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Lately published, Crown 8vo. cloth, Price Ts. 6d.

AN ELEMENTARY TREATISE

ON THE

THEORY OF EQUATIONS,

WITH A COLLECTION OF EXAMPLES.
BY

I. TODHUNTER, M.A. F.R.S.

(FLxtract from Preface.]

THis treatise contains all the propositions which are
usually included in elementary treatises on the Theory of
Equations, together with a collection of examples for exercise.

As the Theory of Equations involves a large number of
interesting and important results, which can be demonstrated
with simplicity and clearness, the subject may advantage-
ously engage the attention of a student at an early period
of his mathematical course. This treatise may be read by
those who are familiar with Algebra, since no higher know-
ledge is assumed, except in Arts. 175, 267, 308—314, which
may be postponed by those who are not acquainted with
De Moivre’s Theorem in Trigonometry. The work may in
fact be regarded as a sequel to that on Algebra by the same
writer, and accordingly the student has occasionally been
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Preface to Todhunter’s Theory of Equations.

referred to the treatise on Algebra for preliminary information
on some topics here discussed.

The Examples have been selected from the College and
University examination papers, and the results have been
given where it appeared necessary; in most cases however,
from the nature of the question, the student will be able im-
mediately to test the correctness of his answer.

In order to exhibit a comprehensive view of the sub-
ject, this treatise includes investigations which are not
found in all the preceding elementary treatises, and also some
investigations which are not found in any of them. Among
these may be mentioned Cauchy’s proof that every equation
has a root, Horner’'s method, the theories of elimination and
expansion, Cauchy’s theorem on the number of imaginary
roots, and the theory of determinants. The account of deter-
minants has been principally taken from a treatise on that
subject by Baltzer, which was published at Leipsic in 1857.
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‘PREFACE TO THE SECOND EDITION.

Tnis work contains all the propositions which are usually
included in elementary treatises on algebra, and a large num-
ber of examples for exercise.

My chief object has been to render the work easily intel-
ligible. Students should be encouraged to examine carefully
the language of the book they are using, so that they may
ascertain its meaning or be able to point out exactly where
their difficulties arise. The language, therefore, ought to be
simple and precise; and it is essential that apparent concise-
ness should not be gained at the expense of clearness.

In attempting, however, to render the work easily intel-
ligible, I trust I have neither impaired the accuracy of the
demonstrations nor contracted the limits of the subject; on
the contrary, I think it will be found that in both these
respects I have advanced beyond the line traced out by pre-
vious elementary writers.

The present treatise is divided into a large number of
chapters, each chapter being, as far as possible, complete in
itself. Thus the student is not perplexed by attempting to
master too much at once; and if he should not succeed in
fully comprehending any chapter, he will not be precluded
from going on to the next, reserving the difficulties for future
consideration: the latter point is of, especial importance to
those students who are without the aid of a teacher.

The order of succession of the several chapters is to some
extent arbitrary, because the position which any one of
them should occupy must depend partly upon its difficulty
and partly upon its, importance. But, since each chapter is
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vi PREFACE TO THE SECOND EDITION.

nearly independent, it will be in the power of the teacher to
abandon the order laid down in the book and to adopt another
at his discretion.

The examples have been selected with a view to illustrate
every part of the subject, and, as the number of them is about
sixteen hundred and fifty, I trust they will supply ample
exercise for the student. Complicated and difficult problems
have been excluded, because they consume time and energy
which may be spent more profitably on other branches of
mathematics. Each set of examples has been carefully
arranged, commencing with some which are very simple and
proceeding gradually to others which are less obvious; those
sets which are entitled Miscellancous Examples, together with
a few in each of the other sets, may be omitted by the student
who is reading the subject for the first time. The answers
to the examples, with hints for the solution of some in which
assistance may be needed, are given at the end of the book.

I will now give some account of the sources from which
the present treatise has been derived.

Dr Wood’s Algebra has been so long published that it has
become public property, and it is so well known to teachers
that an elementary writer would naturally desire to make use
of it to some extent. The first edition of that work appeared
in 1795, and the tenth in 1835 ; the tenth edition was the
last issued in Dr Wood’s life-time. The chapters on Surds,
Ratio, and Proportion, in my Algebra are almost entirely
taken from Dr Wood’s Algebra. I have also frequently used
Dr Wood’s examples either in my text or in my collections
of examples. Moreover, in the statement of rules in the ele-
mentary part of my book I have often followed Dr Wood, as,
for example, in the Rule for Long Division; the statement of
such rules must be almost identical in all works on Algebra.
I should have been glad to have had the advantage of Dr
Wood’s authority to a greater extent, but the requirements of

www.rcin.org.pl



PREFACE TO THE SECOND EDITION. vil

the present state of mathematical instruction rendered this
impossible. The tenth edition of Dr Wood’s Algebra con-
tains little more than half the matter of the present work, and
half of it is devoted to subjects which are now usually studied
in distinct treatises, namely, Arithmetic, the Theory of Equa-
tions, the application of Algebra to Geometry, and portions of
the Summation of Series; the larger part of the remainder,
from its brevity and incompleteness, is now unsuitable to the
wants of students. Thus, on the whole, a very small number
of pages comprises all that T have been able to retain of
Dr Wood’s Algebra.

For additional matter T have chiefly had recourse to the
Treatise on Arithmetic and Algebra in the Library of Useful
Knowledge, and the works of Bourdon, Lefebure de Fourcy,
and Mayer and Choquet; I have also studied with great ad-
vantage the Algebra of Professor De Morgan and other works
of the same author which bear upon the subject of Algebra.

I have also occasionally consulted the edition of Wood’s
Algebra published by Mr Lund in 1841, Hind’s Algebra,
1841, Colenso’s Algebra, 1849, and Goodwin’s Elementary
Course of Mathematics, 1853. In the composition of my book
I took extreme care to avoid trespassing upon the works
of these recent English authors. My rule was not to insert a
proposition in the few cases where any doubt existed as to the
right to do so, unless I found it in two or more of these
authors; if I found it in so many places I concluded that it
might be considered common property, and I inserted it in my
own language and style.

Although I have not hesitated to use the materials which
were available in preceding authors, yet much of the present
work is peculiar to it; and T believe it will be found that my
Algebra contains more that is new to elementary works, and
more that is original, than any of the popular English works
of similar plan. Originality however in an elementary work
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viil PREFACE TO THE SECOND EDITION.

is rarely an advantage ; and in publishing the first edition of
my Algebra I felt some apprehension that I had deviated too
far from the ordinary methods. I have had great satisfaction
in receiving from eminent teachers favourable opinions of the
work generally and also of those parts which are peculiar to it.

Several years have elapsed since I resolved to publish an
Algebra and began to arrange the materials. Thus all the
important chapters in the present work have been written and
rewritten, and repeatedly revised by myself and my friends.
With respect to some parts, which were original at the time
when they first occurred to me, I have been anticipated in
publication ; this applies, for example, to Arts. 520, 611, and
677. I mention this, not as attaching any importance to
such points, but merely because otherwise it might appear
that I had been indebted for them to preceding authors.
My manuscripts on these articles were in use among my
pupils before the date in which, so far as I know, these
articles were printed ; indeed it was not until after my first
edition was published that I saw the latter two articles in
print elsewhere. Some portions of the present work were
written long before I had any intention of publication; the
chapter on the Multinomial Theorem, for example, was drawn
up about fifteen years ago for the use of a fellow-student.

The task of preparing an elementary treatise is far from
easy, and I must therefore request the indulgence of teachers
and students for any defects which they may discover either
in my plan, or in the mode of exeenting it. I have to return
my thanks to many able mathematicians who have favoured
me with suggestions, which have been of great service to me
in preparing the Second Edition; and I trust I shall still
continue to receive similar valuable remarks.

I. TODHUNTER.

~ St JonN's COLLEGE,
February, 1860.
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Tue Trirp EpitioN has been carefully revised; and some
additions have been made to the text, to the examples, and
to the answers and the hints given at the end of the book.
A treatise on the Zheory of Equations has been drawn up by
the author, to form a sequel to the Algebra ; and the student
is referred to that treatise as a suitable continuation of the

present work.

St JonN’S COLLEGE,
June, 1862.
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ALGEBRA.

I. DEFINITIONS AND EXPLANATIONS OF SIGNS.

1. TaE method of reasoning about numbers by means of
letters which are employed to represent the numbers and signs
which are employed to represent their relations, is called 4lgebra.

2. Letters of the alphabet are used to represent numbers,
which may be either £zown numbers, or numbers which have to
be found and which are therefore called unknown numbers. It is
usual to represent Anown numbers by the early letters of the
alphabet a, b, ¢, &c., and wnknown numbers by the final letters
x, 9, z; this is not however a necessary rule, and so need not be
strictly obeyed.

Numbers may be either whole or fractional. The word quan-
tity is frequently used as synonymous with number.

3. The sign + signifies that the number to which it is prefixed
must be added. Thus a+ b signifies that the number represented
by b must be added to the number represented by a. If a repre-
sent 9 and b represent 3, then @+ b represents 12. The sign + is
called the plus sign, and @ + b is read thus “a plus b.”

4. The sign — signifies that the number to which it is prefixed
must be subtracted. Thus a —b signifies that the number repre-
" sented by b must be subtracted from the number represented by a.
If o represent 9 and b represent 3, then a— b represents 6. The
sign — is called the minus sign, and a—>b is read thus “a minus b.”

5. The sign x signifies that the numbers between which it
stands must be multiplied together. Thus & x b signifies that the
T. A. 1
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2 DEFINITIONS AND EXPLANATIONS OF SIGNS.

number represented by @ must be multiplied by the number repre-
sented by b. If @ represent 9 and b represent 3, then a x b repre-
sents 27. The sign x is called the sign of multiplication, and @ x b
is read thus “a into b.” Similarly @ x b x ¢ denotes the product of
the numbers denoted by @, b and c.

It should be observed that the sign of multiplication is often
omitted for the sake of brevity; thus ab is used instead of a x b,
and has the same meaning; so abe is used for axbxc. Sometimes
a point is used instead of thé sign x; thus «.b is used for a xb
or ab. .

The sign of multiplication must not be omitted when numbers
are expressed by figures in the ordinary way. Thus 45 cannot be
used to express the product of 4 and 5, because a different mean-
ing has already been appropriated to 45, namely fortyfive. We
must therefore express the product of 4 and 5 thus 4 x 5, or thus
4.5. To prevent any confusion between the point thus used as a
sign of multiplication and the point as used in the notation for
decimal fractions, it is advisable to write the latter higher up ;
thus 45 may be kept to denote 4 + 5.

6. The sign = signifies that the number which precedes it
must be divided by the number which follows it. Thus a+b sig-
nifies that the number represented by @ must be divided by the
number represented by 6. If @ represent 9 and b represent 3,
then @+ b represents 3. The sign + is called the sign of division,
and @b is read thus “a by b.” There is also another way of
denoting that one number is to be divided by another; the divi-
a

b

dend is placed over the divisor with a line between them. Thus

is used instead of @+ b and has the same meaning.

7. The sign = signifies that the numbers between which it is
placed are equal. Thus @ =0 signifies that the number repre-
sented by @ is equal to the number represented by &, that is, @ and
b represent the same number. The sign = is called the sign of
equality, and a = b is read thus “a equals b” or “a is equal to b.”
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DEFINITIONS AND EXPLANATIONS OF SIGNS. 8

8. The difference of two numbers is sometimes denoted by
the sign ~; thus a~b denotes the difference of the numbers
denoted by @ and b, and is equal to a—b or to b—a acocording
as @ is greater than b or less than b.

9. The sign > denotes greater than, and the sign < denotes less
than; thus a > b denotes that the number represented by a is
greater than the number represented by b, and b <a denotes that
the number represented by b is less than the number represented
by a. Thus in both signs the opening of the angle is turned
towards the greater number.

10. The sign .. denotes then or therefore; the sign *. denotes
since or because.

11. When several numbers are to be taken collectively they
are enclosed by brackets. Thus (a—b+ ¢) x (d +¢) signifies that
the number represented by @ —b+c¢ is to be multiplied by the
number represented by d+e  This may also be written thus
(@—b+c)(d+e). The use of the brackets will be seen by com-
paring the above expressions with (#—0b+¢)d +¢; the latter de-
notes that the number represented by a — b + ¢ is to be multiplied
by d, and then e is to be added to the product.

Sometimes instead of using brackets a line called a vinculum
is drawn over quantities which are to be taken collectively. Thus

a—b+c x d+e is used with the same meaning as (@ — b + ¢) x (d+e).

12. The letters of the alphabet, and the signs or marks which,
we have already introduced and explained, together with those
which may occur hereafter, are called Algebraical symbols, since
they are used to represent the things about which we may be
reasoning. Any collection of Algebraical symbols is called an
Algebraical expression or a formula.

13. Those parts of an expression which are connected by the
signs + or — are called its ferms. "When an expression eonsists of
two terms it is called a binomial expression; when it consists of
three terms it is called a trinomial expression; any expression

1—3
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4 DEFINITIONS AND EXPLANATIONS OF SIGNS.

consisting of several terms may be called a multinomial expression
or a polynomial expression. When an expression does not contain
parts connected by the sign + or the sign — it may be called a
simple expression, or it may be said to contain only one term.

Thus abe is a simple expression; abe+ x is a binomial expres-
sion, of which abc is one term, and @ is the other; ab+ ac—bc is
a trinomial expression, of which ab, ac, and be are the terms.

14. When one number consists of the product of two or more
numbers, each of the latter is called a fuctor of the product. Thus
a, b and ¢ are factors of the product abe.

15. A product may consist of one factor which is a number
represented arithmetically, and of another factor which is a num-
ber represented algebraically, that is, by a letter or letters; in this
case the former factor is said to be the coefficient of the latter.
Thus in the product 7abe the factor 7 is called the coefficient of
the factor abe. Where there is no arithmetical factor, we may
supply unity; thus we may say that, in the product abe, the co-
efficient is unity.

And when a product is represented entirely algebraically,
any one factor may be called the coefficient of the product of the
remaining factors. Thus, in the product abc, we may call a the
coefficient of be, or b the coefficient of ac, or ¢ the coefficient of ab.
If it be necessary to distinguish this use of the word coefficient
from the former, we may call the latter coefficients literal coef-
Jictents, and the former nuwmerical coefficients.

16. If a number be multiplied by itself any number of times,
the product is called a power of that number. Thus axa is called
the second power of a; also @ xa xais called the third power of
a; and axaxaxais called the fourth power of a; and so on.
The number « itself is often called the first power of a.

17.  Any power of a quantity is usually expressed by placing
above the quantity the number which represents how often it is
repeated in the product. Thus ¢° is used to express axa; also
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DEFINITIONS AND EXPLANATIONS OF SIGNS. 5

o’ is used to express @xaxa; and o' is used to express axaxaxa;
and so on. And &' may be used to denote the first power of «
or @ itself; that is, ¢' has the same meaning as a.

Numbers placed above a quantity to express the powers of
that quantity are called indices of the powers, or exponents of the
powers; or more briefly indices or exponents.

18. Thus we may sum up the two preceding articles as
follows “a xa x ax &e. to n factors is expressed by «, and n is
called the index or exponent of ', where » may denote any
whole number.”

19. The second power of @ or a’is often called the square of
a, and the third power of @ or @’ is often called the cube of a.
The symbol a* is read thus “a fo the fourth power” or briefly “a
to the fourth;” and a" is read thus “a to the n'.”

20. The square root of any proposed number is that number
which has the proposed number for its square or second power.
The cube root of any proposed number is that number which has
the proposed number for its cube or third power. The fourth
root of any proposed number is that number which has the pro-
posed number for its fourth power. And so on.

21. The square root of a number @ is denoted thus {/a, or
simply thus ,/a.” The cube root of @ is denoted thus J/a. The
fourth root of @ is denoted thus i/a. And so on.

The sign ,/ is said to be a corruption of the initial letter of
the word radiz.

22. Terms are said to be like or similar when they do not
differ at all or differ only in their numerical coefficients; otherwise
they are said to be unlike. Thus 4a, 6ab, 9¢° and 3a’bc are
respectively similar to 15a, 3ab, 12¢° and 15a’be. And ab, a’b,
ab® and abe are all unlike.

23. Each of the letters which occurs in an algebraical product
is called a dimension of the product, and the number of the
letters is the degree of the product. Thus &b’ or axaxbxbxbxc
is said to be of six dimensions or of the sixth degree. A numerical
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6 EXAMPLES. CHAPTER I.

coefficient is not counted; thus 9a%* and «’4* are of the same

dimensions, namely of seven dimensions. Thus the degree of a
term or the number of dimensions of a term is the sum of the
exponents, provided we remember that if no exponent is expressed
the exponent 1 must be understood as indicated in Art. 17.

24. An algebraical expression is said to be homogeneous when
all its terms are of the same dimensions. Thus 7a’+ 3’ + 4abc
is homogeneous, for each term is of three dimensions.

The following examples will serve for an exercise in the
preceding definitions.

EXAMPLES.

If a=1, =3,¢c=4,d=6,e=2 and /=0, find the numerical
values of the following twelve algebraical expressions:

L. a+2b+4c 2. 3b+5d—2e.

3. ab+ 2bc + 3ed. 4. ac + ded— 2eb.
abe + 4bd + ec — fd. 6. a®+b0+c"+ [0
cd 4be cd AR

7- 3"'%—2—4. 8. 6—4G+3C—6.
b+t a—c

9. ———. STt
¢~ 3a 10. d® + dec + ¢*

11, J27b)— Y (2¢)+ J/(2e). 12, /(3be) + /(9cd) — 3(2¢°).

13. Find the value of (9 —y) (@ +1)+(x+5)(y+T7)—112,
when =3 and y=5.

14. Find the value of x,/(x*— 8y) +y./(«" + 8y), when =5
and y=3. "

15. Find the value of @ ,/(2* — 3a) + @« ,/(«* + 3a), when x=5
and @ = 8.

16. Find the' value of a +b,/(z + y) — (a—b) J/(x— ), when
a=10, =8, =12 and y=4.
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CHANGE OF THE ORDER OF TERMS. 7

17. If a=16, b=10, =5 and y=1, find the value of
(b-=) (Ja +b)+ J{(a—b) (x+y)};
and of (a-y) {J(20) + 2*} + J{(a — =) (b + y)}.

18. If a=2, =3, =6 and y=>5, find the value of
W@+ )y} + V(e + ) (y — 2a)} + Y{(y - b)'a}.

II. CHANGE OF THE ORDER OF TERMS. REDUCTION OF LIKE
TERMS. ADDITION, SUBTRACTION, USE OF BRACKETS.

25. When the terms of an expression are connected by the
sign + it is indifferent in what order they are written; thus
a+b and b+a give the same result, namely the sum of the
numbers which are denoted by @ and 5. We may express this
fact algebraically thus

a+b=b+a.
Similarly

a+b+c=a+c+b=b+a+c=b+c+a=c+a+b=c+b+a.

26. If an algebraical expression consist of some terms pre-
ceded by the sign + and some terms preceded by the sign —
we may write the former terms first in any order we please,
and the latter terms after them in any order we please.
This appears from the same considerations as before. Thus, for
example,

a+b—c—e=a+b-e—c=b+a—-c—e=b+a—e—c.
27. In some cases it is obvious that we may vary the order
of terms still further by mixing up the terms preceded by the

sign — with those preceded by the sign +. Thus, for example,
if @ denote 10, b denote 6, and ¢ denote 5, then

a+b—-c=a—c+b=b—-c+a.

If however a denote 2, b denote 6, and ¢ denote 5, then
the expression @ —c+ b presents a difficulty because we are thus
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8 CHANGE OF THE ORDER OF TERMS.

apparently required to take a greater number from a less, namely
5 from 2. Tt will be convenient to agree that such an expression
as a—c+0b when c is greater than @ shall be wnderstood to mean
the same thing as @ +b—c. At present we shall never use such
an expression except when ¢ is less than @ +b, so that a +b—¢c
presents no difficulty. Similarly we shall consider — b + @ to mean
the same thing as @ —b.  We shall recur to this point hereafter.

28. Thus the numerical value of an algebraical expression
remains the same whatever may be the order of the terms which
compose it. This as we have seen follows, partly from our notions
of addition and subtraction, and partly from an agreement as to
the meaning we ascribe to an expression when our ordinary
arithmetical notions are not strictly applicable. Such an agree-
ment is called in Algebra a convention, and conventional is the
corresponding adjective.

29. We shall frequently, as in Article 26, have to distinguish
the terms of an algebraical expression which are preceded by the
sign + from the terms which are preceded by the sign —, and thus
the following definition is adopted. The terms in an algebraical
expression which are preceded by no sign or which are preceded
by the sign + are called positive terms; the terms which are
preceded by the sign — are called negative terms. This definition
is introduced merely for the sake of brevity, and no meaning is
to be given to the words positive and negative beyond what is
expressed in the definition. The student will notice that terms
preceded by no sign are treated as if they were preceded by the

sign +.

30. Sometimes an expression includes several like terms; in
this case the expression admits of simplification. For example,
consider the expression 4a’b— 3a’c + 9ac® —2a’b + Ta’c— 65° ; this
may be written 4a%h—2a’b+ Ta’c— 3a’c + Jac® — 6b° (Art. 28).
Now 4a’b — 24’ is the same thing as 2¢°6, and Ta'c — 3d’c is
the same thing as 4a’c. Thus the expression becomes

20°b + 4a’c + Yac®— 60
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ADDITION.

31. The addition of algebraical expressions is performed by
writing the terms in succession each preceded by its proper sign.

For suppose we have to add c—d+e to a—b; this is the
same thing as adding ¢+e—d to a—b (Art. 28). Now if we
add c+e¢ to a—b we obtain @—b+c+e; we have however thus
added d too much, and must consequently subtract d. Hence
we obtain @ —b+c¢+e—d, which is the same as a—b+c—d+e;
thus the result agrees with the rule above given. The result is
called the sum.

‘We may write our result thus:
a—b+(c—d+e)=a—-b+c—d+e.

32. When the terms of the expressions which are to be
added are all wnlike, the sum obtained by the rule does not
admit of simplification. But when like terms occur in the ex-
pressions, we may simplify as in Art. 30. Hence we have the
following rules:

When Uike terms have the same sign their sum s found by
taking the sum of the coefficients with that sign and annexing the
common letters.

Example; add 5¢—3b and 4a4—7b; the sum is 9a—100.
For the 5a and the 4@ together make 9a, and the 3b and 7b
together make 100.

