the assumptions of Lemma 4.2 be satisfied and u,|so = 0. Then there exists a unique
solution of the problem (4.1) such that u € lI§ ., (2)~HI(2VnHS(962"), ¢ =1, 2,3 and
the estimate (4.10) is valid.

In the end we add considerations about the relations between the problems (4.1) in
a bounded domain and in the half-space.

REMARK 4.1.

First, to prove Theorem 4.1 in a bounded domain it must be assumed that 02 € C3,
Next, to find the relation between the problems (4.1) in a bounded £ and in R3 we restrict
the problem (4.1) to the neighbourhood @ of the boundary in which d2nQ is described
by the equation x;, = F(x") (where x = (x,, x,, x3) is the local coordinate system centered
in the middle of d2nQ, such that points with x, > 0 belong to £2). By transformation

(4.33) Yy =x, y =x-FX),

3
Q is transformed into the half-space y, > 0. Then —A- 71 = Y A+ = |p;.«~1 = A},

_ —_— dy, dy, dy > i o
. ; T 1 1 1 2
because n = (—1, F; )/1/1 +FZ (ax1 »ax," dx, )(2 yi,, . The characteristic

polynomial for the matrix — A, has the form

3 3 3
' 22 ¥ 'O )2 3_ . \' 9y
[('1 ;W' 6x1) B (i;‘w‘ ox, =0 B A= T [—octon] ox;

has the same signs as 1. determined by the eigenvalues (2.2) because (yy,,, »1,,,¥1,,,)
has the opposite direction to n (however, we have to assume additionally that the size
of @ is sufficiently small and d2nQ is sufficiently smooth). Therefore the boundary con-
dition to the problem (4.1) and eigenvectors of the matrix — A4, (M remains unchanged)
do not change after the transformation (4.33).

5. Existence of solutions

To prove the existence of solutions of the mixed problems (P,), (P,) formulated in
Section 2 we shall use the following method of successive approximations:

m+1 m mm+1 —Vm
E u + 2141(‘” ) u,lz(f q),

0
m+1
(5.1) U lt=0 = U,
m+1
M,u s'=g,, 7=1,...,4,

m+1 m+1l m+1
where ¥ = (v, ®) and
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3
m m " it m
Aq = dlvf— '_gl ('Ui‘ xl'vj' x; —wy, waJ. x')!
8q
(5.2) By, =
qs..= 7,

where » corresponds to the problem (4,), » = 1, ..., 4. The forms of M,, g,, h, are descri-
bed in the definition of (4,), » = 1, ..., 4. Moreover, we assume

(5.3) 3 = Uy = (v, Wo).

The existence of solutions of the problems (5.1), (5.2) is well known. Therefore we can
restrict our considerations to get an a priori estimate (independent of m) and convergence
of the constructed sequence of solutions of the problems (5.1), (5.2).

Let us consider the problem (P,). At first we shall obtain an a priori estimate. From
Egs. (5.1) (v = 1,4) and (4.10) we have

m+1 m+1 m+1

o
(54)  lulfo . ae”® 4 o |lull3 o atCollull3, a0t

m m+12 m
< 5:1(6y, |4l 3,0, 0, 20| #1300l = 0+”8’1||§,sf,a+||VQ'“§.12',¢

+1Vq13,0, w0, ot + 111113, 0, a+1f12.0, 0. 0t],

where s, is a polynomial determined by Eq. (4.10). From Egs. (5.2) (» = 1,4) we obtain

m
(5.5)  1gla,2, w0, 0t < c(|diVf]3,0, o, at+ U3, 1,00, 0t + Hsla-1s2, 1,w,5t ez 1s2, 2, 0,51)-

m
To estimate D3q we introduce a quantity 7z which is an extension of 7 such that & vani-
shes in the neighbourhood of §; and

(5.6) 17%l4,1, 0,0t < €l7la-1/2,1, 00,58+

m m

Then § = g—= vanishes on S, and instead of Egs. (5.2) we shall consider the problem
for 5 which will be denoted by Eq. (5.2)". Taking the third derivative with respect to ¢ of
Eq. (5.2)', multiplying the result by D}§ and integrating over £*, one gets

67 IvDEE - |

o

d P L P L 3 40
—%D:QD:Q_H'DU“D:‘I + fDxf' VD g
9'

m m
- f VD}aVD} g+ f D} (VoVo—~VwVw) D} g.
0t

oLl
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Using
3 3
m m n m m m mm m
2 fD?vh,;vaiDtaq = Z [f".rD?Uxi’J,,,D?‘I" ;,! D?'Utﬂj.,,Dx,DEQI,

