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Introduction

A new method has been proposed to correct the attenuation of ground-penetrating radar 
(GPR) signals using probabilistic signalprocessing based on Bayesian statistics (Chishima et al. 
2013: 173–175). The advantages of this method are the selective amplification of GPR signals 
without the amplification of the noise and the automatic estimation of the medium attenuation 
coefficient. However, this method is easily affected by the sampling interval employed during data 
acquisition. In this paper, this problem is demonstrated by some results of numerical experiments, 
and a way to avoid the problem is discussed.

Method for attenuation correction

The proposed attenuation correction method is briefly described below.
Let a list of sampled data of a GPR trace be a vector d=(d1, d2, … , dN), and let an ideal 

signal be a random variable vector f=(f1, f2, … , fN) that is not affected by either medium 
attenuation or noise, where each di, fi represents the amplitude value at time i∆t (∆t: sampling 
interval). For the method, it is essential to search for fest maximizing p(f|d), where p(f|d) is the 
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conditional probability distribution for f given d. In Bayesian statistics, the p(f|d) is referred 
to as the posterior distribution and can be constructed using the Bayes formula p(f|d) = p(d|f)
p(f)/p(d), where p(d) equals ∫p(d|f)p(f)df. 

The term p(d|f) on the right side of Bayes formula is called the likelihood function of f 
(hereafter likelihood). Another term, p(f), is called prior distribution, and represents prior 
knowledge or information about f. Table 1 shows the likelihood and prior distribution mod-
eled for the attenuation correction. The likelihood is based on an assumption of the forward-
ing process from f to d, where f is affected by the medium attenuation, and the noise is then 
added to the attenuated f. For the prior distribution, a multidimensional Gaussian distribution 
was adopted so that as the differences between adjacent variables fi and fi+1 decrease, p(f) will 
increase. This is because f does not fluctuate widely between the adjacent variables.

In modeling the p(f) and the p(d|f), three parameters, σf , σn, and α, were employed, 
which represent the standard deviation (SD) of (fi- fi+1), the SD of noise, and the atten-
uation coefficient [ns-1], respectively. These parameters are called hyper-parameters and 
determine the shapes of each distribution. The hyper-parameters are estimated using the 
maximum likelihood method (MLM): considering p(d|σf , σn, α) to be a likelihood func-
tion of the hyper-parameters, and then searching for (σf ’, σn’, α’) maximizing ∫p(d|f, σn, 
α)p(f |σf )df which is equivalent to p(d|σf, σn, α). Finally, the corrected signal for d, fest, 
is searched for by maximizing p(f|d, σf ’, σn’, α’). 

In practical implementation of this method, an iterative algorithm has been constructed 
by incorporating belief propagation into the EM (expectation-maximization) algorithm. The 
belief propagation is a mathematical technique that is employed to calculate efficiently the 
posterior distribution. The EM algorithm is a popular numerical calculation algorithm that 
is used for hyper-parameter estimation with the MLM.

Experiments

In the experiments, three signals that were acquired at different ∆t values, from a synthetic 
GPR trace were used. First, a GPR trace was numerically made by the finite-difference time-
domain (FDTD) method for simulation of electromagnetic wave propagation. Figure 1a shows 
a model of the FDTD simulation. The transmitting and receiving points, which are regarded 
as two imaginary GPR antennae, are 0.02 m above ground, and the distance between the two 
points is 0.4 m. A boundary is at a depth of 0.4 m in the ground. The upper part is assumed to 

Table 1. Likelihood function and prior distribution modeled for the proposed attenuation correction 
method. Zlik and Zpri are a normalization constant

Likelihood Prior Distribution
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Fig. 1. (a) Model of FDTD simulation and (b) input signal at Tr.point in the model

be loamy wet soil with a relative permittivity, εr1, of 25 and a conductivity, σ, of 0.02 S/m. The 
lower part is assumed to be granite with εr2=4. Figure 1b shows the signal input at the transmitting 
point as a current source. The center frequency is 300 MHz and the amplitude peak is at 4 ns. 
For sufficient precision, the FDTD simulation was performed with a time step of 0.01 ns. Then, 
the FDTD simulation result was quantized to 8-bit data (with amplitude values raging from -128 
to 127 in integer form), and white Gaussian noise (average 0, variance 22) was added to the 8-bit 
data, as shown in Figure 2a. The reflection signal from the ground surface is at around 4 ns, and 
the one from the boundary is at around 18 ns. The three signals considered in the experiments 
were made by resampling the signal in Figure 2a with ∆t = 0.05, 0.2, and 0.4 ns.

Figure 2b, c, and d show the correction results, fest’s, for the signals at deferent ∆t values, 
overlapping an ideal f simulated by FDTD, which is a signal without both medium attenua-
tion and noise. As shown in Figure 2c for ∆t = 0.2 ns, the corrected reflection signal from the 
boundary appears to be very close to the ideal f. In Figure 2d for ∆t = 0.4 ns, the corrected 
reflection signal and the noise after 20 ns appear to have been much more amplified than in 
Figure 2c. Fundamentally, a sampling interval of 0.4 ns is not appropriate for actual GPR 
surveys using a 300 MHz antenna due to the coarse sampling points. In contrast, the sam-
pling points for ∆t =0.05 ns would be sufficiently dense, but the method has not worked: the 
signal at ∆t = 0.05 ns in Figure 2c has not been amplified and appears to be almost the same 
as Figure 2a.

Discussion

The reason for which the reflection signal at ∆t = 0.05 ns was not amplified is considered as 
follows: For any time-domain discrete signals, when the sampling interval becomes shorter, the 
distribution of the differences between the adjacent values, fi and fi+1, gradually deviates from the 
Gaussian distribution; ultimately, the values are only 0 or 1. 

Therefore, if an input signal is known, it is important to verify whether the differences between 
the adjacent values at ∆t in the input signal are normally distributed. This may be done using 
a statistical test of normality, such as the Shapiro-Wilk test. Actually, in the case of the input signal 
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Fig. 2. (a) Simulated signal by FDTD with 8-bit quantization and noise addition, and (b), (c), (d) the 
results of correction for the signal at different ∆t
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shown in Figure 1a, the Shapiro-Wilk test revealed that the normality of the distribution of the 
differences between the adjacent values at ∆t = 0.2 ns was accepted with a p-value 0.2502, and the 
normality at ∆t = 0.05 ns was rejected with a p-value 0.0004 (5% significance level).
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