Again; add 4a’c—10bde, 6a’c— 9bde and 1la’c —3bde. The
sum is 2la’c — 22bde.

When like terms ocewr with different signs their sum is found
by taking the difference of the sum of the positive and the sum of
the megative coefficients with the sign of the greater sum and an-
nexing the common letters as before.

Example; add 7a—96 and 56—4a. The sum is 3a—4b.

Again; add 3a®+4bc—e’+10, 5a®+ 6be +2¢°—15 and
40’ —=9bc—10¢* +21. The sum is 12a®+ be —9e® + 16.
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SUBTRACTION.

33. Suppose we have to take b+c from a. Then as each of
the numbers b and ¢ is to be taken from a the result is denoted by
a—b—c. Thatis

a—(b+c)y=a-b—ec.

‘We enclose the term b+ ¢ in brackets, because botk the num-

bers b and ¢ are to be taken from a.

Similarly, a+d—(b+c+e)=a+d—b—c—e.

34. Next suppose we have to take b—c from a. If we take
b from a we obtain @—b; but we have thus taken too much
from @, for we are required to take, not b but, b diminished by c.
Hence we must increase the result by ¢; thus

a—~(b-c)=a—-b+ec.
Similarly, suppose we have to take b—c—d+e¢ from a. This
is the same thing as taking b+e¢—c—d from a. Take away b+e

from @ and the result is a—b—e; then add c+d, because we
were to take away, not b +¢ but, b + e diminished by ¢+ ; thus

a—(b-c—d+e)=a—-b—e+c+d

=a—b+c+d—e

35. From considering these cases we arrive at the following
rule for subtraction. Change the sign of every term in the expres-
sion to be subtracted, and then add it to the other expression. Here
as before, we suppose for shortness, that where there is no sign
before a term, + is to be understood.

For example; take a—b from 3a +b.

3a+b—(a—b)=3a+b—a+b=2a+2b.

Again; take 5a’+ 4ab—6xy from 1la®+ 3ab—4ay.
11a® + 3ab — dzy — (5a’ + 4ab — bxy) =

11a® + 3ab — 4y — 5a° — 4ab + 6y = 6a° — ab + 2xy.
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BRACKETS.

36. - On account of the frequent occurrence of brackets in
Algebraical investigations, it is advisable to call the attention
of the student explicitly to the laws respecting their use. These
laws have already been established, and we have only to give
them a verbal enunciation.

When an expression within brackets is preceded by the sign +
the brackets may be removed.

Thus a—b+(c—d+e)=a—b+c—d+e (Art. 31).

And consequently any number of terms in an expression may be
enclosed by brackets, and the sign + placed before the whole.

Thus @ —b+c~d+e may be written in the following ways,

a-b+c+(—d+e), a—d+(c+e—b), a+(—d+c+e-0),
and so on.

When an expression within brackets is preceded by the sign —
the brackets may be removed if the sign of every term within the
brackets be changed, namely + to — and — to +.

Thus o —(b—c—d+e)=a—b+c+d—e (Art. 34).

And consequently any number of terms in an expression may
be enclosed by brackets and the sign — placed before the whole,
provided the sign of every term within the brackets be changed.

Thus @ —b+c+d—e may be written in the following ways,

a-b+c—(—d+e), a—(b—c—d+e), a+c—(b—d+e),

and so on.

37. Expressions may occur with more than one pair of
brackets; these brackets may then be removed by the preceding
rules. Thus

a—-{b—c—(d—e)}=a-{b-c—d+e}=a-b+c+d—e;
or, proceeding in a different order,
a—{b—c—(d—e)}=a-b+c+(d—-¢)=a—-b+c+d—e.
Similarly, we may if we please ¢nfroduce more than one pair
of brackets.
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3.

EXAMPLES. CHAPTER II.

EXAMPLES.

Add together 4a — 5b+ 3¢ —2d, a +b— 4c+ bd,
3a—Tb+6c+4d and a+4b—c—Td.

Add together &+ 22°— 3z + 1, 22° — 32° + 4w — 2,
32+ 42’ + 5 and 4a®— 32® — Sz + 9.

Add together

2 —3wy+yt+ae+y—1, 20°+ 4wy —3y° - 20— 2y + 3,

3a° — bay — 4y° + 3z + 4y — 2 and 62°+ 10zy + 5y° + 2 + .

S e e T

10.
11y
12.
13.
14.
15.
16.
17
18.

Add together 2® — 2a2® + a’w, «®+ 3ax® and 22° — ax’.
Add together 4ab — o, 32°— 2ab and 2ax + 2bx.

From 5a— 3b + 4¢c —7d take 2a — 2b + 3¢ —d.

From !+ 42— 22° + Tz —1 take '+ 22°— 22° + 6z — 1.
Subtract &’ — ez +2° from 3a’ — 2ax + 2°.

Subtract ¢ —b—2(¢c —d) from 2(a—0b)—c+d.

Subtract (@ —b)x—(b—c)y from (a+0b)x+(b+c)y.
Remove the brackets from a — {b—(c—d)}.

Remove the brackets from o —{(b —c)—d}.
Remove the brackets from @+ 20 — 6a — {3b — (6a — 60)}.

Remove the brackets from 7a —{3a — [4a — (ba — 2a)]}.
Also from 3o —[a+b—{a+b+c—(a+b+c+d)].
Also from 2z —[3y — {4z — (by — 6x)}].

Also from @ —[2b + {3¢ — 3a — (a + b)} + 2a — (b + 3¢)].
Also from @ —[5b—{a — (3¢ — 3b) + 2¢ — (@ — 2b — ¢)}].
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EXAMPLES. CHAPTER II. ; 13

19. If a=2, b=3, =6 and y =75, find the value of
a+2e—{b+y—[a—az—(b-2y)]}
20. Simplify
42" - 22" +x+1— (30’ — a2’ — —T) — (a® — 42° + 2 + 8).

IIT. MULTIPLICATION.

38. 'We have already stated that the product of the numbers
denoted by any letters may be denoted by writing those letters in
succession without any sign between them ; thus abed denotes the
product of the numbers denoted by @, b, ¢ and d. 'We suppose the
student to know from Arithmetic, that the product of any num-
ber of factors is the same in whatever order the factors may be
taken ; thus abe = ach=bea, and so on.

39. Suppose we have to form the product of 4a, 56 and 3c;
this product may be written at full thus, 4 xax5 xbx3 x¢, or
4 x5 x3 xabe, that is 60abe. And thus we may deduce the
following rule for the multiplication of simple terms: multiply
together the numerical coefficients and write the letters after this
product.

40. The notation adopted to represent the powers of a num-
ber, (Art. 17), will enable us to prove the following rule: tke
powers of & number are multiplied by adding the exponents, for
d*xa*=axaxaxaxa=a’=a¢"*?; and similarly any other case
may be established.

Thus if m and = are any whole numbers, @™ x a"=a™*",

41. We may if we please indicate the product of the same
powers of different letters by writing the letters within brackets,
and placing the index over the whole. Thus a® x b°=(ab)’; this -
is obvious since (ab)’=ab x ab=a x @ x b x b, Similarly,

a’ x b x ¢* = (abe)”.

Thus ¢"xb"=(ab)"; a" xb* x ¢" = (abec)"; and so on for any

number of factors.

www.rcin.org.pl



14 b MULTIPLICATION.

42. Suppose it required to multiply ¢+b by ¢. The pro-
duct of @ and ¢ is denoted by ac, and the product of & and ¢
is denoted by bc; hence the product of a+b and ¢ is denoted by
ac+be. For it follows, as in Arithmetic, from our notion of
multiplication, that to multiply any quantity by a number we
have only to multiply all the parts of that quantity by the number
and add the results. Thus

(a +b)c=ac + be.

43. Suppose it required to multiply a—& by ¢. Here the
product of @ and o must be diminished by the product of b
and ¢. Thus

(a—0b)c=ac—be.

44. Suppose it required to multiply a+b by c+d. It
follows, as in Arithmetic, from our notions of multiplication,
that if a quantity is to be multiplied by any number, we may
separate the multiplier into parts the sum of which is equal to
the multiplier, and take the product of the quantity by each part,
and add these partial products to form the complete product.

Thus (@+b)(c+d)=(a+b)c+(a+b)d;
also (a+b)c=ac+be, and (a+b)d=ad+bd;
thus (a+0)(c+d)=ac+bec+ad+bd.

45. Suppose it required to multiply e—b by ¢+d. Here
the product of @ and ¢+d must be diminished by the product of
b and c¢+d. Thus

(a=0b)(c+d)=a(c+d)—b(c+d)
=ac+ad— (be + bd) = ac + ad —bc — bd.
46. Suppose it required to multiply a+b by ¢—d. Here

the product of @+b and ¢ must be diminished hy the product
of a+b and d. Thus

(a+b)(c—d)=(a+b)o—(a+b)d ;
= ac +be— (ad + bd) = ac + be — ad — bd.

www.rcin.org.pl



MULTIPLICATION. 15

47. Suppose it required to multiply a—b by ¢—d. Here
the product of a—b and ¢ must be diminished by the product
of a—b and d. Thus

(a—0)(c—d)=(a—b)c—(a—b)d
= ac—bc— (ad — bd) = ac — be — ad + bd.

48. From considering the above cases we arrive at the fol-
lowing rule for multiplying two binomial expressions. Multiply
each term of the multiplicand by each term of the multiplier ; if the
terms have the same sign, prefic the sign + to the product, if they
have different signs prefix the sign —; then collect these partial
products to form the complete product.

The rules with respect to the sign of each partial product are
often enunciated thus for shortness: like signs produce +, and
wnlike signs produce —. '

49. It appears from the preceding articles, that correspond-
ing to the terms —b and ¢ which occur in two binomial factors,
there is a term —bc in the product of the factors. Hence it is
often stated as an independent truth that —b x ¢ = —be.

Similarly, we observe, that corresponding to the terms —b and
— ¢ which occur in two binomial factors, there is a term b¢ in the
product of the factors; hence it is often stated as an independent
truth, that —b x — ¢ =be. These statements will be examined and
explained in a subsequent chapter.

50. The rule given in Article 48 will hold for the multipli-
cation of any algebraical expressions. This will appear from
considering a few examples. Suppose, for instance, we have to
multiply 4a®—5ab +66° by 2a°—3ab + 40°. The required pro-
duct here is

2a* (4a’ — bab + 6b°) — 3ab (4a’ — Sab + 6b°) + 40° (4a® — Sab + 60°) ;
thus we obtain
(8a* —10a’ + 12a'b*) — (124’ — 15a°0° + 18ab”)
+(16a%* — 20ab® + 245"),
that is,
8a* — 104’ + 12a%* — 12a°b + 15a%* — 18ad’ + 16a°b* — 20ab®+ 240"
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16 MULTIPLICATION.

This result agrees with the rule. If we simplify the result by
collecting the like terms we obtain
8a* — 22a°b + 43a°b* — 38ab® + 240"
The whole operation may be conveniently arranged thus:
4a’ — bab + 60°
2a’ — 3ab + 4b°

8a* - 10a°b + 12a°0°
— 126 + 15a°6° — 18ab®
+ 16a°0® — 20ad® + 24b*

8a* — 22a%b + 43a°b* — 38ab’® + 24"

51. The student should carefully notice the arrangement of
the above operation. The expressions which we wish to multiply
are here said to be arranged according to descending powers of a;
for in the expression 4a®—bab + 6b° the term which contains the
Tighest power of @ is 4a°, and this is placed first; next we place
— bab which contains a, and last we place the term + 65°% which
does not contain @ at all. Similarly the other factor 2a°— 3ab + 46*
is arranged. The partial products which arise are so arranged
that like terms occur in the same column, and thus we collect
them more easily. The factors might also have been arranged
thus 65°— 5ab + 4a° and 4b° — 3ab + 24°; they are then said to
be arranged according to ascending powers of a.

52. Again; multiply «*+x+1 by 2’—a+1. The opera-
tion may be arranged thus:
' +x+1
-+l

zt+ a2’ + o
=P _ o
++x4+1

z* + a2t +1

Thus the product is z*+ ° + 1.
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53. The following three examples are deserving of special
notice,

a+b a—b a +b

a +b a—b a —b

a® + ab a’ —ab a’ + ab
+ab +0° —ab +0° Zab- b

a’® + 2ab + b* a’® — 2ab + b* a -bt

The first example gives the value of (a +b)(a +b), that is, of
(a+0)*; we thus find

(@ +b)*=a*+ 2ab + b°.

Thus the square of the sum of two numbers is equal to the sum
of the squares of the two numbers increased by twice their product.

Again we have

(a—b)' =a’— 2ab + b°.

Thus the square of the difference of two numbers is equal to the sum
of the squares of the two nwmbers diminished by twice their product.

Also we have

(a+ b)(a—b):a'—l;’.

Thus the product of the sum and difference of two numbers is
equal to the difference of their squares.

54. 'We may here indicate the meaning of the sign = which
is sometimes used.

Since (a+ b)*=a’ + 2ab + b7,
and (a—b)'=a’— 2ab + b°,
we may write (@ =0b)* = a’® = 2ab + b°.

Thus = indicates that we may take either the sign + or the
sigh —; a=b is read thus, “a plus or minus b.”

55.  The results given in Art. 53 furnish a simple example of
the use of Algebra; we may say that Algebra enables us to

AL 2
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18 MULTIPLICATION.

prove general theorems respecting mumbers, and also to ewpress

those theorems briefly. For example, the result
(a+b)(a—b)=0a’-b"

is proved to be true, and is stated thus by symbols more com-

pactly than by words.

56. By using the formule given in Art. 53, the process of
multiplication may be often simplified. Thus suppose we have to
multiply @ +b+c+d by a+b—c—d. This is the same thing as
multiplying (a+ 0)+ (¢c+d) by (a+b)—(c+d). Then by the
third formula we have

{(@+d)+(c+d){(a+d)—(c+d)}=(a+0b)—(c+d)

Next we can express (e +b)° and (¢ + d)’ by means of the first

formula ; thus finally

(@a+b+c+d)(a+b—c—d)=a’+b"+ 2ab—c*— d*— 2cd.

57. From an examination of the examples here given, and
those which are left to be worked, the student will recognise the
truth of the following laws with respect to the result of multi-
plying algebraical expressions.

The number of terms in the product of two algebraical ex-
pressions is never greater than the product of the numbers of the
terms in the two expressions, but may be less, owing to the
simplification produced by collecting like terms.

When the multiplicand and multiplier are both arranged in the
same way according to the powers of some common letter, the first
and last terms of the product are wnlike any other terms. For in-
stance, in the example of Art. 50, the multiplicand and multiplier
are arranged according to powers of a; the first term of the
product is 8a* and the last term is 240°, and there are no other
terms which are like these; in fact, the other terms contain «
raised to some power less than the fourth power, and thus they
differ from 8a*; and they all contain @ to some power, and thus
they differ from 24b*.

When the multiplicand and multiplier are both Zomogeneous
the product is homogeneous, and the number of the dimensions of

www.rcin.org.pl



EXAMPLES OF MULTIPLICATION. CHAPTER III. 19

the product is the sum of the numbers which express the dimen-
sions of the multiplicand and multiplier. Thus in the example of
Art. 50, the multiplicand is homogeneous and of two dimensions,
and the multiplier is homogeneous and of two dimensions ; the
product is homogeneous and of four dimensions.

EXAMPLES OF MULTIPLICATION.

1. Multiply 2p—¢ by 2¢ +p.

2. Multiply a*+ 3ab +26° by Ta—5b.

3. Multiply a®—ab +8° by a® + ab—b*

4. Multiply a*—ab + 20° by a®+ab—20°.

5. Multiply @’ + 2ax + 2° by o+ 2ax — 2.

6. Multiply a®+ 4ax+ 42° by a® — 4ax + 42°.

7. Multiply o° - 2ax+bz—a® by b+

8. Multiply 152*+ 18ax — 14a® by 4a® — 2ax — a®.

9. Multiply 22° + 4° + 8z +16 by 3z— 6.
10. Multiply 2a° — 8zy + 9%° by 2z — 3y.
11. Multiply 4a*—3zy—y* by 3z— 2.
12.  Multiply «® —2'y +xy*—9° by z+v.
13. Multiply x+ 2y — 32 by x— 2y + 3z.
14. DMultiply 2z°+ 3zy +4y° by 32°—4ay + y°.
15. Multiply & +ay +y° by o' +xz+2"
16. Multiply a®+0*+c¢*—bc—ca—ab by a+b+c.
17. Multiply 2~y +y°+x+y+1 by 2+y—1.
18. Multiply a° + 42+ 6z — 24 by «*—4x+11.
19. Multiply & —4a® + 1le—24 by o+ 4 +5.
20. Multiply ° —2a°+ 3z—4 by 4a’+ 3a®+ 2+ 1.
21. Multiply a* + 22°+2®— 4o —11 by «* -2z +3.
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22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

35.
36.
37.
38.
39.
40.

41.
42,
43.
44,
45.
46.

EXAMPLES OF MULTIPLICATION. CHAPTER IIL

Multiply a®—5a*+ 132" -a’—2 +2 by «* — 2w —2.
Multiply a*— 24®+3a®—2a +1 by a*+ 2d°+ 3a*+ 2a + 1.
Multiply together @ —2, @+, and o’ +a®
Multiply together -3, z—1, x+1, and =+ 3.
Multiply together a®—z+1, a*+x+ 1, and a'—2a’+ 1.
Multiply a* — aa® + ba® — cx +d by z'+ aa’— ba’+ cx —d.
Shew that (x + a)' = &* + 4a’a + 62°a’ + 4aa’ + a’.
Shew that @ (z + 1) (@ + 2)(z + 3) + 1 = (2" + 3z + 1)°.
Multiply together a+, b+ @, and ¢+ .
Multiply together z—a, x—b, z—¢, and z—d.
Multiply together @ +b—¢, a+c¢—b, b+c—a and a+b+c.
Simplify (a +8)(b+¢)—(c+d)(d +a)— (a+c)(b—d).
Simplify (@ +b+c+d)'+(@a—b—c+d)+(a—-b+c-d)
+(@+b-c—d).

Prove that (x+y+2)°— (&’ + 3’ +2°) =3(y + 2)(x + @) (x + ).
Simplify (@ +b+c¢)’—a(b+c—a)-b(a+c—b)—c(a+b—c).
Simplify (z—y)’+(z +y)°+ 3(x—y)*(x+y)+ 3(w+g/)’(a:-y)_
Simplify (a®+6°+¢")f'—(a + b + c)(a+b—c) (a+c—b)(b+c—a).
Simplify (a*+b*+¢*)*+ (a+b+c)(a+b—c) (a+c—b) (b+c—a),
Prove that @+’ +(z+9)"=2 (" +ay +y")*

+ 8%y (w + y)* (@ + 2y + ),
Prove that 4oy («*+ y°) = (& +xy + y°)’ — (&"— ay + y°)*.
Prove that 4ay(a’—y°)= (¢"+ay — y')'— (&'— 2y — )%
Multiply together (¢*—3x+ 2)* and a®+ 6+ 1.
Multiply &° + a® — ax (¢’ + @’) by @’ +a® — ax (z +a).
Multiply (a +b)* by (a—b)"
If s=a+b+c, prove that

8 (s —20) (s —2¢) + 8 (s — 2¢) (s — 2a) + 8 (s — 2a) (s — 20)

= (s — 2a) (s — 2b) (s — 2¢) + 8abc
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TV..; DIVISTON,

58. Division, as in Arithmetic, is the inverse of Multipli-
cation. In Multiplication we determine the product arising from
two given factors; in Division we have the product and one of
the factors given, and our object is to determine the other factor.
The factor to be determined is called the guotient.

59. Since the product of the numbers denoted by @ and b
is denoted by ab, the quotient of ab divided by @ is b; thus
ab+a=>b; and also ab+b=a. Similarly, we have abc-+ a=be,
abc+~b=ac, abc+c=ab; and also abc+bc=a, abc+ac=D0,
abc ~ab=c. These results may also be written thus:

abe gt ki n g
a b c

abe abc_b @c_c
B dac ah T

60. Suppose we require the quotient of 60abe divided by 3e.
Since 60abc = 20ab x 3¢ we have 60abe + 3¢c=20ab. Similarly,
60abe + 4a = 15bc; 60abe + 5ab=12¢; and so on. Thus we may
deduce the following rule for dividing one simple term by another :
If the numerical coefficient and literal product of the divisor be
Jound in the dividend, the other part of the dividend 1is the

quotient.

61. If the numerical coefficient and literal product of the
divisor be not found in the dividend, we can only indicate the
division by the notation we have apprE)pria.ted for that purpose.
Thus if e is to be divided by 2¢, the quotient can only be indi-

cated by 5a =+ 2¢, or by Z—Z . In some cases we may however

simplify the expression for the quotient by a principle already
used in Arithmetic. Thus if 15a% is to be divided by 6bc, the

2
quotient is denoted by lg—g;b . Here the dividend = 3b x §a°, and
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22 DIVISION.

the divisor = 36 x 2¢; thus in the same way as in Arithmetic we
may remove the factor 3, which occurs in both dividend and
2
divisor, and denote the quotient by 5210'
62. One power of any quantity is divided by another power
of the same quamtity by subtracting the index of the latter power
from the index of the former.

Thus a*~a*=axaxaxaxa+-axa=axaxa=a =a°.

Similarly any other case may be established.
Hence if m and » be any whole numbers, and m greater
than n, we have o™ +a" or E,—:a""‘.
2
63. Again, suppose we have such an expression as (%. We
4 .
may write it thus :7':—a”; then, as in Art. 61, we may remove

2
the common factor . Thus we obtain Z—5= ‘—ll—,,. Similarly any

other case may be established. Hence if m and » be any whole

a” i
numbers, and m less than n, we have ™ =" or —- =
a

n—m *

aﬂ

64. Suppose such an expression as g to occur ; this may be

2
written thus (%) . For (%)' means %x (—I: , and we know from

2
Arithmetic that ; x =%;. Similarly any other case may be
established.

Hence if 7 be any whole number % = <§> :

>R

65. When the dividend contains more than one term, and the
divisor contains only one term, we must diwide each term of the
dividend by the divisor, and then form the partial quotients to ob-
tain the complete quotient.
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Thus, “b;"b=a_c; for (a— c)b=ab—ch.
2
WOt D1 d; for (b—o-+ dyab=ab* — abo + abd

In the first example we see that corresponding to the term ab
in the dividend and to the divisor b there is the term @ in the
quotient ; and corresponding to the term —cb in the dividend
and to the divisor b there is the term — ¢ in the quotient.