=14t ij=1"%st

m
theorems of imbeddings and the Poincaré inequality (because g|s, = 0), one has

m ad m|2
B 1Dl oom < | 5 DR +IDEI3HIDES s
R

" IIVDfﬂ!I%')+€!ul§,z,w.a'(lu]§.o.m,av+IID?M'%D')v
Therefore from Egs. (5.5), (5.6) and (5.8) we obtain

(59 1931, 0.0t < c(“D?h1“§:+|h1|§-u2. Lo, st FHIE-1/2,1, ®, St

m m m
D13+ 1113, 0,0, 0) F €Ul 1, 0, (1413, 0, o, 2t + 1 D7 i I30r) -

Introducing the notations

x? = [ul3,0,w, ot +1ull3, ot + lull3, 20t
(5.10) K, = lulg.o,.ot=o+||f||§,u*+iffg.o,ao,n'+|7z]4_uz,1,m.s},
K, = |]D3f11§g+[]ngg,55+HD3h1||§f+Ih1|§_1,2_1,m,s;,

from Eqgs. (5.4) and (5.9) one gets

m+1 m % 5 m .
G.11) Xt < 51000, XK+ K, + x¥] e,
where o = 5,(8,, x). Hence we have proved
LemmA 5.1.
Suppose

a) |uls,o0,0lt=0 are bounded for each m;

b) fe H3 ()13, o(2Y), = elI{72*(Sh), 02 < C*;

¢) DifeL,(S1), g, € H*(SY), hy elI3-}*(SY), D3h, € Ly(SY).
Then there exist sufficiently small #,, K7, KJ and X, (2o, K7, K9) such that for ¢ < #,,
Ki< K§,i = 1,2, and for solutions of the problem (P,), we have

m+1

(5.12) x < Xl(t()! KP, Kg)a m = 0, 1, sans

Let us consider the problem (P;). From Egs. (5.1) (v = 2, 3,4) and (4.10) we have

m+lz sat o m+12 m+1
(513)  ul3, 0w, a0 +7Hulla.a'.a+CoIIuIl§.ag'.a

t=0+ “gu”g,sj.u
i=2

w m+1
< 510015 [Ul3,0,0, 00 % [3,0,0

m m
+1IV4l13, o1, +1V413, 0, 0, ot + 1113, 0t 0+ f13, 0, 0, 21]-
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Similarly as above we get

G14) (g1 e < c[ 3 UID A+ 3o sn, 1,00
i=23

HID3I1Z)+1f12, 0,000+ 171212, 1, w,s:]+clzl§. 1.0, (13,0, 0, 0+ 113 ulla0).
Equations (2.20) and (2.21) imply
(.15) DRI+ 31, 1ot < DDA 113 +113, 0,0, 00
+ (3, 1, 0, o+ D2 ullZa0)lesl2o 2, 1,y 2+ D2 1121,
where » = 2, 3, e, = o, e3 = f. Using the notations (5.10),,, and
(5.16) Ks = sz (D I3+ 11D e -+ e 112, 1,5+ 84113, 5)

from Egs. (5.13), (5.14) and (5.15) we obtain

mal m & m 52(8 :’:t
(5.17) x? € 5,(81, OIK; + K3+ tx2(1 + Ky x2)] " 7,
Therefore we have carried out the proof.

LEMMA 5.2

Let the assumptions a, b of Lemma 5.1 be satisfied and

d. D?fELZ(S:)’ e, enl._aélzy (S:'): .D?C’,, ELZ(S:)y g;EHs(S:), B= 2! 3’ € = a,
ey = fB.
Then there exist sufficiently small #5, Ky, K3 and X,(%, Ki, K3) such that for ¢ < ¢/,
K, € Ki, K; € K3, and for sohlutions of the problem (P,) the following estimate

+1
(5.18) <X, KL KY), m=0,1,..,
holds.

m+1
Now to estimate | u |3, 0, qli—0 We must consider the following problems obtained

from Egs. (5.1) and (5.2):

)
t=0

m+1 3 m m+1 m
(5,19) D,s+1 u l‘-o = D‘s(— ZA;(“) qu +f—V )
i=1

and

ADlsqII-O = -D: (lef— (V‘UV‘U“"VCOVCU)M,,O,
0

(520) %D:QL-O = Dlshr]l-O on S,,'.V = 11 2: 3)

m
Diqltmo = Dinliuo  oOn Sy,

where s = 0, 1,2. We consider simultaneously the problems (P,) and (P,) where the
expressions in brackets { } are for (P,) and replace the expression before { }. It is sufficient
to consider only the time derivatives in |u]s,0,o. From Eq. (5.19) we have
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(5.:21) 103" (O)Ha 0(lll)zf(0)l|mHD’VQ(O)IIQ, 1D (0)Ha)

where (0) = x|i-o and o describes polynomial type dependence. Now from the problem
(5.20) we have