We have already stated in Art. 49, that the following results
are admitted for the present, subject to future explanation,

bx—c=-bc, —-bx—c=be.
Similarly, the following results may be admitted,

:_I_’f=b’ E=
=g =

-b.

Thus in Division as in Multiplication, the sign of the quotient
is deduced from the signs of the dividend and divisor by the rule,
like signs produce +, and unlike signs produce —.

66. When the divisor as well as the dividend contains more
than one term, we must perform the operation of algebraical
division in the same way as the operation called Long Division in
Arithmetic. The following rule may be given:

Arrange both dividend and divisor according to the powers of
some common letter—either both according to ascending powers, or
both according to descending powers. Find how often the first term
of the dwisor is contained in the first term of the dividend, and
write down this result jfor the first term of the quotient ; multiply
the whole divisor by this term, and subtract the product from the
dividend. Bring down as many terms of the dividend as the case
may require, and repeat the operation till all the terms are brought
down.
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24 DIVISION.

Example. Divide @’ —2ab +0* by a—b.
The operation may be arranged thus:
a-b)a’—2ab+0* (a—b
a®—ab

—ab+b*
—ab+b*

The reason for the rule is, that the whole dividend may be
divided into as many parts as may be convenient, and the com-
plete quotient is found by taking the sum of all the partial quo-
tients. Thus, in the example, @’ — 2ab + 0 is really divided by the
process into two parts, namely, a*—ab and —ab +b°, and each of
these parts is divided by a@—b; thus we obtain the complete
quotient @ — b. :

67. It may happen, as in Arithmetic, that the division can-
not be exactly performed. Thus, for example, if we divide
a’®—2ab+2b° by a—0b, we shall obtain as before a—b in the
quotient, and there will then be a remainder b°. This result is
expressed in a manner similar to that used in Arithmetic; we say
a® —2ab + 20° b’

=a—-b+

g it ¥ that is, there is a complete quotient

b’
a—b
braical fractions we shall return in a subsequent chapter.

a—0b and a fractional part

To the consideration of alge-

68. The following examples are important :

z—a)x’—d’ (2° +za+d z—a)z' —a' (& + e+ xad’ + o’
o —a'a ot —o’a
o’a—a® 2’a — a*
2*a — xa’ 2’a — 2'a’
xa®— a® o*a’— a*
xa’ —a® 2'a’ — xa®
za® — a*
za’— a'
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The student may also easily verify the following statements :

2 2 4 4
—a z'—a
=r—a; =2’ - a’a + xa’ - o®;

z+a z+a

3 3 5 5

'+ a z+a
— =2'—wxa+a’; = o*— 2’a + e’ — xa’+ a’.
z+a T+a

Each of these examples of division furnishes an example of
multiplication, as the product of the divisor and quotient must be
equal to the dividend. Thus we have the following results which
are worthy of notice:

' —a* = (z + a) (x — a),

@ — a® = (z — a) (& + xa + &°),

@’ + a’ = (z + a) (° — za + a*),

@' — a' = (z — a) (2° + 2’a + za’ + o°),

@' — o' = (z + a) (2° — 2’ + va’ — ),

@’ + a’ = (z + a) (2 - 2’a + o’a’ — 2a® + o).

69. It will be useful for the student to notice the following
facts :

a"—a" is always divisible by z—a whether the index » be an
odd or even number.

a" — a" is divisible by 2+ @ if the index 7 be an even number.
z" + a" is divisible by @ + @ if the index 7 be an odd number.

It will be easy for the student to verify these statements in
any particular case, and hereafter we shall give a general proof of
them. See Chapter XxXIIr

70. By means of the results which have been obtained in
the preceding articles we may often resolve algebraical expres-
sions into factors. Thus whatever 4 and B denote we have

A B'=(4 + B)(4 - B),

and the student will frequently have occasion to use this general
result with various forms of 4 and B. Thus, for example, sup-
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pose A=a®, and B=0° so that 4°=qa* and B*=0"; then we
have

a'—b'=(a’ + b°) (a' - %),
and as @' -0 =(a+b) (a—0),
we obtain a'—b'=(a’ + b°) (@ + b) (a—b).
Again, suppose 4 =a’, and B =10 so that 4°=a’, and B*'=0°;

then we have

a’—b°=(a*+ b°) (¢’ - b°);
and, as in Art. 68,

a’+ b’ = (a+b) (a* — ab + b°),

a’— b’ = (a —b) (a* + ab +1°),
so that
a’— b= (a +b) (a—0b) (a* + ab + b°) (a* — ab + b°).

Again, suppose 4 =o' and B =5*, so that 4°=a’, and B*°=0";
then we have
a’ - b° = (a* + b*) (a* - b*)
= (a* +b*) (&’ + %) (@ + b) (@ — D).
Again, take the general result
A*— B°=(A—B)(4*+ AB + B,
and suppose 4 =@, and B=05°; thus we obtain
a’—b°=(a'-b°) (a' + &'’ + 1% ;
and by comparing this with the result just proved,
@’ = =(a+0b)(a—>b) (a’+ ab+0°) (&’ — ab + "),
we infer that
(@* + ab + b%) (a* — ab + b°) = a* + &" + b*.
This can be easily verified by the method of Art. 56.
For (a*+ ab + b°) (a* — ab + b°) = (@’ + b* + ab) (a® + b* — ab)
= (a* + 0%’ - a’t’
=a'+ 2a°0° + b* - a’b’

= a*+ a’d® + b*.
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We may also in some cases obtain useful arithmetical applica-
tions of our formule. For example,
(127)°— (123)°' = (127 + 123) (127 - 123)
=250 x4=1000;
thus the value of (127)*—(123)* is obtained more easily than it
would be by squaring 127 and 123, and subtracting the second
result from the first.
The following additional examples are deserving of notice.
(a®+ ab /2 + b°) (a° — ab /2 + b°) = (a® + B°)* — (ab \/2)"
=a'+ 2a°0° + b* — 20’
=a'+b'.
(@* + ab /3 +6°) (@ — ab /3 + %) = (@’ + b°)" — (ab \/3)'
=a*+ 20" + b* — 3a°°
=a'—-a’d’ + '
a® + 8= (a"+ 1°) (a* — a'b" + B)
=(a*+b°) (a* + ab \J3 + %) (a* — ab /3 + °).
The student may verify the following result by multiplication
or division.
P+ + 2 3wyz=(x+y +2) (@ + ¥ + 2 — 2y — yz — 22).

71. The following are additional examples of Division.
Divide 8a'— 22a°b + 43a°0" — 38ab’ + 24b* by 2a° — 3ab + 41"
20 — 3ab + 4b° ) 8a* — 22a°b + 43a°b* — 38ad® + 24b* (4a’ — Hab + 6b°
8a*— 12a°b + 164
—10a% + 27a°b* — 38ab®
—10a’6 + 15a°6° — 20ab®

124%* - 18ab® + 24b*
124%° - 18ab° + 245*

The quotient is 4a” — 5ab + 61
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28 EXAMPLES OF DIVISION. CHAPTER IV.
Divide 2°— (a+ b+ c)a® + (ab + be + ac)z— abe by = —a.

w—a) @’ — (@ +b+c)a’ + (ab + be + ac)x — abe Qc’—(b+c)a:+bc

z° — ax’

—(b+c)x® + (ab + be + ac) z
—(b+e)a’+ (ab+ac)x

bex — abe
bex — abe

The quotient is & — (b + ¢) « + be.

EXAMPLES OF DIVISION.

Divide 2°+1 by =+ 1.

d:
2. Divide 272°+ 8%° by 3z + 2y.
3. Divide a®— 2ab’ +b° by a-h
4. Divide @ - 2a’b — 3ab® by a+b. .
5. Divide 642°—3° by 2z—y.
6. Divide a’+8° by a+b.
7. Divide 2*— 2’y +ay*— 3’ by z—y.
8. Divide &’— Tx—6 by «—3.
9. Divide 32a°+ %’ by 2z + .
10. Divide 2°— 2'y + o’y — 2®’ + xy* — y° by 2°— ¢,
11. Divide @'+ a’—4a’+ 5o —3 by 2+ 22— 3.
12. Divide a*+ 2a°6° + 9b* by a® + 2ab + 3b°
13. Divide a°—?° by a’+ 2a’b + 2ab® + b°.
14. Divide 32a*+ 54ab®— 815" by 2a + 3b.
15. Divide 2°—22°+1 by 2~ 2z + 1.
16. Divide 2°— 6z*+ 92° - 4 by «*—1.
17. Divide a*+ a’ — 8a’0* + 19ab® — 156" by a’ + 3ab — 50
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EXAMPLES OF DIVISION. CHAPTER IV. 29
18. Divide the product of 2’—12x+ 16 and 2®—12z—16
by - 16.

19. Divide the product of °—2x+1 and 2’— 3z +2 by
o’ — 32"+ 3w— 1.

20. Divide the product of z*—~x—1, 22*+ 3, 2*+z—1, and
x—4 by z*-32*+ 1.

21. Divide the product of a&’+ ax + a* and o’+2® by
a' +a’x® + ',

22. Divide the product of «'— 4x’a + 62’a’— 4xa®+a* and
«* + 2xa +a® by z*—22°a + 2za’ — a*.

23. Divide a® + a’b + a’c — abe — b°c — bc® by a® — be.

24. Divide 32® + 4abz® —6a’b’x — 4a°6® by x + 2ab.

25. Divide the product of #’—3a*+3x—1, 2°—2x+ 1 and
x—1 by o' — 42+ 62° — 4 + 1.

26. Divide 6a*—a’b+ 2a°6° + 13ad® + 4b* by 2a°— 3ab + 4°.

27. Divide &’ +3*+3xy—1 by z+y—1.

28. Divide a®+ b° —c® + 3abe by a+b—c.

29. Divide 2a’b—5a°*— 11a°0®+ 5a*b*— 264°0° + Ta’d’ — 12ab’
by a*—4a’b + a*b* — 3ab’.

30. Divide a®® + 2abe® — a’c* — b%" by ab +ac — be.

31. Divide the product of a+b—¢c, a—b+c¢, and b+c—a
by a*—b*—¢* + 2bc.

32. Divide (a+ b+ ¢)(ab + be + ca) — abe by a+ b.

33. Divide (a*—be)® + 8b%° by a® + be.

34. Divide b (2*—a’) + ax (z* - a°) + @’ (x — ) by. (@ +0b) (z—a).

35. Divide xy® + 2y’ — xy’s + aya’— o’y — 2y2° + o’z — a2’ by
Y+z— :

36. Divide a® (b+c) 0" (a+c) +c* (a+b)+abec by a—b+ec.

37. Divide (a—b) @'+ (b°—a’)x+ab(a’—b°) by (a—b)z+a’~b".

38. Divide ax’-ab® + b’z — 2’ by (x+0) (a — ).

39. Divide (b—c)a’+(c —a) b’ + (a—0)¢’ by a’—ab —ac +be.
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30 EXAMPLES OF DIVISION. CHAPTER IV.

40. Divide (az + by)’+ (ay —bzx)*+ *z’+ ¢'y* by «°+y"

41. Divide a'b —ba’+a’zc—2° by (z+b) (@ — ).

42. Resolve a’—b'—c’+ d’—2 (ad — bc) into two factors.

43. Divide b(z’+a°)+ax(e’~a®)+a’(¢+a) by (a+b)(x+a).

44. Shew that (2"—ay+¥°)°+ (2 + wy +°)° is divisible by
22* + 2y°.

45. Shew that (z+y)'—a’— %" is divisible by (2* + zy +y°).

46. If A=bc—p°’, B=ca—¢q', C=ab—-1°, P=qgr—ap,
BC-P* CA-¢
aliged Bee 8

@=7p—bq and R=pqg—cr, find the value of
AB—-R* QR—-AP RP-BQ Gt PQ—-CR
- /

 § )

¢ y4 q
47. Resolve @'~ '° into five factors.

48. Resolve 4a°b’ — (a® + b* — ¢°)° into four factors.
49. Resolve 4 (ad + be)’—(a’— b*— ¢*+ d°)* into four factors.

50. Shew that (ay—bx)*+ (bz—cy)’ + (cx — az)’+(az + by + cz)*
is divisible by @®+b°+¢* and by &°+ 7° + 2"

V. OF NEGATIVE QUANTITIES.

72. In Algebra we are sometimes led to a subtraction
which cannot be performed because the number which should
be subtracted is greater than that from which it is required to
be subtracted. For instance, we have the following relation:
a—(b+c)=a—b—c; suppose that a=7, b="T and ¢=3 so that
b+c¢=10. Now the relation a—(b+c)=a—0b—c tacitly sup-
poses b+c to be less than a; if we were to neglect this supposi-
tion for a moment we should have 7—10=7—-7-3; and as 7-7
is zero we might finally write 7—10=—3.

73. In writing such an equation as 7—10=— 3 we may be
understood to make the following statement: it is impossible to
take 10 from 7, but if 7 be taken from 10 the remainder is 3.”
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74. It might at first sight seem to the student unlikely that
such an expression as 7—10 should occur in practice; or that if
it did occur it would only arise either from a mistake which could
be instantly corrected, or from an operation being proposed which
it was obviously impossible to perform, and which must therefore
be abandoned. As he proceeds in the subject the student will
find however that such expressions occur frequently; it might
happen that @ — b appeared at the commencement of a long investi-
gation, and that it was not easy to decide at once whether a were
greater or less than 5. Now the object of the present chapter is
to shew that in such a case we may proceed on the supposition
that @ is greater than b, and that if it should finally appear that @ is
less than & we shall still be able to make use of our investigation.

75. Let us consider an illustration. Suppose a merchant to
gain in one year a certain number of pounds and to lose a certain
number of pounds in the following year, what change has taken
place in his capital? Let ¢ denote the number of pounds gained
in the first year, and b the number of pounds lost in the second.
Then if @ is greater than b the capital of the merchant has been
increased by a—b pounds. If however b is greater than a the
capital has been diminished by b—a pounds. In this latter case
a— b is the indication of what would be pronounced in Arithmetic
to be an impossible subtraction; but yet in Algebra it is found
convenient to retain @ — b as indicating the change of the capital,
which we may do by means of an appropriate system of interpre-
tation. Thus, for example, if =400 and b= 500 the merchant’s
capital has suffered a diminution of 100 pounds; the algebraist
indicates this in symbols, thus

400 — 500 = - 100,

and he may turn his symbols into words by saying that the
merchant’s capital has been increased by — 100 pounds. This
language is indeed far removed from the language of ordinary life,
but if the algebraist understands it and uses it consistently and
logically his deductions from it will be sound.
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32 NEGATIVE QUANTITIES.

76. There are numerous instances like the preceding in which
it is convenient for us to be able to represent not only the
magnitude but also what may be called the quality or affection of
the things about which we may be reasoning. In the preceding
case a sum of money may be gained or it may be lost; in a ques-
tion of chronology we may have to distinguish a date before a
given epoch from a date after that epoch; in a question of posi-
tion we may have to distinguish a distance measured to the north
of a certain starting-point from a distance measured to the south
of it; and so on. These pairs of related magnitudes the algebraist
distinguishes by means of the signs + and —. Thus if, as in Article
75, the things to be distinguished are gain and loss, he may denote
by 100 or by +100 a gain, and then he will denote by —100 a
loss of the same extent. Or he may denote a loss by 100 or by
+100, and then he will denote by —100 a gain of the same extent.
There are two points to be noticed; first, that when no sign is
used + is to be understood; secondly, the sign + may be ascribed
to either of the two related magnitudes, and then the sign — will
throughout the investigation in hand belong to the other mag-
nitude.

77. In Arithmetic then we are concerned only with the
numbers represented by the symbols 1, 2, 3, &c., and intermediate
fractions. In Algebra, besides these, we consider another set of
symbols —1, —2, —3, &ec., and intermediate fractions. Symbols
preceded by the sign — are called megative quantities, and symbols
preceded by the sign + are called positive quantities. Symbols
without a sign prefixed are considered to have + prefixed.

The absolute value of any quantity is the number repre-
sented by this quantity taken independently of the sign which
precedes the number.

78. In the preceding articles we have given rules for the
Addition, Subtraction, Multiplication, and Division of algebraical
expressions. Those rules were based on arithmetical notions and
were proved to be true so long as the expressions represented such
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things as Arithmetic considers, that is positive quantities. Thus,
when we introduced such an expression as a—b we supposed both
@ and b to be positive quantities and a to be greater than 6. But
as we wish hereafter to include negative quantities among the
objects of our reasoning it becomes necessary to recur to the con-
sideration of these primary operations. Now it is found con-
venient that the laws of the fundamental operations should be the
same whether the symbols denote positive or negative quantities,
and we shall therefore secure this convenience by means of suitable
definitions. For it must be observed that we have a power over
the definitions; for example, multiplication of positive quantities
is defined in Arithmetic, and we should naturally retain that defini-
tion ; but multiplication of negative quantities, or of a positive and
negative quantity has not hitherto been defined ; the terms are at
present destitute of meaning. It is therefore in our power to
define them as we please provided we always adhere to our
definition.

79. The student will remember that he is not in a position to
judge of the convenience which we have intimated will follow from
our keeping the fundamental laws of algebraical operation perma-
nent, and giving a wider meaning to such common words as
addition and multiplication in order to insure this permanence.
He must at present confine himself to watching the accuracy of
the deductions drawn from the definitions. As he proceeds he will
see that Algebra gains largely in power and utility by the intro-
duction of negative quantities and by the extension of the meaning
of the fundamental operations.

80. Two quantities are said to be equal and may be con-
nected by the sign = when they have the same numerical value
and have the same sign. Thus they may have the same absolute
value and yet not be equal ; for example, 7 and —7 are of the same
absolute value but they are not to be called equal.

81. In Arithmetic the object of addition is to find a number
which alone is equal to the units and fractions contained in certain

T, A, 3
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other numbers. This notion is not applicable to negative quan-
tities; that is, we have as yet no meaning for the phrase “add — 3
to 5,” or “add — 3 to —5.” We shall therefore give a meaning to
the word add in such cases, and the meaning we propose is deter-
mined by the following rules. 7o add two quantities of the same
sign add the absolute values of the quantities and place the sign of
the quamtities before the sum. To add two quantities of unlike signs,
subtract the less absolute value from the greater, and place before
the remainder the sign of that quantity which has the greater ab-
solute value.

Thus, by the first rule, if we add 3 to 5 we obtain 8; if we
add — 3 to —5 we obtain —8. By the second rule, if we add 3
to — 5 we obtain — 2 ; if we add — 3 to 5 we obtain 2.

82. It will be seen that the rules above given leave to the
word add its common arithmetical meaning so long as the things
which are to be added are such as Arithmetic considers—namely,
positive quantities—and merely assign a meaning to the word in
those cases when as yet it had no meaning. The reader may
perhaps object that no werbal definition is given of the word add
but merely a rule for adding two quantities. We may reply that
the practical use of a definition is to enable us to know that we
use a word correctly and consistently when we do use it, and the
rules above given will ensure this end in the present case.

83. The rules are not altogether arbitrary—that is, the stu-
dent may easily see even at this stage of his progress that they are
likely to be advantageous. Thus, to take the numerical example
given above, suppose a man to be entitled to receive 3 shillings
from one person and 5 from another, then he may be considered
to possess 8 shillings. But suppose him to owe 3 shillings to one
person and 5 shillings to another; then he owes altogether 8
shillings; this may be considered to be an interpretation of the
— 8 which arises from adding — 3 to — 5. Next, suppose that he
has to receive 3 shillings and to pay 5 shillings; then he owes
altogether 2 shillings; this may be considered to be an interpreta-
tion of the — 2 which arises from adding 3 to — 5. Lastly, suppose
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that he has to receive 5 shillings and to pay 3 shillings, then he
may be considered to possess 2 shillings; this may be considered

to be an interpretation of the 2 which arises from adding
-3 to b.

84. Thus in Algebra addition does not.necessarily imply
augmentation in an arithmetical sense; nevertheless the word
sum is used to denote the result. Sometimes when there might
be an uncertainty on the point, the term algebraical sum is used to
distinguish such a result from the arithmetical sum, which would
be obtained by the arithmetical addition of the absolute values of
the terms considered.

85. Suppose now we have to add the five quantities — 2, + 5,
—13, —4 and +8. The sum of —2 and +5 is +3; the sum
of +3 and —13 is —10; the sum of —10 and —4 is —14; the
sum of —14 and +8 is —6. Thus —6 is the sum required.
Or we may first calculate the sum of the negative quantities — 2,
—13 and —4, and we thus get —19; then calculate the sum
of the positive quantities +5 and +8, and we thus get +13.
Thus the proposed sum becomes + 13 — 19, that is, — 6 as before.
It will be easily seen on trial that the same result is obtained
whatever be the order in which the terms are taken. That is,
for example, —2—-13+5+8—4, 8-13-2—-4+5, and so on,
all give — 6.

86. Next suppose we have to add two or more algebraical
expressions ; for example, 2a¢—3b + 4¢c and —a—2b+c+2d. We
have for the sum

2a — 3b + 4c—a—2b +c + 2d.
Then the like terms may be collected ; thus
20 —a=a, —3b—2b=-05b, 4c+c=>bc;

and the sum becomes
a— 5b + ¢ + 2d.

Thus we may give the following rule for algebraical addition :
Write the terms in the same line preceded by their proper signs;

3—2
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collect like terms into one, and arrange the terms of the result
in any order.

87. In arithmetical subtraction we have to take away one
number, which is called the subtrakend, from another which is
called the minuend, and the result is called the remainder. The
remainder then may be defined as that number which must be
added to the subtrahend to produce the minuend, and the object
of subtraction is to find this remainder.

‘We shall use the same definition in algebraical subtraction,
that is, we say that in subtraction we have to find the quantity
which must be added to the subtrahend to produce the minuend.
From this definition we obtain the rule: Change the sign of every
term in the subtrahend and add the result so obtained to the minu-
end, and the result will be the remainder required.

For it is obvious, that if to the expression thus formed we add
the subtrahend, giving to each term its proper sign, all the terms
of the subtrahend will disappear and leave the minuend; which
was required.

88. We have still another point to mnotice. According to
what has been laid down, the sum of +a and —b is denoted by
a—b; if we take —b from @, the result is @ +0; and the sum of
—a, +b, and —¢ is —a+b—c; and so on. But we have as yet
supposed that the letters themselves stand for positive numbers;
for example, when we say that the sum of +a and —b is a—9,
@ may be 6, and b may be 10; but suppose that a is — 6, and b is
—10, do the rules adopted apply here? Since b is —10, —b or
—(—10) will naturally be taken to mean 10, and +a or +(-6)
will be taken to mean — 6; and the sum of 10 and — 6 is 4.

89. Thus if a be itself a negative quantity, we have assigned
a meaning to +@ and to —a; and the meanings are these, let
a =—a, so that a is a positive quantity, then +a or +(—a)=—a,
and —a or —(—a)=a. We said in the preceding article that
these meanings followed naturally from what had preceded; it is
however of little consequence whether we consider these meanings
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to follow thus, or whether we look upon them as new interpreta-
tions; the material point is to use them uniformly and consistently
when once adopted.

Since +(—a)=—a, and —(—a)=q, that is, + a, we may enun-
ciate the same rule as formerly, namely, that like signs produce +
and unlike signs —.

90. There are four cases to consider in multiplication. TLet
@ and b denote any two numbers, then we have to consider
+ax+b —ax+b +ax—-b, —ax-b
The first case is that of common Arithmetic and needs no
remark. The ordinary definition of multiplication may also be
applied to the second case; for suppose, for example, that b =3,
then —a x 3 indicates that —a is to be repeated three times, that
is, we have —a—a—a or —3a as the result.. Thus

—a x+b=—ab.

In the other two cases the multiplier is a negative quantity,
and thus the common arithmetical notion of multiplication is not
applicable; we may therefore give by definition a meaning to the
term in this case. Now we observe that when the multiplier is
positive, the sign of the multiplicand is preserved in the product;
thus we are led to adopt the following convention: When the mul-
tiplier is negative, perform the multiplication as if the multiplier
were positive, and change the sign of the product. Hence we con-
clude immediately that

+ax—b=—ab and —a x — b=+ ab.

91. Hence we have the following rule: 7o multiply two
quantities whatever be their signs, multiply them without consider-
ing the signs, and put + or — before the product according as the
two factors have the same sign or different signs. As before re-
marked, the rule for the sign of the product is abbreviated thus:
Like signs give + and unlike signs give —.

92. In the preceding articles we supposed @ and b themselves
to denote arithmetical numbers; it is important however to
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observe that if they denote any quantities, positive or negative, the
four results obtained are true; that is,

+ax+b=+ab, —ax+b=—ab, +ax—-b=—ab, —ax—b=+ab.

Take, for example, the last of these, and suppose that a is a
negative quantity, and so may be denoted by —a; then —a is a
positive quantity, and =a. (Art. 89.) Hence —ax—b=ax—b;
and this by the third case =—ab. And ab=—axb=—ab by
the second case.

Thus the result —a x—b=ab holds when a is a negative
quantity. Similarly any other case may be established.

93. We must now shew that the rule for multiplying bino-
mial and polynomial expressions given in Art. 48 is true, whatever
the symbols denote. Take, for example, the case

(@ —b)e=ac—be.

When this was proved, we supposed ¢ a positive quantity ; we
will now suppose that ¢ is a negative quantity, namely — 7.
Now by virtue of the convention in Art. 90, to find the product
of a—b and —y we must multiply «—5b by y and then change
the sign of each term in the result. Now,

(a-b)y=ay—by;
thus (a=b)(—y)=—ay+by.
But since ¢=—1v, we have
ac—bc=—ay+by;
thus the relation (a—b)c=ac—be
holds whatever ¢ may be, positive or negative. Similarly, any
other case may be established.

94. The ordinary definition of division will be universally
applicable; we suppose a product and one factor given, and we
have to determine the other factor.

Hence if we perform the division without regarding the signs
we obtain the quotient apart from its sign. It remains then

www.rcin.org.pl



NEGATIVE QUANTITIES. 39

to determine the sign, for which we may give the following
rule:

When the dividend and divisor have the same sign, the quotient
must have the sign +; when the dividend and divisor have differ-
ent signs, the quotient must have the sign —.

This rule follows from the fact that the product of the divisor
and quotient must be equal to the dividend. The rule for the
sign of the quotient may as before be abbreviated thus: Like signs
gwe + and unlike signs give —.

95. The words greater and less are often used in Algebra in
an extended sense. We say that a is greater than b or that b s
less than a if a—b is a positive quantity. This is consistent with
ordinary language when @ and b are themselves both positive, and
it is found convenient to extend the meaning of the words greater
and less so that this definition may also hold when « or b is nega-
tive, or when both are negative. Thus, for example, in algebraical
language 1 is greater than — 2 and — 2 is greater than — 3.

.96. Before leaving this part of the subject we may make a
few general remarks. The subject of Algebra has been divided
by some modern writers into two parts, which they have called
Arithmetical Algebra and Symbolical Algebra. In Arithmetical
Algebra symbols are used to denote the numbers and the opera-
tions which occur in Arithmetic. Here, as shewn in the preced-
ing chapters of the present work, we begin by defining our
symbols, and then arrive at certain results, as for example, at
the result (a+0) (@—0b)=a’-b". In Symbolical Algebra we
assume that the rules of Arithmetical Algebra hold universally,
and then determine what must be denoted by the symbols and
the operations, in order to ensure this result. Thus we may
consider, that in the present chapter we have been examining what
meanings must be given to the symbols to make the results of the
previous chapters hold universally. And we have thus been led
to the theory of megative quantities, and to an extension of the

meaning of the words addition, subtraction, multiplication and
division.
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97. In some of the older works on Algebra, scarcely any
reference is made to the extensions of meaning which we have
given to some simple arithmetical terms. In such works the
proofs and investigations are only valid so long as the symbols
have purely arithmetical meanings; and the proofs and investiga-
tions are really assumed without demonstration to hold when the
symbols have not purely arithmetical meanings. In recent works,
as in the present, an attempt is made to establish the proofs
completely. It must not however be denied that this branch of
the subject presents considerable difficulty to the beginner, and it
will probably only be after repeated examination of the subject
that the student will obtain a conviction of the universal truth
of the fundamental theorems.

The student is recommended to proceed onwards as far as the
chapter on equations; he will there see some further remarks on
negative quantities, and he may afterwards read the present
chapter again. It would be inconsistent with the plan of this
work to enter very largely on this branch of Algebra; but the
present chapter may furnish an outline which the student ean
fill up by his future reading and reflection.

We shall require in the course of the work certain propo-
sitions which are obvious axioms in Arithmetic, and which are
also true when we give to the terms and symbols their extended
meanings.

98. If equal quantities be added to equal quantities, the sums
will be equal.

99. If equal quantities be taken from equal quantities, the
remainders will be equal.

Thus, for example, if 4 =pB+ (, then by taking C' from these
equal quantities we have 4 —C = pB.

100. If equal quantities be multiplied by the same or equal
quantities, the products will be equal.

Thus too if @=05 then a"=5" and /a = Y/b.
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101. If equal quantities be divided by the same or equal
quantities, the quotients will be equal,

102. If the same quantity be added to and subtracted from
another, the value of the latter will not be altered.

103. If a quantity be both multiplied and divided by another,
its value will not be altered.

104. It is important to draw the attention of the reader to
the fact, that these propositions are still true whether the quanti-
ties spoken of are positive or negative, and when the terms addi-
tion, subtraction, multiplication, and division have their extended
meanings. For example, if =05, and ¢=d, then ac=bd; this is
obvious if all the letters denote positive quantities. Suppose
however that ¢ is a negative quantity, so that we may represent
it by —y; then d must be a negative quantity, and if we denote
it by —8, we have y=38; therefore ay=053; therefore —ay=—103;
and thus ac= bd.

MISCELLANEOUS EXAMPLES. CHAPTER YV,
1. Shew that «®+y°+ 42° + 2xy + 82z and 4 (z +2)° become
identical when « and y each =a.
2. Ifa=1,b6=8% =7 and y=38, find the value of
6(a—-b)Via+2) ¥} -b/{(a+2)y} +a.
3. Ifa=% b=4, =5 and y=9%, find the value of
(100 + 200) J{(a— b) y} ~ 3a Yfy* (o—B)} + 55,
4, Ifa=% b=2, =12 and y=4, find the value of
(@+0) Y@=yt -aJly (@-b)} +=

5. Substitute y +3 for  in z*— 2+ 2¢°— 3 and arrange the
result.
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6. Prove that

{@=0)+(b—c)'+ (c—a)f'=2{(a-b)'+ (b—c)'+ (c—a)'}

7. If 2s=a+ b+ c, shew that
2(8—a)(s—0)(s—c)+a(s—D)(s—c)+b(s—c) (s—a)

+c¢(s—a)(s—b)=abe
8. Prove that

(a+b+¢)'—(b+c)'— (c+a)'—(a+b)'+a'+ b*+ c*=12abe (a+b+c).

n
3% then

(8—a)+(6—a) +...+(8—a)'=a’+a’+ ... +a].

9. Prove that if ¢, +a,+... +a,=

10. If 2s=a+b+c and 206°=a’+b°+¢*, shew that
(¢*—a’) (o= V) + (*= b°) (¢*~ ) + (0 — ¢°) (¢°— &)
=4s(s—a)(s—0) (s—c).

VI. GREATEST COMMON MEASURE

105. In Arithmetic the greatest common measure of two or
more whole numbers is the greatest number which will divide each
of them without remainder. The term is also used in Algebra, and
its meaning in this subject will be understood from the following
definition of the greatest common measure of two or more Alge-
braical expressions. Let two or more Algebraical expressions be
arranged according to descending powers of some common letter;
then the factor of highest dimensions in that letter which divides
each of these expressions without remainder is called their greatest
common measure.

106. The term greatest common measure is not very appro-
priate in Algebra, because the words greater and less are seldom
applicable to Algebraical expressions in which specific numerical
values have not been assigned to the various letters which occur.
It would be better to speak of the /Aighest common divisor or of
the highest common measure; but in conformity with established
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usage we retain the term greatest common measure. 'The letters
a. ¢. M. will often be used for shortness instead of this term.

When one expression divides two or more expressions we shall
say that it is a common measure of them, or more briefly, that it
is a measure of them.

107. The following is the rule for finding the a. c. M. of two
Algebraical expressions :

Let A and B denote the two expressions; let them be arranged
according to descending powers of some common letter, and suppose
the index of the highest power of that letter in 4 not less than
the index of the highest power of that letter in B. Divide 4 by
B; then make the remainder a divisor and B the dividend.
Again, make the new remainder a divisor and the preceding
divisor the dividend. Proceed in this way until there is no
remainder; then the last divisor is the G. ¢. M. required.

108. Example: find the 6. c. M. of
o’ —6x+ 8 and 4a®—21x® + 152 + 20.
@ — 6z +8) 4o’ — 21 + 15 + 20 (4o + 3
4a® — 24a® + 322
3 — 172+ 20
3x* —18x + 24
x— 4
z—4)a*—6x+8 (x—2
x*— 4

—2x+8
—2x+8

Thus « — 4 is the a. c. M. required.
109. The truth of the rule given in Art. 107 depends upon
the following principles :

(1) If P divide 4, then it will divide md. For since 2’
divides 4, we may suppose 4 =aP, then md =maP, thus P
divides m4.

www.rcin.org.pl



44 GREATEST COMMON MEASURE.

(2) If P divide 4 and B, then it will divide m4 +nB. For
since P divides 4 and B, we may suppose 4 =aP, and B=05P,
then mAd +nB= (ma=nb)P ; thus P divides m4 =nB,

‘We can now prove the rule given in Art. 107,

110. TLet 4 and B denote the two expres- B) 4 (p
sions. Divide 4 by B; let p denote the quo-  pB
tient, and C the remainder. Divide B by C'; ?) B(q
let ¢ denote the quotient and 2 the remainder. qC
Divide C by D, and suppose that there is no
remainder, and let » denote the quotient.
Thus we have the following results :

A=p8+0; B=q0+D, C=rD.
‘We shall first shew that 2 is @ common measure of 4 and B.
D divides C, since C'=rD; hence (Art. 109) D divides ¢C' and
also gC + D; that is, D divides B. Again, since D divides B and
O, it divides pB + C'; that is, D divides 4. Hence D divides 4
and B.

‘We have thus shewn that D is ¢ common measure of 4 and B;
we shall next shew that it is their greatest common measure.

7)0(7‘
rD

By Art. 109 every expression which divides 4 and B divides
A—pB, that is, ('; thus every expression which is a measure of
4 and B is a measure of B and C. Similarly every expression
which is a measure of B and C is a measure of C and 0. Thus
every expression which is a measure of 4 and B divides D. But
no expression higher than D can divide 2. Thus D is the a. ¢. M.
required.

111. TIn the same manner as it is shewn in the preceding
article that /) measures 4 and B, it may be shewn that every
ewpression which divides D also measures 4 and B. And it is
shewn in the preceding article that every expression which mea-
sures 4 and B divides D. Thus every measure of 4 and B
divides their . c. M.; and every divisor of their . c. M. measures
A4 and B.
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112. Example: find the 6. ¢. M. of
o +5c+4 and o+ 4a® + S+ 2.
o' +be+4)a’ +4a’ +5x+2 (-1
2® 4 5a® + 4o
-+ ®+2
—a*—br—4
6x + 6

Bio s 8L B e (”—é+%
4+ 2z
4x+4
4+ 4

This example introduces a new pbint for consideration. The
last divisor here is 6x+ 6; this, according to the rule, must be
the G. c. M. required. We see from the above process that when
@'+ 5z +4 is divided by 6z+6 the quotient is ’—g+ %ﬁ. If the
other given expression, namely *+4a®+5z+2, be divided by

2

62 + 6, it will be found that the quotient is % + ; +3-
at first appear to the student that 6z + 6 cannot be a measure
of the two given expressions, since the so-called quotients really
contain fractions. But we see that in these quotients the letter
of reference  does not appear in the denominator of any fraction
although the coeflicients of the powers of « are fractions. Such

k o 2 o8 il
expressions as & + 3 and T3ty
integral expressions so far as relates to x.

It may

therefore, may be said to be

Thus, in the example, when we say that 6z + 6 is the c.c. M.
of the two given expressions, we merely mean that no measure
can be found which contains Aigher powers of a than 6x + 6.
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Other measures may be found which differ from this so far as
respects numerical coefficients only. Thus 3z + 3 and 2z +2 will
be found to be measures; these are respectively the kalf and the
third of 6z + 6, and the corresponding quotients when we divide
the given expressions by these measures will be respectively fwice
and three times what they were before. Again, x+1 is also a
measure, and the corresponding quotients are = + 4 and o+ 3+ 2;
we may then conveniently take x+ 1 as the greatest common mea-
sure, since the quotients are free from fractional coefficients.

113. 1In order to avoid fractional coefficients in the quotients
it is usual in performing the operations for finding the ¢. c. . to
reject certain factors which do not form part of the . c. M. required.
The process may be conducted thus:

B) A(p C')B (g
pB ; ¢’
C'=m(C’ suppose, D =nD'’ suppose,
D)C (»
ry
0 suppose,

where meither m nmor n has a factor common to A and B. Then
D’ shall be the @. c. M. of 4 and B.

‘We have the following results:
A=pB+C=pB+mC’'y; B=qC'+D=qC" +nD'; C'=rD.

‘We shall first shew that 0 is @ measure of 4 and B.
D' divides (', therefore it divides ¢C’+nD' (Art. 109); that is,
I divides B. Again, since D’ divides B and (", it divides pB+m(’;
that is, D’ divides 4. Hence D' is @ measure of 4 and B.

‘We shall next shew that D’ is the greatest common measure
of 4 and B. By Art. 109, every measure of 4 and B divides
A —pB, that is, C, that is, mC'""; but m has no factor which is com-
mon to 4 and B; thus every measure of 4 and B divides (', and
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therefore is a measure of B and €. Similarly, every measure of B
and C’ is a measure of ¢’ and 2. Thus every measure of 4 and
B divides 7. But no expression higher than 2’ can divide D".
Thus 2 is the ¢. c¢. M. required.

114. A factor of a certain kind may also be wnéroduced at
any stage of the process. Thus,

B)A(p
pB
c

C) B (q
qC
D

D )Gt
rD

0 suppose.
Then D shall be the 6. c. M. of 4 and Z.
‘We have the following results:
A=pB+C; B or mB=qC +D; C’ or nC'=1rD.

Now let mB =B, where m has no factor
which C has.

Let nC' =C’, where » has no factor which
D has.

We shall first shew that D is @ measure of 4 and B. D
divides C’, that is, »(C'; but no factor of D is contained in n, so
that D divides C'; therefore D divides ¢C + D, that is, B” or mB.
Then, as before, 1) divides B, and therefore pB + C, that is, 4.
Hence D is @ measure of 4 and B.

‘We shall next shew that D is the greatest common measure of
4 and B. By Art. 109, every measure of 4 and B divides 4—pB,
that is, €, and therefore is a measure of B and ('; and every
measure of B and (' divides mB — ¢C, that is, D. Thus every
measure of 4 and B divides D. But no expression higher than D
can divide 2. Thus D is the . c. M. required.

115. By means of such modifications of the process for find-
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may avoid the introduction of fractional coefficients. The follow-
ing example will guide the student. Required the . c. m. of

3a°— 102 + 152 + 8 and «°— 2z* — 62° + 42° + 132 + 6.

2’ — 2o — 6a° + 42’ + 13z + 6 ) 32°— 102"+ 152+ 8 (3
3x® — 62* — 182° + 122° + 392 + 18

6z + 8x°—12a°— 242 —10

Before proceeding to the next division we may strike out the
factor 2 from every term of the new divisor, and multiply every
term of the new dividend by 3. Then continue the operation
thus:

3a'+ 42’ — 62° 120 -5 ) 3’ — 6a'—182° +122° + 392+ 18 (=
3’ + 4at— 62°— 122" — b

—10z* — 12a° + 242° + 44 + 18
Remove the factor 2 from every term of the last expression,
and then multiply every term by 3. Thus we have
—~15z* — 18a° + 36a° + 66 + 27.

Proceed with the division
3zt + 4a® — 62" — 122 — 5 ) — 152" — 18a° + 362° + 66z + 27 (-5
— 152" — 202° + 30a® + 60z + 25

22° + 62° + 6x + 2

Remove the factor 2 and then continue the operation thus:
@+ 3 +3x+1) 3t + 42’ — 62°—122~5 (3x-5
3zt + 92+ 9a° + 3w

— 5a* — 16— 162 — 6
— ba®— 152 -~ 16— 5

Thus «"+ 3a*+ 3z +1 is the @ c M. required.
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116. Suppose the original expressions 4 and B to contain a
common factor #, which is obvious on inspection; let 4 =a/#', and
B=bF. Then F will be a factor of the c. c. . For in the process
of Art. 110, if # divide 4 and B, it may be shewn successively
that it divides C' and D; that is, # is a factor of the ¢.c.m. We
may then find the 6. c. M. of @ and b, and multiply it by #, and the
product will be the . c. ». of 4 and B.

117. Similarly, if at any stage of the operation we perceive
that a certain factor is common to the dividend and divisor, we
may strike it out, and continue the operation with the remaining
factors. The factor omitted must then be multiplied by the last
divisor which is obtained by continuing the operation, and the
product will be the required G. c. .

118. Suppose, for example, that we require the c.c.M. of
(x—1) (x—2)(z—3) and (x—1)’(z—4) (x—5). Here the factor
(z—1)* is common to both the proposed expressions, and is there-
fore a factor of the ¢.c.Mm.  Moreover in this example (—1)* forms
the entire c.c.M.; for no common measure can be found, except
unity, of (z—2)(z—3) and (#—1)(x—4)(z—5) which are the
remaining factors of the proposed expressions. The last statement
can be verified by trial, but when the student is acquainted with
the theory of the resolution of algebraical expressions into factors
it will be obvious on inspection.

119. Next suppose we require the G. ¢. M. of three algebraical
expressions 4, B, C. Find the c. c. M. of two of them, say 4 and
Bj; let D denote this @.c. M. ; then the G.c.M. of D and C is the
required 6. ¢. M. of 4, B and C.

For by Art. 111 every measure of D and C is a measure of
4, B and C; and also every measure of 4, B and C is a measure
of Dand . Thus the G.c.Mm of D and Cis the c.c.am of 4, B
and C.

120. In a similar manner we may find the c.c. M. of four
algebraical expressions. Or we may find the ¢.c.m. of two of

ToA, 4
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the given expressions and also the 6. c. M. of the other two; then
the ¢.c.x. of the two expressions thus found will be the c.c. .
of the four given expressions.

121. The definition and operations of the preceding articles of
this chapter relate to polynomial expressions. The meaning of
the term greatest common measure in the case of simple expressions
will be seen from the following example :

Required the ¢. c. M. of 432a'b*zy, 2704’62’z and 90a’ba.

We find by Arithmetic the 6.c.m. of the numerical coeffi-
cients 432, 270, and 90; it is 18. After this number we write
every letter which is common to the simple expressions, and we
give to each letter respectively the least index which it has in
the simple expressions. Thus we obtain 184w, which will divide
all the given simple expressions, and is called their greatest com-
mon measure.

EXAMPLES OF THE GREATEST COMMON MEASURE.

Find the 6. c. M. in the following examples:

1. Of 2°—3z+2 and 2°—2z—2.

2 .2+ 32"+ 4+ 12 and 2° + 4o + 42 + 3.
3 .2’ +a*+x—3 and 2+ 32° + S + 3.

4 . 2°+1 and ®+ ma®+ma+ 1.

5. ... 62°—Tax’— 204’z and 32°+ ax — 4a’.
6. ... a°—9° and 2°— 3"

7 . 32®—132 + 232 — 21 and 62®+ o' — 44x + 21.
8 .2t —32°+ 2"+ —1 and a®—a*— 2z + 2.

D

. ot =72’ + 8x® + 28x — 48 and «°— 82+ 192 —14.
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10. Of z*—a*+22°+2+ 3 and o'+ 22 —2 — 2.

11. ... 42'+92°+ 22— 2x— 4 and 3a°+ 5" — 2+ 2.

12, ... 22122+ 192°— 62 + 9 and 42’ —18x°+ 192 - 3.
13. ... 62'+2’— 2 and 42°— 62°—4x + 3.

4. ... &+ a2’—azy—y* and o'+ 22°y — &2’ + &'y - 2amy’~yt.
15. ... 22°—112*—9 and 4a°+1la*+8l.