(522) [IVD?q(O)lla < c(IlDF by O)ls, {I|1DF h2 (O)lls, + [1D7 3 (0I5, }

+1ID2fO0)]l5, + I D2fO) o+ [VD27(O0)]o + || D2 (VuV) 0)]]0)
and from Eq. (5.19) we get

6.23) (1025 O)llo < o(IDIV/O)lla. IDLV2 4O)lan 1DV O)]]s).

Therefore we have to estimate the second and third norms in the right-hand side of the
inequality (5.23). By Eq. (5.20) we have

(5.24)  IDXO)]]2,0 < (1D, o+ 1D (VEVE)O) I+ 1D hyO)l1/a, s,

< {IlD{ k2 (0112, 5.+ 1D h3(0) |42, 5,3 + 11D} 7!(0)“3/2,5.)
and by Eq. (5.19)

(5:25) 10w (0)”2 a < o(|lf0)]2, 0, ||Q(0)Hs o IV“(uu)(O)Iln)

At last we have to estimate

(5.26) ||q(0)||3 o IS C(“f(O)Hz n+||uoHs n+|!"‘(0)”5/z seF 1110)]]3/2, s,
* {[1h2(0)13/2,5.+ [173(0)]|3/2,5 })-

Hence we have obtained

LemmA 5.3

Let a) 02 e C% D2f(0) € L,(S,), f(0) e '3(Q), u, € H3 (D), meT$*(S,), b) h(0) e
I'32(Sy), D?hi(0) € L,(Sy), where i = 1 for (P,) and i = 2, 3 for (P,).

Then |ul3,0,0/i=0 is estimated by norms of quantities described in the assumptions
a and b.

REMARK 5.1

Tossatisfy the assumption b of Lemma 5.3 we have to assume that 5(0), d(0) & I'; ~1/2(S,),
D}b(0), D}d(0) € L,(S,) for i =1 and e;0) eI'3(S)), D2e:(0) € L,(S;) for i=2,3,
where e, = «, e; = f§.

m m-1 m m m-—1

To prove convergence of {u, q} we introduce U =u—u, Q=g— q, and we shall
show it in IT§, (2)NH' (Q)nH(05) and IT3(£2"), respectively. From Egs. (5.1) and

(5.2) the following problems for differences ’IHJE are obtained:

EU + ZA @ Ui+ ZA @)y, = (VOQ),

m+1

(5.27 U lia0 =0,
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m+1

M,U|s,=0, »=1,..,4,

m m m m —E\m m m m m-1m o el 100
where A;(U)ux, = Euy, 9+ (—E 0 ) 2,9 =v—v,Q=0- o0 ,E =|010],
1 001
[ 0
U=u= Ug, and
m 3 m m m=-1 m m m mi m
AQ - i%‘l (6i'x.‘vj'x’l+ vi,x’ﬁj,x‘—gi,xjﬂ)j'x'— w!,x"gj,x‘)!
am
(5.28) a—g = Hv, vy =1, 2’ 3’
Sy
QIS‘ = 0,

where

3 2

m m m

(529) H,=a, ) Vteu— 3 a7 Vein+a,|eindivi
k=1 i=1

2
+ Y G Ve, +erdive)], i=2,3,
Jj=1
m m m m m nt
where a, = 19—9, az = 19+Q, € = o, €3 = ﬂ. N
Using Lemma 4.2 for ¢ = 1 from Eq. (5.27) one has

m+1 o m+l m+1 Lisd
(5.30) U130, w0+ 3 U1, ot +collUll1, a0t <cp1(64, O)IOI3, 1, are®™
and from Eq. (5.28)
(5.31) 1012,2, 0,0t < c(|ul3, 3, 0, 2t1Ul1, 1,0, 00+ K),