16. ... 2a'+ 3a’z—9a%2* and 6a'z 17’2 + 14a’2’ — 3aa’,
17. ... 22°+ (2a—9)a*— (9a+ 6) & + 27 and 22°—13z +18.

18. ... a’@’— &b’y + ab’xy’— b%y® and 2a°ba’y — ab’xy®— 6%y .
19. ... 122° - 15yx + 3y* and 62°— 6ya’ + 2y°x — 24°.

20. ... 2°+ 3x'— 8’ -9z — 3 and &’ — 2z*— 62"+ 42"+ 13 + 6.
21. ... 62°—4a'—1la’— 32®— 3z—1 and 4a'+ 22— 182+ 3z — 5.

22. ... #*—ax’—a’x’—a’x— 2a* and 3x’— Tax’+ 3a’r — 2a°

VII. LEAST COMMON MULTIPLE,

122. In Arithmetic the least common multiple of two or more
whole numbers is the least number which contains each of them
exactly. The term is also used in Algebra, and its meaning in this
subject will be understood from the following definition of the least
common multiple of two or more Algebraical expressions. Let two
or more Algebraical expressions be arranged according to descend-
ing powers of some common letter; then the expression of lowest
dimensions in that letter which is divisible by each of these
expressions is their least common multiple.

4—2
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123. The letters L. c. M. will often be used for shortness
instead of the term least common multiple; the term itself is not
very appropriate for the reason already given in Art. 106.

Any expression which is divisible by another may be said to
be a multiple of it.

124. We shall now shew how to find the L. c. M. of two
Algebraical expressions. Let 4 and B denote the two expres-
sions, and D their greatest common measure. Suppose 4 =aD
and B=0bD. Then from the nature of the greatest common
measure, ¢ and b have no common factor, and therefore their
least common multiple is ab. Hence the expression of lowest
dimensions which is divisible by a0 and 6D is abD.

AB

And abD:Ab:Ba: j.

Hence we have the following rule for finding the . c. ™. of
two Algebraical expressions: find their 6. c. M. ; divide either ex-
pression by this G. c. »., and multiply the quotient by the other

expression. Or thus:—divide the product of the expressions by
their a. ¢. M.

125. If M be the least common multiple of 4 and B, it is

obvious that every multiple of A is a common multiple of 4
and B.

126. Every common multiple of two Algebraical expressions is
a multiple of their least common multiple.

Let 4 and B denote the two expressions, M their L. ¢. M. ; and
let' N denote any other common multiple. Suppose, if possible,
that when & is divided by M there is a remainder 22; let ¢ denote
the quotient. Thus N =qM + R; therefore R=N —qM. Now A
and B measure M and &, and therefore (Art. 109) they measure
R. But R is of lower dimensions than A/ ; thus there is a common
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LEAST COMMON MULTIPLE. 83

multiple of 4 and B of lower dimensions than their L. ¢. M. This
is absurd; hence there can be no remainder R; that is, NV is a
multiple of 3.

127. Next suppose we require the L. c. 3. of three Algebraical
expressions 4, B, . Find the L. c. M. of two of them, say 4 and
B; let M denote this L. ¢. 3. ; then the L. c. M. of M and C is
the required L. ¢. M. of 4, B and C.

For every common multiple of 4/ and (' is a common multiple
of 4, B and C (Art. 125). And every common multiple of 4
and B is a multiple of M (Art. 126); thus every common multi-
ple of 4, B and (' is a common multiple of M and ¢. Therefore
the L. ¢. M. of M and C is the 1. ¢. M. of 4, B and C.

128. By resolving Algebraical expressions into their compo-
nent factors, we may sometimes facilitate the process of determin-
ing their . c. . or L c¢. M. For example, required the L. c. M. of
«*—a* and 2’ —a’. Since

@' —a’=(x—a)(z+a) and 2° - @’ = (x — a) (2 + az + @°),

we infer that —a is the . c. M. of the two expressions; con-
sequently their L. c. M. is (x +a) (@’ — o”), that is,

'+ ax’® - a’x — a’.

129. The preceding articles of this chapter relate to polyno-
mial expressions. The mecaning of the term least common mul-
tiple in the case of simple expressions will be seen from the
following example. Required the L. c. a. of 432a*b%xy, 2704’
and 90a’2’. We find by Arithmetic the L. c. M. of the numeri-
cal coefficients 432, 270 and 90; it is 2160. After this number
we write every letter which occurs in the simple expressions, and
we give to each letter respectively the greatest index which it has
in the simple expressions. Thus we obtain 2160a'6°2’y2, which is
divisible by all the given simple expressions, and is called their
least common multiple.
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EXAMPLES OF THE L.C.M.

CHAPTER VII.

130. The theories of the greatest common measure and of the
least common multiple are not necessary for the subsequent chap-
ters of the present work, and any difficulties which the student
may find in them may be postponed until he has read the theory

of equations.

The examples however attached to the preceding

chapter and to the present chapter should be carefully worked, on
‘account of the exercise which they afford in all the fundamental

processes of Algebra.

oY

10.

11,

12.

S ook oo

EXAMPLES OF THE LEAST COMMON MULTIPLE.

Find the
Find the
Find the
Find the
Find the

L.

Find the 1.

Find the

Find the

Find the
Find the

Find the

L.

c. M of 6x°—x—1 and 2z°+ 3z — 2.

. C.

Q

Q

g 8 & @

o @
B

M.

. of 2®—1 and 2°+x— 2.

M.
M.
M
M.

of 3x°— 5+ 2 and 4a®— 42" — 2+ 1.

of 2*—92°+23x—15 and 2*— 8z + 7.

.of (+1)(2—1) and 2°—1.
. of & + 22y — 2y’ — 2y° and

o — 2’y —xy’ + 2y°.

. of 2e—1, 42°—1 and 42°+ 1.

. of ®—a, 2°—1 and 2°+1.

M. of 2°— 4a®, (z +2a)° and (x - 2a)"

M. of &*—6z*+11z— 6, a°—9a’+ 262 — 24

and o — 8x° + 192 —12.
of &°—4a°, &+ 2ax + 4o’z + 8¢’ and
2* — 2aa® + 4a’x — 8a’.

Find the L. c. a. of
@’ —(a+b)x+ab, a*— (b+c)w+be, and &'~ (¢ +a)x+ca.
13. Required the L. c. M. of

22"+ (2a — 3b)&*— (2b° + 3ab) x + 3b* and 22° — (3b — 2¢) x — 3be.

14. Required the . ¢. M. of
6(a’—0") (@—b), 9(a*-0")(a—0)" and 12 (a*-0)
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VIII. FRACTIONS.

131. We propose to recall to the student’s attention some
propositions respecting fractions which he has already found in
Arithmetic, and then to shew that these propositions hold uni-
versally in Algebra. In the following articles the letters repre-
sent whole numbers, unless it is stated otherwise.

132. By the expression g we indicate that a unit has been

divided into b equal parts, and that @ of such parts are taken. Here

Z— is called a fraction; @ is the numerator and b the denominator,
so that the denominator indicates into how many parts the unit is
to be divided, and the numerator indicates how many of those

parts are to be taken.

Every integer may be considered as a fraction with unity for

its denominator; that is, p:ll—) 3

133.  To multiply a fraction by an integer we multiply the
numerator by that integer, and to divide a fraction by an integer we
divide the numerator by that integer.

Let = denote any fraction, and ¢ any integer; then will

b

Zx c:%—c. For in each of the fractions Z-, and ff’ the unit is
divided into b equal parts; and ¢ times as many parts are
taken in the latter fraction as in the former; hence the latter
fraction is ¢ times the former. This proves the rule for multipli-
cation.

ac

In a similar manner we may shew that b

+c=%’, and thus

prove the rule for division.
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56 FRACTIONS.

134. Or we may use the following rules:—7 divide a frac-
tion by an integer multiply the denominator by that integer, and to
multiply a fraction by an integer divide the denominator by that
integer.

Let g’ denote any fraction, and ¢ any integer; then will
R ¥ ioms .
ot For-in each of the fractions b and Be’ the same

number of parts is taken; but each part in the latter is %th of

each part in the former, since in the latter the unit is divided into
c times as many parts as in the former; hence the latter fraction

is %th of the former. This proves the rule for division.

In a similar manner we may shew that Z xe=+, and thus

a
be b
prove the rule for multiplication.

135. 1If any quantity be both multiplied and divided by the
same number its value is not altered. Hence if the numerator
and denominator of a fraction be multiplied by the same number
the value of the fraction is not altered. For the fraction is
multiplied by any number by multiplying its numerator by that
number, and is divided by the same number by multiplying its
denominator by that number. (Arts. 133 and 134.) Thus
g: gg. And so also if the numerator and denominator of a
fraction be divided by the same number the value of the fraction

is not altered.

136. Hence, an Algebraical fraction may be reduced to an-
other of equal value by dividing both numerator and denominator
by any common measure; when both numerator and denominator
are divided by their.@. c. M. the fraction is said to be reduced to s

6a® — T — 20

dowest terms. For example, consider the fraction e g ooy
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Here the 6. ¢. M. of the numerator and denominator will be found
to be 2z —5; hence, dividing both numerator and denominator by
this we obtain

62'—Tx—-20  3x+4

42— Tx +5 2°+b6x—1"

137. Since gz——_—z (Art. 94) it is obvious that we may

change the signs of the numerator and denominator of a fraction
without altering the value of the fraction.

138. To reduce fractions to a common denominator :—multi-
ply the numerator of each fraction by all the denominators except
its own for the numerator corresponding to that fraction, and mul-
tiply all the denomanators together for the common denominator.

Thus, suppose %, %l’ and ; to be the proposed fractions ; then,

a_adf ¢ clgf e_ebd_ R adf cbf
"3 bdf? d bdf ® j‘zﬂf’ bdf’ bdf’

Z%i.are fractions of the same value respectively as the proposed

by Art. 135 and

fractions, and having the common denominator bdf.

139. If the denominators have any factors in common, we
may proceed thus:—find the L.c.M. of the denominators and use
this as the common denominator; then for the new nwmerator cor-
responding to each of the proposed fractions, multiply the numerator
of that fraction by the quotient which s obtained by dividing the
L. C. M. by the denominator of that fraction.

Thus suppose, for example, that the proposed fractions are

— nd —. Here the L. ¢. M. of the denominators is mayz;
ma’ my’
and 2 W% b baz a.nd-c~= oy

mz mayz’ my  mayz’ mz  MaYz

140. To add or subtract fractions,—reduce them to a common
denomanator, then add or subtract the mwmerators and retain the
comimon denominator,
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For example, g+-§- =2 ;. - ; this follows immediately from the
meaning of a fraction.
o B0 ad cb ad+ch
°27d78d e d” ba ’

__l_~ 1_a—b+a+b_2a_
D i D, s hE g R et LIRS 2

B e
a+b a-b 2(a-—b’) (a+b)” (a-0)°
b e R A o g, S0 S
9a° — 20 + a® + 2ab + b° + a® — 2ab + b®
i e
4a®
“ai_p’
a_¢_a—c
R i

S

¢ ad bc ad-—bc,
R A T T
a c+d _a(c—d) b(c+d) ac—ad—(be+bd)

b c—d b(c—d) ble—d) = b-d)
_ac—ad—bc—bd
& b(c—d) 4
a+b a-b (a+b)2 (a— by (a,+b)2—(a b)*
o B bl Al B b @bt
: @'+ 2ab+ b — (a° — 2ab + b%)
o iy
_ @’ +2ab+b'—a’+2ab- 0" 4ab
N R gy

141. The rule for the multiplication of two fractions is,—
multiply the numerators for a new numerator, and the denomina-
tors for a new denominator.
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a [

'b' and a be
v

b

The following is usually given for a proof. Let

two fractions which are to be multiplied together; put - =2, and

c
=¥ therefore P
therefore ac= bdwy;

divide by bd; thus ‘Z—;::z:y.

This process is satisfactory when « and y are really integers,
though under a fractional form, because then the word multiplica-
tion has its common meaning. It is also satisfactory when one of
the two, z and ¥, is an integer, because we can speak of multiplying
a fraction by an integer, as in Art. 133. But when both « and y
are fractions we cannot speak of multiplying them together with-
out defining what we mean by the term multiplication, for, ac-
cording to the ordinary meaning of this term, the multiplier must
be a whole number.

In fact the so-called rule for the multiplication of fractions is
really a definition of what we find it convenient to understand by
the multiplication of fractions. And this definition is so chosen
that when one of the fractions we wish to multiply is an integer
in a fractional form, or when both are such, the result of the
definition coincides with the consequences drawn from the ordi-
nary use of the word multiplication.

142. The following verbal definitions may shew more clearly
the connexion between the meaning of the word multiplication
when applied to integers, and its meaning when applied to frac-
tions. When we multiply one integer a by another b, we may
describe the operation thus': what we did with wnity to obtain b
we must now do with a to obtain b times a. To obtain b from
unity the unit is repeated b times; therefore to obtain b times a
the number a is repeated b times. Now let it be required to

@

multiply the fraction A by % ; adopting the same definition as
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above, we may say that, what we did with unity to obtain % we

oy & . . . .
must now do with 5 to obtain S times 2. To obtain & from unity

d b d
the unit is divided into d equal parts, and ¢ of such parts are taken ;

therefore, to obtain 5—5 times %, the fraction g is divided into d

equal parts, and ¢ such parts are taken. Now, by Art. 134, if u

b
and if ¢ such parts

be
ol

divided into d equal parts, each of them is v’

be taken the result is %ac—l .

The definition then of multiplication may be given thus; to
obtain the product of the multiplier and multiplicand we treat the
multiplicand in the same way as unity was treated to obtain the
multiplier.

143. To multiply three or more fractions together,—multiply
all the numerators for the new numerator, and all the denominators
Jfor the new denominator.

c
7
nature of division, we have to find a quantity such that if it be

144. Suppose we have to divide %by Here, by the

multiplied b 4 the product shall be 0_". This is the meaning of
P Y 3 P 2 g

division applied to integers, and we shall give the same meaning
to division applied to fractions, an operation which hitherto has
not been defined.

@ ¢ i a c ‘ad
Let T a=% then F=ExXg= g therefore - = and

(Z—Zl: . Thus we obtain the rule for dividing one fraction by

another; nvert the divisor, and proceed as in multiplication.

145. Hitherto we have supposed, in the present chapter, that
the letters represented whole numbers; and have thus only recalled
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rules and proofs which are familiar to the student in Arithmetic.
But in virtue of our extended definitions it may be proved that all
the rules and formul® given are true when the letters denote any

numbers whole or jfractional. Take, for example, the formula
§= %(ci’ and suppose we wish to shew that this is true when

a:z.ll, b:g’ and c:z‘-,
(G q 8
D2 L X_Zzﬂ;

also ac=m, and bc=p_r
V17 q

thus 30 o o

bc ms g8 ms  pr mspr mp

Thus the formula is shewn to be true.

146. Moreover these formule and rules hold when the letters

denote negative quantities by virtue of the remarks already made
in Chapter v.

147. By means of the foregoing rules and formule we can
simplify Algebraical fractions, in which the numerator and de-
nominator are themselves fractional expressions. For example,

a b a(a+0b)+b*

3Ya+d b(@+rbh) d+ab+b  ala-b) _a(a®—bY)
a b a-bla-b) b(ath) a—ab+b b@+0)’

a0 & a(a—0b)

EXAMPLES OF FRACTIONS.

Simplify the following fractions:

2 — 62 +11x—6 9 a® + 3a’b + 3ab® + b*
h -3z +2 : a®+ 2ab + b°

at +102° + 35a{'_+ 50x + 24 3a® —16x* + 232 — 6
IR Py = e T T M ' WPl + 1o 6"
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5 62 — 5% + 4 6 22° 4+ 92* + T — 3
D R IR 3+ 5 — 15z +4°
7 32°+ 122+ 9 8 2®— 62° — 37z + 210
AP T R ' P4 472-210°
9 a*+22°+ 9 10 2+ 22° + 2
Lat—da’ 4t 9" A x° + 4o
1 Rl e K | 12 @bt —alt- b°
A T R T T L T S
13 bx + 2 14 (2+y) —o"—9y
T2+ (- 4)x — 202°° T (mry) -2t -y

(1 — 102+ 52*)(5 — 30a° + 5a*) + (5w — 102"+ «°) (20 — ‘)Ow)
(6z— 102° + 2°)* + (1 — 102" + 5z*)?

(1-a(1- b’) (l G (c +ab) (b + ca) (@ + bc)
b L Dahe

15.

16.

Perform the additions and subtractions indicated in the fol
lowing examples from 17 to 37:

a b a b
A b 4 RO T

B e

20, (l+1) (a+8)— (%9:1‘_6)

mo 7
1 1 3
o -1 z+2 (2+2)"
99 5 1 e
" 2x+1) 10(-1) 5Qx+3)" _
93 b—a a—-2b 3x(a—0b)
" @b et+h -5
2
24, 3+2x 2-_3x 16x—a

Vg Tie Wi
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3 7 420z

A% 1-22 1+2z 42’21

1 b @ 1 1 1
26, G o LR i s
a+b+a”—b" a’+b* & a:'-y’+(x+y)’ @—g)

98, @48 a b ., 99, @ .36 2a

abla—by b a a-a gin doR
30, 3a—4b_2a—b—c+l5a—4c_w
7 3 12 Dl
31 a+b 2 b+ec & c+a
—9C—a) 0@ @59
39, a’— be P b —ca i ¢ —ab
(a+b)(@+c) (b+ec)(b+a) (c+a)(c+b)”
33 o —bo A b +ca 2 ¢ +ab
" (a-b)(a—c) (b+c)(b—a) (c—a)(c+d)
34. NS, (RN L
D@ @ HF-9" 0-9 63
35. . + L + ! :
a(@—0b)(a—c) bb—c)(b—a) c(c—a)(c—b)
a—bl 'b=cue—a e 0N(6—e)leca
. m+m+c—+a §a+b;((b+c;(c+a;'
2 2 a—0b)+(b—c)®+ (c—a)’
3, a‘—_b+5—~c+c— +( (a,> b)((b—c))(cia) )

: a—b)? b
38. Multiply (b+a,> by Py 2y 4

3

N 5 T -y
39. Multiply p +;§ by Py e

f_a® Bo+td c—x
40. Multiply together 2:—;, a,T__w_ —f—+—x and —.

c_at’ a'+ax a—

41. Prove that
bc“ca’ab "Ef)(fll)
(a*‘z)*(a*z)*(b a) 4*( b)(c+a 57a)
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1-2° 1-4° x
42. Multiply together i e and 1+ Tt
1 @ (a—x) a(a+x)
43. Multiply ps . p g d P B
a‘ - a—-b

44, Sunphfy w1 e AR g

1 2
45. Simplify (z t"j b :—i:ij Sl y) ”—Jg‘l—y :

-0 a+bd (a’—ab+Db%\*
G <a2+ab+b“>'

46. Slmphfy

47. Mulmply—-——+1 by ,,+ 7% 4

48. Multiply a’—x+1 by 12+ 1+1

92a® + 13a*x — 15ax® — 1262° 24° + 19’z + 35ax*

4% Binpliy a’x + b6ax® — Ta’ e P P

Ly aw—a x’
50. Divide @vo) by e B

4

. ... 4(a®—abd) 6ab
51. Divide w A (;gjl;g-
59, Divids bt by Y.

'+ y y+x
2 2 2

56 Divde ohb o ProB L, Y

m+y z—y a'-y -y

Sl Lz ol e e T |
54. Simplify (53 +a—0)-,- <:;/_2 = +5>
b a b
i Slmphfy( oy b> <a-b‘¢i+_b>'

56.. Simplify (;2;/ j) - ”Eiy%’/_g_c.%)
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57.

59,

60.

61.

62.

63.

64.

66.

67.

68.

69.

EXAMPLES OF FRACTIONS. CHAPTER VIII.
1 1
fomalii i
Divide iy by Tt
al i 1!
Divide o*+—+2 by z+-.
x x
P 1 1l
Divide 2*+1+— by =—1+a.
@ x

a+b—c¢c

Divide o’ —8°—¢*+2bc by 2
a+b+c

3 2, 2 3 2

Divide a+3aac+3:w il (a+ )

xa_y A mn_,_wy_,_ys'

a+b+e
a+b—c’

Divide a®—b*—c¢*—2bc by

124° 2a°

Divide 2°—3ax— 24° Yoo by 3z —6a—

- [ 6a® @ S
Divide —2;2—4+F by P

a+b
Simplify ::

at
b

Tczl c+d
x x
x
x

L o b
o-d
a b

ah
e +x
a+ —-x°

a—-x a+x

a —

Simplify

a
a

[
N

a—

S
c

-+

|

ol +

3abe
Ry

g

|+
Sl RSV

+

a+b a*+b\  fa—b a*-0b°
s @ ate) Grs-avp)

e il 252 BF c+b d+63
g (c +b_c+ b“) (c &
T. A. !
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66

70.

(il

73.

74.

75.

76.

148, Any collection of Algebraical symbols is called an ex-
‘When two expressions are connected by the sign of
equality the whole is called an equation.

connected are called sides of the equation, or members of the equa-
The expression to the left of the sign of equality is called

pression.

tion.

EXAMPLES OF FRACTIONS. CHAPTER VIII.

Sy +y -y . fet+y -y
g (w’—y’—w’+y’> : (oc—y_w+y>'

S 2 2 2
Simplile <a+b+a—b>_:_(a +4 a ——b>.

a5 " a b I
m’ +n® e
ik X m’—n?
Simplify 7; T X
n m
z+a x-a
Simplify m_fa_xfa—"”‘“ SRl
e+a x-a
’ T—a.; T+a
1+ ir
A R b'+c'—a’
Simplify T T {1+ e }
a b+c
Sy 17
Simplify i
z+
1 z+1
3—z
Simplify ac
b+ 5
d+-
F

IX. EQUATIONS OF THE FIRST DEGREE

the first side, and the expression to the right the second side.
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EQUATIONS OF THE FIRST DEGREE. 67

149. An identical equation is one in which the two sides are
equal whatever numbers the letters stand for; for example,

(z+0) (@-b)=a"-b°

is an identical equation. An identical equation is called briefly
an ddentity.

150. An equation of condition is one which is not true for
every value of the letters, but only for a certain number of values;
for example,

v+1=7

cannot be true unless 2 =6. An equation of condition is called
briefly an eguation.

151. A letter to which a particular value or values must be
given in order that the statement contained in an equation may
be true is called an wnknown quantity. Such particular value of
the unknown quantity is said to satisfy the equation, and is called
a 700t of the equation. To solve an equation is to find the parti-
cular value or values.

152. An equation involving one unknown quantity is said to
be of as many dimensions as is denoted by the index of the
highest power of the unknown quantity. Thus, if # denote the
unknown quantity, the equation is said to be of one dimension
when @ occurs only in the first power; such an equation is also
called a simple equation, or an equation of the first degree. If no
power of z higher than @® occur, the equation is said to be of two
dimensions; such an equation is also called a quadratic equation,
or an equation of the second degree. If mo power of x higher
than &’ occur, the equation is said to be of three dimensions;
such an equation is also called a cubic equation, or an equation of
the third degree. And so on.

It must be observed that these definitions suppose both mem-
bers of the equation to be integral expressions so far as relates to x.
) 5—2
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68 EQUATIONS OF THE FIRST DEGREE.

153. We shall now indicate some operations which may be
performed on an equation without destroying the equality which
it expresses. It will be seen afterwards that these operations are
useful when we have to solve equations.

154. If every term on each side of an equation be multiplied
or divided by the same quantity the results are equal. This follows
from Art. 100.

155. The principal use of the preceding article is to clear an
equation of fractions; this is effected by multiplying every term
by the product of all the denominators of the fractions, or, if we
please, by the least common multiple of those denominators.
Suppose, for example,

xrx xx X

Multiply every term by 2 x 3 x 4; thus,
Sxdxx+2x4x2+2x3xx=13x2x3x4;
that is, 122 + 8z + 62 = 312.
Divide every term by 2; thus,
 6x+4x+ 3x = 156.
Instead of multiplying every term by 2 x 3 x 4 we may multi-
ply by 12, which is the L.c. . of 2, 3 and 4. Thus we obtain

at once
6z + 4 + 3x=156.

156. Any quantity may be transposed from one side of an
equation to the other side by changing its sign.

Thus suppose x—a=b-y.

Add a to each side (Art. 98); then

c—a+a=b-y+a,

that i, z=b+a—y.

Now subtract b from each side; thus,

x-b=bt+a-y-b=a-y.
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Here we see that —a has been removed from one side of the
equation, and appears as +a on the other side; and +& has been
removed from one side and appears as —b on the other side.

157.  If the sign of every term in an equation be changed the
equality still holds.

This follows from the preceding article by transposing every
term. Thus suppose

z—a=b-y.
By transposition, y—b=a-u,
that is, a—x=y-b;

this result is what we shall obtain if we change the sign of every
term in the original equation.

158. 'We can now give a rule for the solution of any simple
equation with one unknown quantity.

Let the equation first be cleared of fractions ; then transpose all
the terms which involve the unknown quantity to one side of the
equation, and the known quantities to the other ; divide both sides
by the coefficient or the sum of the coeflicients of the unknown
quantity, and the value required is obtained.

The truth of the rule will be obvious from the principles of
the preceding articles, and we shall now apply it to some ex-
amples; in these examples the wnknown quantity will be de-
noted by @, and when other letters occur, they are supposed to
represent known quantities.

159.  Solve 3x—4=24—u.
By transposition, Sx+ax=24+4;
thus, 4=28;
by division, = —25 =

‘We may verify the result by putting 7 for 2 in the original
equation. The first side becomes 3 x 7 —4, that is, 21 — 4, that is,
17; the second side becomes 24 — 7, that is, 17.
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5z
160. Solve —2——-— 13__+ﬁ

Multiply by 96, which is the L. ¢. M. of the denominators;
thus, 5x48x2—4x32xx—-13x96=5x12+ 3x;

that is, 2402 — 1282 — 1248 =60 + 3z ;

by transposition, 2402 — 1282 — 3x=1248 + 60;

thus, 1092 =1308;
oo 1308

by division, ®=J55 = 12.

‘We may verify the result by putting 12 for z in the original
equation; it will be found that each side of the equation then

becomes 1.

161. Sometimes it is convenient to clear of fractions par-
tially, and then to effect some reductions before getting rid of the

remaining fractional coefficients. For example, solve
z+7 22-16 2w+5_5 +3a:+7
N gl ¢ o BT
Here we may conveniently multiply by 12 ; thus,
12(z+7)
11

—4(22-16)+3 (22 +5)=16x4+3x+7;
i ﬂ%‘i) 8+ 64 + 62+ 15 =64 + 3+ 7.
By transposition and reduction,

l2(w+7)
s | A + 8 =ba.

Multiply by 11; thus,
122 + 84 + 88 = 55x;

by transposition, 172 =43x;
172
by division, x= T73_ =4.
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_SRioh
+1 bx—8'
Multiply by (2z + 1) (52— 8); thus,
5(bzx—8)=2(2w+1);
that is, 250 —-40=4x+2;

162. Solve

by transposition, 2lx=42;

42

by division, T=g7= 2.

2x—3 _4x—5
3x—4  Gu-T

Multiply by (32— 4) (6z—T); thus,
(2% —3) (6 —T)= (4 —5) (3x—4);
that is, 122° — 322 + 21 = 122* — 31 + 20.

163. Solve

Take away 122 from both sides; thus,
21 — 322 =20 - 31x;

by transposition, 21 - 20 =322z 31z;
thus, o= 13
@ Doy 5l
164. Solve 74_—4:?_6'

Multiply by 12; thus,
3x— 48 =202 -14;

by transposition, 172 =—34;
e 34
by division, r=— e 2.

We may verify this result; each side of the equation will be

found to become — % .
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165. Solve az+b=cx+d.

By transposition, ax—cr=d-b;

that is, (a—c)x=d—1b;
ALk d—b

by division, Bt

Verification; put this va.lue for # in the original equation;

then the first side becomes 2\~ = b) ———~ 4. b, that is (d b) b(a=c) {
= a—c
that is, ad:bc. And the second side becomes ¢(z 2% +d, that
is,c(d b) d(a ) thts,da b'
a—c —c

166. We may remark that an equation of the first degree
cannot have more than one root. For any equation of the first
degree will take the form ax =0 if the unknown quantity is
brought to one side of the equation, and the known quantities to
the other. Suppose then, if possible, that this equation has two
different roots a and 3; then by supposition,

aa=b, aB=b;
therefore, by subtraction,
a(a—pB)=0;
but this is impossible, since by supposition a —f is not zero, and

a is not zero. Thus an equatlon of the first degree cannot have
more than one root.

EXAMPLES OF EQUATIONS OF THE FIRST DEGREE.

20+1 Ta+b

x x ®
1. 2 = 8 . 2. §—2=Z+5—1-
3 :;+l+3w—4+1_6w+7
{Ise 5 8758
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4 5x-11_m—1_}lm—1

4 4 10T g

w+x x_l

DR e i
T2—-8 15z+8 S o

7t i + 13 i 1 5"
@S ik 41+3m 8 5x+6
(AR 6' % 60 RGeS

x+ 2 x+3

z+1
6- T+T=l6—T.

10. A - — ) e

1. 20 2T
1
13. Z(8-a)+w-1§="07"—

W g T
Bz =1 13~x_7w 11 (z + 3)
ORI e T ik
5:7539:1:5.2:19

e L B 6( ~4)

7 5x—l+9x—5_9m—7
I | RS

3x+5 2x+7

7 3

z bx+8 2x-9 19-2¢ 2z-11
R e i 20. 2z- i

Brd (o212 T (120

15.

18.

3z
+10——5—=0.

19.

21.
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z+1 S-—a x+ 2 11-a' 26—
3z—11 28-9z 3
25. ——4—‘———8—-—4$—14I.
2% 2w—1_3x—2_5x—4 Tx+6
R G T I [
2w0—-9 x x-—-3
7. 77—+1—8——T=8é—w
Se—7 25—4x bx—14
28. 5 + B e
29. 19m+%(7x—2):4x+~32—5.

il 1
30. a:=3:z;-—§(4—x)+§.

20+5 40— 10x—427

b Woir N

32.

33.

34.

IR i v B <

' 36. (x—5)(x—2)— (x—5) 2x—5)+(x+T)(x—2)=0.
37. 3-2-2(-1)(z+2)=(x—3) (5 -2)
38. z—3-B3-2)(x+1)=(@-3)(1+2)+3—=

x+10 3 _4)+(3z-2)6(2zf3) Lk

39. g (B

1

<

5

10 (+3)(a-3) - @+D)E-9+3-0.

=4

www.rcin.org.pl



EXAMPLES OF EQUATIONS OF THE FIRST DEGREE.

41.

e

43.

45.

46.

47.

48.

49.

50.

51.

52.

54.

55.

56.

57.

58.

(—g><w+3> (o= 5) (e +3)- 2 =0.
doi5 So-7 365415 10}

M Ters 8 TR

6x+7 20—-2 2x+1 m 6r+1 2x-—4

CRIIX. %D

22 -1

15 -6 8 " i R T T

_4__’_ 71 BT

z+2 x+3 2°+5x+6"
(x+1)={6—-(1-a)}zx—2.
1w ke LG
2—2 wm—4 . 28
R
2586 Ye—3 T gnel

25-4r 160+43 _ 23
z+1 3L 2 ]

He- 93D+ 1)

(a+2z) (b+x)=(c+x)(d+=z).

1
MOSRIET T

+5.

Il
=

x X a

E+17——ft=m' 53. ax+b=

O"li—l

QIS

b C @ abe

a+b a b

z—a x-b x—c x—(a+b+c)
+— "t

x—¢c x—a ®—0"
2
(a+x)(b+x)—a(b+c)=?+ac’.

3abe  a’b® +(2a+b)b’ gy a:+b~x
a+tb T@rby  a(a+by

% —Q 3_.'1:—‘7(1—6
(a:+b Tx+a+2b°
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59. 1562 +1-575 — -875x = 0625z.

60. 122- 18200y, g,
6. 48— 2220 165,80,

X. PROBLEMS WHICH LEAD TO SIMPLE EQUA-
TIONS WITH ONE UNKNOWN QUANTITY.

167. We shall now apply the methods already given to the
solution of some problems, and thus exhibit to the student speci-
mens of the use of Algebra. In a problem certain quantities are
given, and certain others, which have some assigned relations to
them, are to be found. The relations are usually expressed in
ordinary language in the enunciation of the problem, and the
method of solving the problem may be thus described in general
terms :—denote the unknown quantity or quantities by letters, and
express in Algebraical language the relations which hold between
the unknown quantities and the given quantities; we shall thus
obtain equations from which the values of the wnknown quantities
may be derived.

‘We shall now give some examples.

168. The sum of two numbers is 89 and their difference
is 31; find the numbers. 3

Let  denote the less number, then 'the greater number is
31 + z; thus since their sum is 89, we have

3l +a+a=289,
that is, 31+ 22=89;
by transposition, 22 =89 —-31=158;
by division, D= 5—; =29,

Thus the less number is 29, and the greater is 29 + 31, that
is, 60.
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PROBLEMS WHICH LEAD TO SIMPLE EQUATIONS. (i

169. A bankrupt owes B twice as much as he owes 4, and
(' as much as he owes 4 and B together ; out of £300 which is to
be divided among them, what should each receive ?

Let 2 denote the number of pounds which 4 should receive ;
then 2z is what B should receive; and z + 2w, that is 3z, is what
(' should receive. The whole sum they receive is £300; thus,

z+ 22+ 3x = 300;

that is, 6x =300 ;
i s 32—0 -0

therefore 4 should receive £50, B £100, and C' £150.

170. Divide a line 21 inches long into two parts, such that
one may be three-fourths of the other.

Let « denote the length of one part in inches, then % denotes
the length of the other part; thus,

3z

s vy 21;
clear of fractions; thus,
4o+ 3w =84;
that is, Ta=84;
therefore, o= —87% =12

Thus one part is 12 inches long and the other 9 inches.

171. If 4 can perform a piece of work in 8 days, and B in
10 days, in what time will they perform it together ?

Let @ denote the number of days required. In one day 4 can

perform —é— th of the work, therefore in « days he can perform gths

of the work. In one day B can perform %)th of the work, there-
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78 PROBLEMS WHICH LEAD TO SIMPLE EQUATIONS

fore in 2 days he can perform 2 ths of the work. Hence since

10

4 and B together perform the whole work in z days, we have

S

T S
clear of fractions by multiplying by 40 ; thus,

S + 4x = 40,

that is, 92 =40 ;
therefore, @= %O = 4%,

172. A workman was employed for 60 days, on condition
that for every day he worked he should receive 15 pence, and for
every day he was absent he should forfeit 5 pence; at the end of
the time he had 20 shillings to receive; required the number of
days he worked.

Let « denote the number of days he worked, then he was
absent 60— days; thus 15z denotes his pay in pence, and
5(60 —x) denotes the sum he forfeited. Thus,

152 -5 (60 — ) = 240;

that is, 152 —300 + 5z = 240;
therefore, 20z = 240 + 300 = 540;

540
therefore, N roas = 27.

Thus he worked 27 days and was absent 60 —27 days, that is,
33 days.

173. How much rye at four shillings and sixpence a bushel
must be mixed with fifty bushels of wheat at six shillings a bushel,
that the mixture may be worth five shillings a bushel ?

Let 2 denote the number of bushels required; then 9z is the
value of the rye in sixpences, and 600 is the value of the wheat.
The value of the mixture is 10 (50 + ). Thus,

10 (50 + =) = 92 + 600 ;
that is, 10z + 500 = 9z + 600 ;
and a =100,
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WITH ONE UNKENOWN QUANTITY. 79

174. A smuggler had a quantity of brandy which he expected
would produce £9. 18s.; after he had sold 10 gallons a revenue
officer seized one-third of the remainder, in consequence of which

he makes only £8. 2s.; required the number of gallons he had
and the price per gallon.

Let 2 denote the number of gallons; then %—8 is the value

of a gallon in shillings. The quantity seized is :E«_?)l) , and the
value of this is :13;319 X L ; thus,
210 ;198 Logs 1N a iE

3 x
Multiply by 3z; thus,

198 (z—10)=3x x 36 = 108 ;
therefore, 1982 — 108x=1980 ;
that is, 90x = 1980,

1980

and X= ——gb—— =22.

Thus 22 is the number of gallons, and the price of each is

—122; shillings, that is, 9 shillings.

175. The student may now exercise himself in the solution
of the following problems. We may remark that in these cases
the only difficulty consists in translating ordinary wverbal state-
ments into Algebraical language, and the student should not be
discouraged if at first he is sometimes a little perplexed, since

nothing but practice can give him readiness and certainty in
this process.
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EXAMPLES OF PROBLEMS.

1. "The property of two persons amounts to £3870, and one
of them is twice as rich as the other; what is the property of
each ?

2. Divide £420 among two persons so that for every shilling
one receives the other may receive half-a-crown.

3. How much money is there in a purse when the fourth
part and the fifth part together amount to £2. 5s. ?

4. After paying the seventh part of a bill and the fifth part,
£92 is still due; what was the amount of the bill ?

5. Divide 46 into two parts, such that if one part be di-
vided by 7 and the other by 3, the sum of the quotients shall
be 10.

6. A company of 266 persons consists of men, women and
children ; there are four times as many men as children, and
twice as many women as children, How many of each are
there ?

7. A person expends one-third of his income in board and
lodging, one-eighth in clothing, and one-tenth in charity, and
saves £318. What is his income ?

8. Three towns, 4, B, (, raise asum of £594 ; for every pound
which B contributes, 4 contributes twelve shillings, and C seven-
teen shillings and sixpence. What does each contribute ?

9. Divide £1520 among 4, B, and C, so that B shall have
£100 more than 4, and ¢ £270 more than 5.

10. A certain sum is to be divided among A4, B, and C.
A is to have £30 less than the half, B is to have £10 less than
the third part, and (' is to have £8 more than the fourth part
‘What does each receive ?

11. The sum of two numbers is 5760, and their difference is
equal to one-third of the greatest; find them.,
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12. Two casks contain equal quantities of beer; from the
first 34 quarts are drawn, and from the second 80; the quantity
remaining in one vessel is now twice that in the other, How
much did each cask originally contain ?

13. A person bought a print at a certain price, and paid the
same price for a frame; if the frame had cost £1 less and the
print 15s. more, the price of the frame would have been only
half that of the print. Find the cost of the print.

14. Two shepherds owning a flock of sheep agree to divide
its value; 4 takes 72 sheep, and B takes 92 sheep and pays 4
£35. Required the value of a sheep.

15. A house and garden cost £850, and five times the price
of the house was equal to twelve times the price of the garden;
find the price of each.

16. One-tenth of a rod is coloured red, one-twentieth orange,
one-thirtieth yellow, one-fortieth green, one-fiftieth blue, one-
sixtieth indigo, and the remainder which is 302 inches long, violet.
‘What is its length ?

17. Two-thirds of a certain number of persons received
eighteenpence each, and one-third received half-a-crown each.

The whole sum spent was £2. 15s. How many persons were
there ?

18. 4 and B play at a game, agreeing that the loser .shall
always pay to the winner one shilling more than half the money
the loser has; they commence with equal quantities of money, but
after B has lost the first game and won the second, he has twice
as much as 4 ; how much had each at the commencement ?

19. A crew which can pull at the rate of mine miles an
hour, finds that it takes twice as long to come up a river as to go
down; at what rate does the river flow ?

20. Of a certain dynasty one-third of the kings were of the
same name, one-fourth of another, one-eighth of another, one-
twelfth of a fourth, and there were five besides, How many were
there of each name ?

6
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21. Find that number the third part of which added to its
seventh part makes 20.

22. A person who possesses £12000 employs a portion of the
money in building a house. One-third of the money which re-
mains he invests at 4 per cent., and the other two-thirds at 5 per
cent., and from these investments he obtains an income of £392.
‘What was the cost of the house ?

23. The difference of the squares of two consecutive numbers
is 15. 'What are the numbers ?

24. A farmer has oxen worth £12. 10s. each, and sheep
worth £2. 5s. each; the number of oxen and sheep being 35, and
their value £191. 10s. Find the number he had of each.

25. A and B find a purse with shillings in it. 4 takes out
two shillings and one-sixth of what remains; then B takes out
three shillings and one-sixth of what remains; and then they find
that they have taken out equal shares. How many shillings
were in the purse, and how many did each take ?

26. A hare is eighty of her own leaps before a greyhound ;
she takes three leaps for every two that he takes, but he covers
as much ground in one leap as she does in two. How many leaps
will the hare have taken before she is caught ?

27. The length of a field is twice its breadth; another field
which is 50 yards longer and 10 yards broader, contains 6800
square yards more than the former; find the size of each.

28. A vessel can be emptied by three taps; by the first alone
it could be emptied in 80 minutes, by the second in 200 minutes,
and by the third in 5 hours. In what time will it be emptied if
all the taps are opened ?

29. If an income tax of 7d. in the pound on all incomes
below £100 a year, and of 1s. in the pound on all incomes above
£100 a year realize £18750 on £500000, how much is raised
on incomes below £100 a year ?
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30. Two horses run over a mile course, the winner complet-
ing the distance in 2 minutes 54 seconds, and winning by 2
seconds. How many yards start might have been allowed to the
other without risk of losing, supposing the same rates be kept?

31. A fruiterer sold for 19s. 6d. a certain number of oranges
and apples, of which the latter exceeded the former by 180. He
sells the apples at the rate of 5 for 3d., and 15 oranges bring
him in 1}d. more than 35 apples. How many are there of each
sort?

32. A cask 4 contains 12 gallons of wine and 18 gallons of
water; and another cask B contains 9 gallons of wine and 3 gal-
lons of water; how many gallons must be drawn from each cask
80 as to produce by their mixture 7 gallons of wine and 7 gallons
of water?

33. A can dig a trench in one-half the time that B can; B
can dig it in two-thirds of the time that C can; all together they
can dig it in 6 days; find the time it would take each of them
alone.

34. A person after paying sevenpence in the pound for In-
come Tax has £408. 4s. 8d. left. 'What had he at first?

35. At what times between one o'clock and two o’clock is
there exactly one minute division between the two hands of a
clock?

36. A person has just @ hours at his disposal; how far may
he ride in a coach which travels b miles an hour, so as to return
home in time, walking back at the rate of ¢ miles an hour?

37. A certain article of consumption is subject to a duty
of 6 shillings per cwt.; in consequence of a reduction in the
duty the consumption increases one-half, but the revenue falls
one-third. Find the duty per cwt. after the reduction.

38. A ship sails with a supply of biscuit for 60 days, at a
daily allowance of 11b. a head; after being at sea 20 days she
6—2
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encounters a storm in which 5 men are washed overboard, and
damage sustained that will cause a delay of 24 days, and it is
found that each man’s allowance must be reduced to ﬁve—sevenths
of a pound. Find the original number of the crew,

XI. SIMULTANEOUS EQUATIONS OF THE FIRST
DEGREE WITH TWO UNKNOWN QUANTITIES.

176. Suppose we have an equation containing two unknown
quantities @ and y, for example bz —2y=4. For every value
which we please to ascribe to one of the unknown quantities we
can determine the corresponding value of the other, and thus
find as many pairs of values as we please which sa.tisfy the given

'1fy

equation. Thus, for example, if y=1 we find == 5

we find x:?,‘ and so on.

Also, suppose that there is another equation of the same kind,
as for example, 4z + 3y = 17. 'We can also find as many pairs of
values as we please which satisfy this equation.

 But suppose we ask for values of « and y which satisfy both
equations; we shall find then that there is only one value of
and one value of ¥, For multiply the first equation by 3; thus,

152 — 6y =12;
multiply the second equation by 2; thus,
8z + 6y = 34,
Therefore, by addition,
152 — 6y + 8z + 6y =12 + 34;
that is, 23z = 46,

.and, x=2,
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Thus if both equations are to be satisfied 2 must equal 2 ; put
this value of « in either of the two given equations; for example,
in the second equation; thus we obtain

A8 F3y=17;
therefore, 3y=17 -3,
and, Y=o

177. Two or more equations which are to be satisfied by the
same wvalues of the unknown quantities are called simultancous
equations. We are now about to treat of simultaneous equations
involving two unknown quantities where each unknown quantity
occurs only in the first degree.

178. There are three methods which are usually given for
solving these equations. The object of all these methods is the
same—namely, to obtain from the fwo given equations which
contain fwo unknown quantities a single equation containing only
one of the unknown quantities. By this process we are said to
eliminate the unknown quantity which does not appear in the
single equation.