3
where K = 0O for the problem (P,) and K = [Hil1s2, 0, 0, st for (P).
i=2

m
Comparing Eq. (5.30) with Eq. (5.31) we see that D,D,Q must be estimated too.
To do this we consider the time derivative of the problem (5.28). Then, after repeating
the considerations which were necessary to get Eq. (5.8), we have

m m m-—1 m m
(5.32) [IVD,Qllgr < c(lul3,2,w,0¢+ 43,2, @, 2 )| Ul1,0, 0,0t + ||Ull1,809) -
At last, from Eqs. (5.30)+(5.32) we obtain

m+1 m+

m+1 1 _ o m "
(533) | Ul 0,m,00+ UL, ot + U} 000 < 53(8y, X)) eCXXE((UIF o, o, ot + ||UIE, 20%),

where s3, 54 are polynomials, X; = X, for the problem (P;), i = 1, 2. Therefore for suffi-
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— m m
ciently small X;, i = 1,2, Eq. (5.33) implies that the sequence {u, g} converge in the
above mentioned spaces. Let us assume

(5.34) 0QeC% vy, e HND), [ell3(@)nH D), nell}-'1(sy),
(vo, wo) satisfy the assumptions (Cy), i = 1, ... ,4 (see also Remarks 5.3 and 5.6);
(535 Difely(S%), b,deli-(SHnIIL(S)),

(5.36) D}feL,(S5)NnL,(S%), e eIT412(S)NIT4(S)), where i=2,3, e,=a,
e; = B.

Hence we can formulate the main result of this paper:

THEOREM. Let Egs. (5.34), (5.35) (or (5.36)) be satisfied. Assume that time t, (or tg)
and data functions are so small that Eq. (5.12) (or Eq. (5.18)) holds, Equation (5.33) implies
the convergence of the considered sequences and Remark 5.3 must be taken into conside-
ration. Moreover, let the compatibility condition (2.22) hold. In the case of the problem
{P,), we assume additionally that Eq. (2.13) is valid on S;.

Then there exists a unique solution of the problem (Py) (or (P,)) such that

5.37) wuelld »(QYVYnH3(Q)NH;(82Y), qellt(2"), 1< ty(ort<t,).

REMARK 5.2

From Eq. (5.37) and theorems of imbedding-it follows that Eqs. (1.1) and (1.2), initial
and boundary conditions are satisfied classically.

REMARK 5.3

Proving the existence of solutions of the problems (P,), (P,) the conditions v,|s, < 0,
w,|s, < 0, etc., must be assumed. Moreover, the eigenvalues (2.2) must be separated from
zero also. Assuming that they are separated from zero in the initial moment (we assume
stronger restrictions: vy-nls, < —ao < 0, etc.) by the continuity of solutions with
respect to time we can satisfy them for sufficiently small time also. This is the other restric-
tion on the existence time.

REMARK 5.4 m m
At each step a solution of the problems (5.1), (5.2) is such that div 2 # 0, divw # 0,
m=1,2,...,. To show that

(5.38) it = fimnilivep = I

m—0 m—0

we apply the divergence operator to Eq. (5.1) and use Eq. (5.2) so we obtain the problem

3
m+1 m m+1 m m+1
%+ D Biw) s, = Hu, 1),
i=1
(5.39)

m+1 m+1

Xl=o=0, Nxls,=0, v=1,...,4,

m+1 m+1
where the boundary conditions (2.8) for v , ® were used. Moreover,
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3ﬁ m m+1 m m+1
H= (HI: H2)9 Where Hl = 2; . [—vi.xj ﬁjvxl+whxj Q.’vx‘]’

L

3
m m+1 m m+1
H, = 2, [ﬂ’t,,_, '91.,‘—‘1":,,,1 Qj,,l]v

hi=1

m m+1
Then from lim H(s, ) = 0 Egs. (5.39) imply Eq. (5.38).

At last we shall discuss the uniqueness problem for solutions of (P,) and (P,).

REMARK 5.5

Let us assume that we have two different solutions (u;, i), i = 1, 2, of the problems
(P,) and (P,). Then, repeating considerations which imply Eq. (5.33), we obtain it in the
form where m(} 1 and ’(ﬂf are replaced by U = u; —u,. Therefore we get uniqueness for
sufficiently small X;, i = 1, 2. Thus we obtain uniqueness for solutions of class C**%(2")

in 175, (2°) x H'(£2") x H*(9£2") and the bound on ¢ is determined in the Theorem.

REMARK 5.6

Consider the problem Lu = f, uj,_o = #o = (v, wo), Mulsg = g, Where uls; does
not vanish in general. Introduce a function @ such that w —w|se vanishes in a neigh-
bourhood of df2. Therefore we consider the problem: Lu' = f—Lw=f', u'|_o =
= Up— W0 = Uy, Mu'jso = g—Muwlso =g and u =u'+w. Hence knowing that
u'|agt=0 = 0 some compatibility conditions on g’ for £ = 0 must be added.
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