179. First method. The first method is that which we
adopted in the example of Art. 176; it may be thus described—
multiply the equations by such numbers as will make the coefficient
of one of the unknown quantities the same in the two resulting
equations ; then by addition or subtraction we can form an equa-
tion containing only the other unknown quantity.

Example. 4o+ 3y =22; be—Ty=6.
If we wish to eliminate 4 we multiply the first equation by 7,

which is the coefficient of 7 in the second, and the second by 3,
which is the coefficient of % in the first. Thus we obtain

28w+ 21y =154; 152-21y=18.

.
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Then by addition,
28z + 152 =154 + 18;

that is, 432 =172,
and, z= %g s

Then put this value of « in either of the given equations, in
the first for example; thus,

16 + 3y =22;
therefore, 3y =6,
a.nd, =2,

If we wish to solve this example by eliminating « we multiply

the first of the given equations by 5, and the second by 4; thus,
20z + 15y =110; 20z — 28y = 24,
Then by subtraction,
202 + 15y — (20 — 28y) =110 — 24 ;

thus, 43y = 86,
and, =0

180. Second method. Express one of the unknown quantities
wn terms of the other from either equation, and substitute this value
in the other equation.

Thus, taking the same example, we have from the first

equation
4o =22 - 3y;

22-8
o 4 s
substitute this value of  in the second equation and we obtain
5(22 -

divide by 4,

multiply by 4, 5(22 - 3y)— 28y =24;
that is, . 110 - 15y — 28y =24 ;
by transposition, 43y = 86,
and, y=2.
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Then substitute this value of y in either of the given equations
and we shall obtain z = 4.

Or thus; from the first equation we have
3y =22 — 4x;
) g
divide by 3, y=.2_,3,4_“’;

substitute this value of # in the second equation and we obtain

saii 7 (223— o) _ 6;
multiply by 3, 152 -7 (22 — 4a) =18;
that is, 150 — 154 + 28z =18 ;
that is, 432 =172, 2
and, z=4.

Then substitute this value of @ in either of the given equa~
tions and we shall obtain y= 2.

181. Third method. Express the same unknown quamtity in

terms of the other from each equation and equate the expressions
thus obtained.

Thus, taking the same example, from the first equation

= i ; % , and from the second equation x= : ;7‘1/ 5

22-3y 6+7Ty

thus, i 5
clear of fractions, 5(22 —3y)=4(6+"T7y);
that is, 110 — 15y = 24 + 28y;
by transposition, 43y = 86,

and, y=2.

Hence, as before, we deduce x = 4.
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22 — 4z
3 2

Or thus; from the first equation we obtain y=

: 5z —6
and from the second equation y = -i,z— ; thus,

22—4x bS5x—6
3 LRl

Hence as before we shall obtain =4 and then deduce y=2.

EXAMPLES OF SIMULTANEOUS SIMPLE EQUATIONS WITH TWO
UNENOWN QUANTITIES.

1. 3z-2y=1, 3y—4x=1.
2. z+y=15 z—y="T.
3. 3z-5y=13, 22+ Ty = 81.
o0 % o
4, 5+6 18, 9 4—21.
Sl - f
5. 3+1 95 it5 7
r+y T-y _ x+y -y
6. —2—— —3 8, -——3 +'——'4 =11.

22 + 3y = 43, 10x—y=T1.
8. bo—Ty=33,  1lz+12y=100.

P el
9, §+3 | 3+4 I
10. 16z + 17y =500, 17x — 3y =110.
1le -5y 3z+y

11, —93 35 8z—-5y=1.
22 . %. 3a_y
12 5 _12__ Zeud z—y 1
T S
4 2
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13. 4z + 8y =24, 10-22 — 6y = 3-48.
14, 13z + 11y = 4aq, 12% — 6y = a.

15.

g A k.

16. Z+¥-1, +
i 2

17. z=4y, 5(2m+7y)—1=§(2m—6y+1)-

1 T3 Il Ty
18. x+§(3m—y—l):1+l(y—l), 5(4x+3y):»16+2.

19. ax+by=c, ma —ny =d.

3e—by , 2x+y -2y = y
20. 3 +3= i 8- ; S

S e P L Ty
A I Ea el e
99 de—3y-T7 3z 2y 5

5 1071576 }

S Syt e e el

oteE e i
23. bx+Ty=43, 11z + 9y = 69.
24. 8xz—2ly=33, 6z + 35y =177.

2 gL e iR
25. 73-——4+§+ —8——4—+12, 6—2+2_——6——2x+6

26. 3y-—Tx=4, 2y + bz = 22,
27. 21y+ 20z =165, 7y — 30z = 295.
28. 1llz—10y =14, bz +Ty=41.
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XII. SIMULTANEOUS EQUATIONS OF THE FIRST
DEGREE WITH MORE THAN TWO UNKNOWN
QUANTITIES.

182. If there be three simple equations and three unknown
quantities, deduce from two of the equations an equation con-
taining only two of the unknown quantities by the rules of the
preceding chapter ; then deduce from the third equation and
either of the former two, another equation containing the same two
unknown quantities; and from the two equations thus obtained
the unknown quantities which they involve may be found. The
third quantity may be found by substituting the above values in
any of the proposed equations.

Example, suppose,

P e N SO (1),
QBB Y= Hai = B, ) Gy b e 2),
o R R S A (3).

For convenience of reference the equations are numbered (1),
(2), and (3), and this numbering is continued as we proceed with
the solution.

Multiply (1) by 3 and (2) by 2; thus,

6x+ 9y + 122 =48,
6z +4y —102=16;

by subtraction,
IR D R R TR (4).

Multiply (1) by 5 and (3) by 2; thus,
10z + 15y + 20z = 80,
10z —-12y+ 62 =12;

by subtraction, '
DTGl = BRE .t R (5)-
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WITH MORE THAN TWO UNKNOWN QUANTITIES.

Multiply (4) by 27 and (5) by 5 ; thus,
135y + 594~ = 864,
135y + 702=340;

by subtraction, 5242=524, -
therefore, Z=1
Substitute the value of z in (4); thus,
b5y +22=32;
therefore, y=2
Substitute the values of ¥ and z in (1); thus,
2¢+6+4=16;
therefore, ' x=3.

91

The same method may be applied to any number of simple

equations.

EXAMPLES OF SIMULTANEOUS EQUATIONS OF THE FIRST DEGREE

WITH MORE THAN TWO UNEKNOWN QUANTITIES.

1. 3x+2y—42=15, bx—3y+22=28, 3y+4z—x=24.

2. z+y—z=1, 8x+3y—6z=1, 3r—-4x—y=1.

3. l+l=1, l+l=2, -1-+1=§.
z ¥ z 2z ¥y z. 2

4 4x-3y+2=9, 2c+dy—3z=4, bxr+6y—-3=18.

5. 2x— 4y+ 92=28,
Te+ 3y— bz2=3,
9z + 10y — 112 = 4.

6. x-2y+32=6,
% + 3y — 4z = 20,
3w — 2y + bz = 26.

.
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=
i

10.

11

12,

13.

14.

15.

16.

4z — 3y + 2z = 40,
Sz + 9y —Tz=4T,
9z + 8y — 32 =97,
3z+2y+ 2=23,
5z + 2y + 4z = 46,
10z + 5y + 42 = 75.
dx— 6y + 4z =15,
Te+4y—32=19,
Qe+ y+62=46.

IR BT LS ) Is a1 4
—t-==, ——="=2 —4+-—==,
x y = 20 DS
3y—1 62 =«

e S S

Sz 4z +5

T e et

sevloig 128 ¥

Te—-38y=1 42-Ty=1,
11z—7u=1, 19z—3u=1.
3u—2y=2, 2% + 3y = 39,
5x—Tz=11, 4y+3z=4L
2 —3y+2=13, 4u-2x=30,
4y +2:=14, by+3u=32.
Tu—132=87, Su+ldx=>57,
10y— 3z=11, 2z-11z=250.
Tx—22+3u=1T7,
4y— 22+ ¢t =11,
Sy —3x—2u=3_8,
4y—3u+ 2t =9,
3z + 8u=33.
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1%

18.

19,

20.

22.

23.
24.

XTIII.

183.

3xLdy+ 32+ 3v—6u=11,
3x—b5y+2z—4u=11,
10y — 32+ 3u— 2v=2,
5z +4u+ 2v—2x =3,
6u — 3v + 4 — 2y = 6.

Zi¥-1 SRS

o a'e L o ks

ay +bx =c, cx+ az = b, bz+cy=a.
§+(1:1’ b_+z_-c=0’ z+y+2=2c
2y T

z+y+2=0,

b+c)x+(c+a)y+(a+b)z=0,

bex + cay + abz = 1.

ax + by +cz=4A,

o’z +b%y + ¢z = 4°,

a’z+b%y + c’z=A°,

xyz = a(yz —2x —xy) = b (2 — vy — yz) = c (vy — yz — 22).
x+y+z=a+b+c,
br+cy+az=cr+ay+by=a’+0"+c".

PROBLEMS WHICH LEAD TO SIMPLE EQUA-
TIONS WITH MORE THAN ONE UNKNOWN
QUANTITY.

We shall now give some examples of problems which

lead to simple equations with more than one unknown quantity.

4 and B engage in play; in the first game 4 wins as much
as he had and four shillings more, and finds he has twice as much
as B; in the second game B wins half as much as he had at first
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and one shilling more, and then it appears he has three times
as much as 4; what sum had each at first?

Let « be the number of shillings which 4 had, and y the
number of shillings which B had; then after the first game 4
has 2z + 4 and B has y —z—4. Thus by the question,

20+4=2(y-x—4)=2y—2x-8;

therefore, 2y—4x=12;
therefore, y—2z=6.
Also after the second game 4 has 2z + 4 — g 1, and B has

2
—2—4+Z41. Thus by the uestion,
y 2 i q

y-o-d+d+1=3@+4-Y _1)=6ar13-%_3;

therefore, 2y—22—8+y+2=12x+24—-3y—6;

therefore, 6y — l4x = 24,
and, 3y—Te=12.
And from the former equation,
3y—6x=18;
hence by subtraction,’ x=0;
therefore, y=18.

184. A sum of money was divided equally among a certain
number of persons; had there been three more, each would have
received one shilling less, and had there been two fewer, each
would have received one shilling more than he did; required the
number of persons, and what each received.

Let « denote the number of persons, y the number of shillings
which each received. Then xy is the sum divided ; thus by the
question,

(@+3) (y-1) -ay,
and also, (®—-2)(y +1) =ay.
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WITH MORE THAN ONE UNKNOWN QUANTITY. 95
The first equation gives
xy+3y—x—-3=wy;
thus, 3y—xz=3.
The second equation gives

oy —2y+ax—2=uy;

thus, z—2y =2,
By addition, y—az+2-2y=15;
that is, y=25.
Hence, 2=2y+2=12

185. 'What fraction is that which becomes equal to 3 when
its numerator is increased by 6, and equal to 4 when its denom-
inator is diminished by 2 ?

Let « denote the numerator and % the denominator of the
fraction; then by the question,

z+6_§
g 4

x 1

and, yT2=§.

Clear the first equation of fractions by multiplying by 4y;

thus,
4 (z + 6) = 3y;

therefore, 3y — 4w =24,

Clear the second equation of fractions by multiplying by
2(y—2); thus,

2we=y—-2;
therefore, y-2 =2
and, 3y — 6z = 6.
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By subtraction,
3y —dx— 3y —6x) =24—-6;

that is, ‘ 22 =18,

and, x=9,

Hence, Yy =2+ 2z = 20,
Thus the required fraction is 220

EXAMPLES OF PROBLEMS.

1. A certain fraction becomes 1 when 3 is added to its nu-
merator, and 4 when 2 is added to its denominator. 'What fraction
is it?

2. 4 and B together possess £570. If A’s money were three
times what it really is, and B’s five times what it really is, the
sum would be £2350. What is the money of each?

3. If the numerator of a certain fraction is increased by one
its value becomes one-third; if the denominator is increased by
one its value becomes one-fourth. What is the fraction?

4. TFind two numbers such that if the first be added to four
times the second, the sum is 29; and if the second be added to
six times the first the sum is 36.

5. If A’s money were increased by 36s. he would have three
times as much as B, but if B’s money were diminished by 5s. he
would have half as much as 4. Find the sum possessed by each.

6. A and B lay a wager of 10s. ; if 4 loses he will have twenty-
five shillings less than twice as much as B will then have; but
if B loses he will have five-seventeenths of what 4 will then have;
how much money does each of them have?

7. Find two numbers, such that twice the first plus the
second is equal to 17, and twice the second plus the first is
equal to 19. '
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8. Find two numbers, such that one-half the first and three-
fourths of the second together equal the difference of three times
the first and the second, and this difference equals 11.

9. A certain number of persons were divided into three
classes, such that the majority of the first and second together
over the third was 10 less than four times the majority of the
second and third together over the first; but if the first had 30
more, and the second and third together 29 less, the first would
have outnumbered the last two by one. Find the number in each
class when the whole number was 34 more than eight times the
majority of the third over the second.

10. Determine three numbers such that their sum is 9; the
sum of the first, twice the second, and three times the third, 22;
and the sum of the first, four times the second, and nine times the
third, 58.

11. A pound of tea and three pounds of sugar cost six shil-
lings, but if sugar were to rise 50 per cent. and tea 10 per cent.
they would cost seven shillings. Find the price of tea and
sugar. i

12. A person has £2550 to invest. The three per cent. con-
sols are at 81, and certain guaranteed railway shares which pay
a half-yearly dividend of 10s. on each original share of £25 are at
£24. Find how many shares he must buy that he may obtain
the same income from the railway shares as from the rest of his
money invested in the consols.

13. A person possesses a certain capital which is invested at
a certain rate per cent. A second person has £1000 more capital
than the first person and invests it at one per cent. more; thus
his income exceeds that of the first person by £80. A third
person has £1500 more capital than the first and invests it at fwo
per cent. more; thus his income exceeds that of the first person
by £150. Find the capital of each person and the rate at which it
is invested.

A 7
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14. A railway train after travelling for one hour meets with
an accident which delays it one hour, after which it proceeds at
three-fifths of its former rate, and arrives at the terminus three
hours behind time; had the accident occurredl 50 miles further on,
the train would have arrived 1 hour 20 minutes sooner. Required
the length of the line.

15. Two plugs are opened in the bottom of a cistern con-
taining ‘192 gallons of water; after three hours one of them
becomes stopped, and the cistern is emptied by the other in
eleven hours; had six hours occurred before the stoppage, it would
have required only six hours more to empty it. How many gal-
lons will each plug hole discharge in an hour, supposing the
discharge uniform?

16. A person after paying a poor-rate and also the income-
tax of 7d. in the pound, has £486 remaining; the poor-rate
amounts to £22. 10s. more than the income-tax; find the
original income and the number of pence per pound in the
poor-rate.

17. A farmer would spend all his money by buying 4 oxen
and 32 lambs; instead of doing this he bought the same number
of oxen and half as many lambs, and had a surplus of £9 after
paying for them and for their conveyance by railway at an average
cost of six shillings per head. Each ox cost as many pounds as
its carriage by railway was shillings, and the lambs altogether cost
three times as many pounds as the carriage of each was shil-
lings. How much money had he to begin with ?

18. 4, B, and C sit down to play, every one with a certain
number of shillings. A4 loses to B and €' as many shillings as
each of them has. Next B loses to 4 and C as many as each of
them now has. Lastly C loses to 4 and B as many as each of
them now has. After all every one of them has sixteen shillings.
How much had each originally?

19. 4 and B play at bowls, and 4 bets B three shillings to
two upon every game; after a certain number of games it appears
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that 4 has won three shillings; but if 4 had bet five shillings
to two and lost one game more out of the same number, he
would have lost thirty shillings. How many games did they
play ?

20. TFive persons, 4, B, C, D, E play at cards; after 4 has
won half of B’s money, B one-third of (s, ' one-fourth of D’s,

D one-sixth of Z’s, they have each £1. 10s. Find how much
each had to begin with.

21. If there were no accidents it would take half as long to
travel the distance from 4 to B by railroad as by coach; but
three hours being allowed for accidental stoppages by the former,
the coach will travel the distance all but fifteen miles in the
same time; if the distance were two-thirds as great as it is, and
the same time allowed for railway stoppages, the coach would
take exactly the same time; required the distance.

22. A and B are set to a piece of work which they can
finish in thirty days working together, and for which they are
to receive £7. 10s. When the work is half finished 4 intermits
working eight days and B four days, in consequence of which the
work occupies five and a half days more than it would otherwise
have done. How much ought A and B respectively to receive ?

23. 4 and B run a mile. First 4 gives B a start of 44
yards and beats him by 51 seconds; at the second heat 4 gives
B a start of 1 minute 15 seconds, and is beaten by 88 yards.
Find the times in which 4 and B can run a mile separately.

24, A and B start together from the foot of a mountain to
go to the summit. 4 would reach the summit half an hour
before B, but missing his way goes a mile and back again need-
lessly, during which he walks at twice his former pace, and reaches
the top six minutes before B. (' starts twenty minutes after
A and B and walking at the rate of two and one-seventh miles per
hour, arrives at the summit ten minutes after B. Find the rates
of walking of 4 and B, and the distance from the foot to the
summit of the mountain.

7—2
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25. A offers to run three times round a course while B runs
twice round, but he only gets 150 yards of his third round
finished when B wins. He then offers to run four times round
for B’s thrice, and now quickens his pace in the ratio of 4 : 3.
B also quickens his in the ratio of 9 : 8, but in the second round
falls off to his original pace in the first race, and in the third
round only goes 9 yards for 10 he went in the first race, and
accordingly this time 4 wins by 180 yards. Determine the length
of the course.

26. A pedestrian starts p hours before a coach; the latter
(both travelling uniformly) passes the former after a certain
number of hours. From this point the coach increases its speed
in the ratio of 6 to 5, while the man increases his in the ratio of
5 to 4, and they continue at these increased rates for ¢ hours
longer than it took the coach to overtake the man. They are then
92 miles apart; but had they continued for the same length
of time at their original rates they would have been only 80
miles apart. Shew that the original rates are as 2 to 1. Also if
p+q =16, shew that the original rate of the coach was 10, of the
wman 5 miles per hour.

27. Two persons 4 and B could finish a work in m days;
they worked together » days when 4 was called off and B finished
it in p days. In what time could each do it ?

28. A railway train running from London to Cambridge
meets on the way with an accident, which causes it to diminish

: 1 : e
its speed to %th of what it was before, and it is in consequence

a hours late. If the accident had happened b miles nearer Cam-
bridge, the train would have been ¢ hours late. Find the rate of
the train before the accident occurred. '

29. The fore-wheel of a carriage makes six revolutions more
than the hind-wheel in going 120 yards; if the circumference of
the fore-wheel be increased by one-fourth of its present size, and
the circumference of the hind-wheel by one- of its present
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size, the six will be changed to four. Required the circumference
of each wheel. '

30. There is a number consisting of two digits; the number
is equal to three times the sum of its digits, and if it be multiplied
by three, the result will be equal to the square of the sum of its
digits. Find the number.

31. A certain number of two digits contains the sum of its
digits four times and their product twice. 'What is the number ?

32. A person proposes to travel from 4 to B, either direct
by coach, or by rail to (, and thence by another train to B. The
trains travel three times as fast as the coach, and should there be
no delay, the person starting at the same hour could get to B
20 minutes earlier by coach than by train. But should the train
be late at (', he would have to wait there for a train as long as it
would take to travel from C' to B, and his journey would in that
case take twice as long as by coach. Should the coach however
be delayed an hour on the way, and the train be in time at C, he
would get by rail to B and half way back to (', while he would be
going by coach to B. The length of the whole circuit 4 BC4 is
762 miles. Required the rate at which the coach travels.

XIV. DISCUSSION OF SOME PROBLEMS WHICH
LEAD TO SIMPLE EQUATIONS.

186. . We propose now to solve some problems which lead to
Simple Equations, and to examine certain peculiarities which
present themselves in the solutions. We begin with the following
problem: What number must be added to a number @ in order
that the sum may be 67 Let  denote this number; then,

a+x=0b;

therefore, z=b-—a.

www.rcin.org.pl



102 DISCUSSION OF SOME PROBLEMS

This formula gives the value of « corresponding to any as-
signed values of @ and 6. Thus, for example, if a=12 and
b=25, we have =25 —12=13. But suppose that a =30 and
b=24; then =24 —-30=—6, and we naturally ask what is
the meaning of this negative result? If we recur to the enun-
ciation of the problem we see that it now reads thus:—What
number must be added to 30 in order that the sum may be 24 7
It is thus obvious, that if the word added and the word sum are
to retain their arithmetical meanings, the proposed problem is
impossible. But we see at the same time that the following
problem can be solved :—What number must be taken from 30
in order that the difference may be 241 and 6 is the answer to
this question. And the second enunciation differs from the first
in these respects; the words added to are replaced by taken from,
and the word sum by difference.

187. Thus we may say that, in this example, the negative
result indicates that the problem in a strictly Arithmetical sense
is impossible; but that a new problem can be formed by appro-
priate changes in the original enunciation to which the absolute
value of the negative result will be the correct answer.

188. This indicates the convenience of using the word add:
in Algebra in a more extensive sense than it has in Arithmetic.
Let « denote a quantity which is to be added algebraically to a ;
then the Algebraical sum is @+, whether « itself be positive or
negative. Thus the equation a+x =5 will be possible algebrai-
cally whether @ be greater or less than 6. 'We proceed to another
problem. )

189. A’s ageis a years, and B’s age is b years; when will 4
be twice as old as B? Supposed the required epoch to be z years
from the present time; then by the question,

a+x=2(b+z);
hence, z=a— 2b.

Thus, for example, if @ =40 and b =15, then a=10. But
suppose @ =35 and b= 20, then #=—05; here, as in the pre-
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, ceding problem, we are led to inquire into the meaning of the
negative result. Now with the assigned values of @ and b the
equation which we have to solve becomes

35 + & =40 + 2z,

and it is obvious that if a strictly arithmetical meaning is to be
given to the symbols = and +, this equation is impossible, for 40 is
greater than 35, and 2z is greater than , so that the two members
cannot be equal. But let us change the enunciation to the fol-
lowing :—A’s age is 35 years, and B’s age is 20 years, when was 4
twice as old as B? Let the required epoch be x years from the
present time, then by the question,
35 —2=2(20 — ) =40 — 2z;
thus, @ =10

Here again we may say the megative result indicates that the
problem in a strictly Arithmetical sense is impossible, but that a
new problem can be formed by appropriate changes in the original
enunciation, to which the absolute value of the negative result
will be the correct answer.

‘We may observe that the equation corresponding to the new
enunciation may be obtained from the original equation by chang-
ing x into — .

190. Suppose that the problem had been originally enun-
ciated thus:—A4’s age is @ years, and B’s age is b years; find the
epoch at which A4’s age is twice that of B. These words do not
intimate whether the required epoch is before or after the present
date. If we suppose it after we obtain, as in Art. 189, for the
required number of years x=a—2b. If we suppose the required
epoch to be = years before the present date we obtain z=2b—a.
If 20 is less than a, the first supposition is correct, and leads to
an arithmetical value for @; the second supposition is incorrect,
and leads to a negative value for . If 2b is greater than a, the
second supposition is correct, and leads to an arithmetical value
for «; the first supposition is incorrect and leads to a negative
value for 2. Here we may say then that a negative result indi-
cates that we made the wrong choice out of two possible supposi-
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tions which the problem allowed. But it is important to notice,
that when we discover that we have made the wrong choice, it is
not necessary to go through the whole investigation again, for we
can make use of the result obtained on the wrong supposition.
We have only to take the absolute value of the negative result
and place the epoch before the present date if we had supposed
it after, and affer the present date if we had supposed it before.

191. One other case may be noticed. Suppose the enuncia-
tion to be like that in the latter part of Art. 189; A’s ageis a
years, and B’s age is b years, when was A twice as old as B?
Let « denote the required number of years; then

a—x=2(0b-ux),
hence, z=2b-a.

Now let us verify this solution. Put this value for z; then
a—x becomes a—(2b—a), that is, 2a—2b; and 2(b—x) becomes
2(b—2b+a), that is, 24 —2b. 1If b is less than a, these results
are positive, and there is no Arithmetical difficulty. But if b is
greater than a, although the two members are algebraically equal,
yet since they are both negative quantities, we cannot say that we
have arithmetically verified the solution. And when we recur
to the problem we see that it is impossible if @ is less than b;
because if at a given date A’s age is less than B’s, then A’s age
never was twice B’s and never will be. Or without proceeding to
verify the result, we may observe that if b is greater than @, then x
is also greater than @, which is inadmissible. Thus it appears that
a problem may be really absurd, and yet the result may not im-
mediately present any difficulty, though when we proceed to ex-
amine or verify this result we may discover an intimation of the
absurdity.

192. The equation @ +x=2(b+«) may be considered as the
symbolical expression of the following verbal enunciation. Sup-
pose @ and b to be two quantities, what quantity must be added
to each so that the first sum may be twice the second? Here the
words quantity, sum, and added may all be understood in Alge-
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braical senses, so that @, @, and b may be positive or negative.
This Algebraical statement includes among its admissible senses
the Arithmetical question about the ages of 4 and B. It appears
then that when we translate a problem into an equation, the same
equation may be the symbolical expression of a more comprehen-
sive problem than that from which it was obtained. We will now
examine another problem.

193. A4 and B travel in the same direction at the rate of
and b miles respectively per hour. 4 arrives at a certain place P
at a certain time, and at the end of n hours from that time B
arrives at a certain place €. Find when 4 and B meet.

P Q R

Let ¢ denote the distance P@; suppose 4 and B to travel in
the direction from P towards @, and to meet at R at the end of =
hours from the time when 4 was at P; then since 4 travels at the
rate of ¢ miles per hour, the distance PR is ax miles. Also B
goes over the distance @& in x—n hours, so that QR is b(x—n)
miles. And PR is equal to the sum of PQ and Q& ; thus,
ar=c+b(x—n)=c+bx—bn;

c—bn '
e

therefore,

‘We shall now examine this result on different suppositions as
to the values of the given quantities.

I.. Suppose a greater than b, and ¢ greater than bn; then the
value of x is positive, and the travellers will meet, as we have
supposed, after A arrives at P. For when 4 is at P, the space
which B has to travel before he reaches @ is bn miles, and since bn
is less than ¢, it follows that when 4 is at P he is belind B;
and 4 travels more rapidly than B, since a is greater than &.
Hence 4 must at the end of some time overtake B.
a(c—bn)

The distance PR = ax =
a—-b

Thus,

QR:a(c—bn)_c:a(c—bn)—c(a—b)=cb—abn=b(c—an)

a_b : a—b a—b ar—b-.
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Now if ¢ be greater than an, this expression is a positive quantity,
so that Z falls, as we have supposed, beyond @; we see that this
must be the case, for since ¢ is greater than am, it will take 4
more than n hours to go from P to @, so that he cannot overtake
B until after passing @. If, however, ¢ be less than an, the exs
pression for QR is a megative quantity, and this leads us to sup-
pose that some modification is required in our view of the problem.
In fact 4 now takes less than » hours to go from P to @), so that
he will overtake B before arriving at . Hence the figure should
now stand thus :
D i R Q

And now, since PR = P@Q— R, the equation for determining
2 would naturally be written

ax=c—b(n—1x)=c—bn+be.
This, however, we see is really the same equation as before.

Again, if ¢ be equal to an the value of R is zero. Thus
R now coincides with @; and
_c—bn_an-bn
Ta-b .a-b
Hence 4 and B meet at @ at the end of n hours after 4 was
SR A

II. Next suppose that a is greater than b, and ¢ less than
bn. The value of x is now negative, and we may conjecture
from what we have hitherto observed respecting negative quanti-

ties that 4 and B instead of meeting ca:b: hours after 4 was
at P, will now really have met l;n _bc hours before 4 was at P.

And in fact, since ¢ is less than bn it follows that B was behind 4
when 4 was at P, so that 4 must have passed B before arriving
at P. Hence the correct solution of the problem would now be
as follows.

R P ; Q
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Suppose that 4 and B meet  hours before 4 arrives at P; let
R be the point where they meet. Then BP=aw, and RQ=b(z+n).
Also RP = RQ — PQ; thus,
ar="b(x +n)—c;

bn—
therefore, PP vk
a-b

IIT. Next suppose that @ is less than b, and ¢ greater than
bn. 1In this case also the expression originally obtained for  is
negative, and we shall accordingly find that 4 and B met before
4 was at P. For B now travels more rapidly than 4, and is
before A when 4 is at P; so that- B must have passed 4 before 4
was at 2. The result now is, as in the second. case, that 4 and B
met cb— b: hours before 4 was at P.

IV. Lastly, suppose @ less than b, and ¢ less than bn. Here
the expression originally obtained for x is a positive quantity, for
bn—c
b—a
than 4 and is behind A when 4 is at P; thus B must at some
time overtake 4. If we suppose 4 and B to meet after 4 is at @,
the figure will stand thus:

P Q R

it may be written thus, Now B travels more rapidly

Here we should naturally write the equation thus,
ac=c+b (@ —mn)=c+bx— bn.

If we suppose 4 and B to meet before 4 is at @, the figure
will stand thus:
P R Q

Here we should naturally write the equation thus,
ax=c¢—b(n—x)=c—bn + bx.

In the two cases we have, however, really the same equation,

bn—c¢

b—a’

and we obtain ==
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194. The preceding problem may be variously modified ; for
instance, instead of supposing that 4 and B travel in the same
direction, we may suppose that A travels as before, but that B
travels in the opposite direction. In this case, if we suppose, as
before, that 4 and B meet « hours after 4 arrived at P, we shall

find that x=(;++b:. Thus the time of meeting will necessarily

be after A leaves P, and the travellers meet at some point to the
right of . The student should notice that the value of « in the
present case coincides with the result obtained by writing — b for
b in the original value of  in Art. 193.

195. Or instead of supposing that the arrival of B at @
occurs 7 hours after the arrival of 4 at P, we may suppose it to
occur » hours before; and we suppose 4 and B to travel in the
same direction. In this case if = have the same meaning as
before, we shall find that = 25 b: A
a —
if @ is greater than b, and the travellers then really meet after the
arrival of 4 at . If, however, @ is less than b, the value of z is
a megative quantity; this suggests that the travellers now meet

e y ddvid ;
cb k! : hours before the arrival of 4 at P, and on examination this

This is a positive quantity

will be found correct. The student should notice that the value of °
2 in the present case coincides with the result obtained by writing
—mn for » in the original value of  in Art. 193.

196. Again, let us suppose that 4 and B travel in opposite
directions, and that the arrival of 4 at P occurs » hours before
that of B at @; and suppose the positions of 2 and @ in the
former figures to be interchanged, so that now 4 reaches ¢ before
he reaches P, and B reaches P before he reaches ¢. If 2 have
bn—c

+6°
If then bn is greater than ¢, the value of x is a positive quantity,
and the travellers meet, as we have supposed, after the arrival of
4 at P. If however bn is less than ¢, the value of x is a negative

the same meaning as before, we shall now find that z=
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quantity, and it will be found that the travellers meet ca—_'.b:

hours before the arrival of 4 at P. The student should notice
that the value of x in the present case coincides with the result
obtained by writing —c¢ for ¢ in the value of # in Art. 194;
it also coincides with the result obtained by writing — & for &, and
—c¢ for ¢ in the original value of « in Art. 193.

197. From a consideration of the problems discussed in the
present chapter, and of similar problems, the student will acquire
confidence and accuracy in dealing with negative quantities. We
will lay down some general principles which have been illustrated
in the preceding articles, and the truth of which the student will
find confirmed as he advances in the subject.

(1) A negative result may arise from the fact that the
enunciation of a problem involves a condition which cannot be
satisfied ; in this case we may attribute to the unknown quantity
a quality directly opposite to that which had been attributed to it,
and may thus form a possible problem analogous to that which
involved the impossibility.

(2) A negative result may arise from the fact that a wrong
supposition respecting the quality of some quantity was made
when the problem was translated from words into Algebraical
symbols ; in this case we may correct our supposition by attri-
buting the opposite quality to such quantity, and thus obtain a
positive result.

(3) When we wish to alter the suppositions we have made
respecting the quality of the known or unknown quantities of a
problem, and to attribute an opposite quality to them, it is not
necessary to form a new equation ; it is sufficient to change in the
old equation the sign of the symbol representing each quantity
which is to have its quality changed.

198. 'We do not assert that the above general principles have
been demonstrated; they have been suggested by observation of
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particular examples, and are left to the student to be verified in
the same manner. Thus when a negative result occurs in the
solution of a problem the student should endeavour to interpret
that result, and these general principles will serve to guide him.
‘When a problem leads to a negative result, and he wishes to form
an analogous problem that shall lead to the corresponding positive
result, he may proceed thus:—change « into —z in the equation
that has been obtained, and then, if possible, modify the verbal
statement of the problem, so as to make it coincident with the
mew equation. 'We say, if possible, because in some cases no such
verbal modification seems attainable, and the problem may then
be regarded as altogether impossible.

199. We will now leave the consideration of negative quan-
tities, and examine two other singularities that may occur in
results.
c—bn
a-b"

a = b, then the denominator in the value of « is zero; thus, denot-

In Art. 193 we found this result, x = Suppose that

ing the numerator by &, we have = = JAV, and we may ask what is

0
the meaning of this result? Since 4 and B now travel with
equal speed, they must always preserve the same distance; so that
they never meet. But instead of supposing that a is exactly
equal to b, let us suppose that a is very nearly equal to b; then

;‘Y— may be a very large quantity, since if a—0 is very small
compared with &, it will be contained a large number of times in

N; and the smaller a —b is, the larger will a_Nfbr be. This is

: . DN et fas, £ o :
abbreviated into the phrase “—6 is infinite,” and it is written

thus, —f)g = . But the student must remember that the phrase

is only an abbreviation, and no absolute meaning can be attached
to it. '
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200. The student should examine every problem, the result

of which appears under the form %—r 3 ‘and endeavour to interpret

that result. He may expect to find in such a case that the pro-
blem is impossible, but that by suitable modifications a new
problem can be formed which has a wvery great mumber for its
result, and that this result becomes greater the more closely the
new problem approaches to the old problem.

201. Again, let us suppose that in Art. 193 we have a =5,

and also ¢ =bn; then the value of z takes the form g On

examining the problem we see that, in consequence of the sup-
positions just made, 4 and B are together at P, and are travelling
with equal speed, so that they are always together. The question,
when are 4 and B together, is in this case said to be indeterminate,
since it does not admit of a single answer, or of a finite number of
answers. A

202. The student should also examine every problem in
which the result appears under the form g, and endeavour to

interpret that result. In some cases he will find, as in the ex-
ample considered above, that the problem is not restricted to a
finite number of solutions, but admits of as many as he pleases.
‘We do not assert here, or in Art. 200, that the interpretation of

the singularities f)—\f andg will always coincide with those given

in the simple cases we have considered; the student must there-
fore consider separately each distinct class of examples that may
oceur.
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MISCELLANEOUS EXAMPLES. CHAPTER XIV.

MISCELLANEOUS EXAMPLES. CHAPTER XIV.

Simplify the expression

Ba—[b+{20— G- +§+ 2.

Reduce to its lowest terms the expression

6x* + 102® + 22° — 202 — 28
32 + 14a® + 222 + 21

Find the value of ko w_b when = i
b a a—0

1

a : 1
Sty e G0 T

d"(a—b)(b—c)+b"(a—d)(c—d) _b-d
c"(a—b)(a—d)y+a"(b—c)(c—d) a—c

when m=1, or 2.

Shew that

7 g B A ST T

Reduce to its simplest form

If @y +yz+2e=1, shew that

x Y 2 doyz

1-o "1-9° s e qQ-21-y)(1-7")"

Solve the simultaneous equations
z+y+z=a+b+c

bx + ¢y + az = cx + ay + bz = ab + be + ca.

Find the least common multiple of
2*+ 6x* + 11z + 6, 2+ Ta® + 142 + 8,
2® + 82° + 19z + 12, and «® + 9a® + 26z + 24.
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XV. ANOMALOUS FORMS WHICH OCCUR IN THE
SOLUTION OF SIMPLE EQUATIONS.

203. 'We have in the preceding chapter referred to the forms

o andg which may occur in the solution of an equation of the

first degree. 'We shall now examine the meaning of these forms
when they occur in the solution of simultancous equations of the
first degree. 'We will first recall the results already obtained.

204. Every equation of the first degree with one unknown
quantity may be reduced to the form ax =5. Now from this we
obtain x = g. If @ =0 the value of = takes the form % ; in this
case no finite value of x can satisfy the equation, for whatever
finite value be assigned to «, since ax =0, we have 0 =, which is

impossible. If ¢ =0 and b= 0, the value of x takes the form -8 ;

in this case every finite value of  may be said to satisfy the
equation, since whatever finite value be given to 2 we have 0 = 0.
If =0 and @ is not =0, then of course x=0; this case calls
for no remark.

205. Suppose now we have two equations with two unknown
quantities; let them be

ax+by =c and dz+ by =c.

We will first make a remark on the mnotation we have here
adopted. We use certain letters to denote the known quantities
in the first equation, and then we use corresponding letters with
accents to denote corresponding quantities in the second equation ;
here @ and & have no necessary connexion as to value, although
they have this common point, namely, that each is a coefficient
of z, one in the first equation and the other in the second equa-
tion. Experience will establish the advantage of this notation.

Instead of accents subscript numbers are sometimes used ;
thus @, and @, might be used instead of @ and a’ respectively.
T. A. 8
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By solving the given equations we obtain

ik »b'c_- be/ _ac—ac
= ba—ba? Y=To<ab"

L. Suppose that §’'a —ba’ = 0 ; then the values of z and ¥ take

4 B
the forms 5 and o Ve should therefore recur to the given equa-

tions to discover the meaning of these results. From the relation
’

bYa—ba’= 0 we obtain % :% =k suppose; thus o = ka and
b = kb. By substituting these values of @’ and &’ we find that the
second of the given equations may be written thus :

kax + kby = ¢/,

¢
whence, ax + by =~ .

k

4
Now if c be different from ¢, the last equation is inconsistent

k

with the first of the given equations, because ax + by cannot be

eqha.l to two- different quantities. We may therefore conclude

]

that the appearance of the results under the forms g and n
i

indicates that the given equations are inconsistent, and therefore
cannot_be solved.

4 4

II. Next suppose that b’a—ba’= 0, so that % -~ % , and also
that % =%, and therefore of course = % . In this case the nu-

merators in the values of = and y become zero as well as the

denominators, so that the values of z and y take the form 8

Now by what we have shewn above, the second of the given
equations may be written

aw+by=f']:.

But now ;;-:c, so that the second given equation is only a
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repetition of the first; we have thus really only one equation
involving two unknown quantities. We cannot then determine
z and y, because we can find as many values as we please which
will satisfy one equation involving two unknown quantities, In
this case we say that the given equations are not independent, and
that the values of = and y are indeterminate.

206. We have hitherto supposed that none of the quantities
a, b, ¢, /, b/, ¢ can be zero; and thus if the value of one of the

0 A
unknown quantities takes the form iy the value of the other

takes the same form, Put if some of the above quantities are
zero, the values of the two unknown quantities do not necessarily
take the same form. For example, suppose @ and o’ to be zero;

then the value of = takes the form %, and the value of 7 takes

the form ?—) Now in this case the given equations reduce to

by=¢, and by=c;
these lead to

’

c [
:l/———b', and .’I/Zb‘,.

Thus we have two cases. First, if % is not equal to ‘bi' the
two equations are inconsistent. Secondly, if Z is equal to %—,— the

two equations are equivalent to one only. In the second case,

,

since the relation Z:% makes the numerator of = also vanish,
the values of both x and y take the form g ; in this case z is in-

determinate but y is not, for it is really equal to Z
207. Before we consider the peculiarities which may occur in
the solution of three simultaneous simple equations involving
three unknown quantities, we will indicate another method of
solving such equations.
8—2
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Let the equations be
ax+by +ez=d, dx+by+cz=d, oz+V'y+cz=d".

Let I and m denote two quantities, the values of which are at
present undetermined ; multiply the second of the given equations
by 7, and the third by m; then, by addition, we have
az+by+cz+1l(dw+ by +c2) +m(a’z+b"y + '2)=d +1d" + md”,
that is,
z(a+ld +ma”)+y b+ +mb")+2(c+ld +md)=d +1d + md".

Now let such values be given to / and m as will make the
coefficients of 7 and z in the last equation to be zero; that is, let

b+ +mb” =0, c+1d +me” =0.

Thus the equation reduces to
z(a+ld +ma”)=d+1d +md”;
_d+1d +md”

therefore Lo i LR
g a+ld +ma”

We must now find the values of 7 and m, and substitute them
in this expression for x, and then the value of = will be known.
‘We have

b+ +mb” =0, c+ld +me’=0;

from these we shall obtain

o b"c—bc” o b ~be

T =’ b’ -b¢’
substitute these values in the expression for «, and after simplifi-
cation we obtain
e Al —b"¢)+d (b'c—bc") +d” (b’ —b'c)
T a@ =) +d (Bc—b") +a” (b - be)”

By a similar method the values of  and z may also be obtained.

208. The above method of solution is called the method of
endeterminate multipliers, because we make use of multipliers
which we do not determine beforehand, but to which a convenient
value is assigned in the course of the investigation. The multi-
pliers are not finally indeterminate ; they are merely at first wn-
determined, and if it were possible to alter established language,
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the word undetermined might here with propriety be substituted
for indeterminate.

209. We now proceed to our observations on the values of
z, 7, and z which are obtained from the equations

ar+by+cz=d, dr+by+cdz=d, az+by+cdz=d".

The value of z has been given in Art. 207; if the student
investigates the value of y he will find that the denominator of it
is the same as that which occurs in the value of x, or can be made
to be the same by changing the sign of every term in the nume-

rator and denominator. The same remark holds with respect to
the denominator in the value of z.

210. 'We may however obtain the values of » and z from the
expression found for the value of 2. For the original equations
might have been written thus:

by+ac+cz=d, by+de+cz=d, by+dz+cz=d";
we may say then that the equations in this form differ from those
in the original form only in the following particulars; « and y are
interchanged, ¢ and b are interchanged, a’ and & are interchanged,
and a” and b” are interchanged. We may therefore deduce the
value of v from that of = by the following rule; for a, o/, and a”
write b, ¢, and " respectively, and conversely. Thus, from
P AU —-b"¢)+d (b"c—bc”)+d” (b’ —b'c)
Ta-bC) +a (Bc—bc") + a” (b’ —be)
we may deduce that
_d(d"—a"¢)+d (d"c—ac”) +d” (ac’ —d'c)
Y% (a¢"—a"c) + b (a"c— ac”) + b (ac’ —d'c)’
It will be found on comparison that the denominator of the

value of ¥ is the same as that of the value of « with the sign of
every term changed.

Similarly by interchanging @, ¢/, and &” with ¢, ¢, and ¢”
respectively, we may deduce the value of z from that of z; or by
interchanging &, ¥, and &” with ¢, ¢/, and ¢” respectively, we may
deduce the value of # from that of .

www.rcin.org.pl



118 ANOMALOUS FORMS WHICH OCCUR IN THE

211. There is another system of interchanges by which the
values of ¥ and z may be deduced from that of x. The given
equations are

ax+by+ ce=d, az+by+cz=d, d'z+V'y+cz=d";
they may also be written thus, -

by+ez+ax=d, by+cz+adr=d, by+cz+a’z=d".

We may say then that the second form differs from the first
only in the following particulars; « is changed into 7, 7 into z,
zinto «, @ into b, b into ¢, ¢ into @, &’ into &', and so on. We
may therefore deduce the value of y from that of « by this rule;
change a into b, b into ¢, ¢ into @, and make similar changes in the
letters with one accent, and in those with two accents. The
value of z may be deduced from that of y by again using the
same rule.

212. These methods of deducing the values of ¥ and z from
that of @ by interchanging the letters may perhaps appear difficult
to the student at first, but they deserve careful consideration,
especially that which is given in Art. 211.

We shall now proceed to examine the peculiarities which
may occur in the values of the unknown quantities deduced from
the equations

ar+by+cx=d, dz+by+cz=d, dazw+b'y+c"2=d".

213. The most important case is that in which d, d’, and d”
are all zero. The given equations then become

ax+by+cx=0, dz+bdy+cz2=0, a"z+0"y+c"2=0.

It is obvious that =0, y=0, 2=0 satisfy these equations;
and from the values found in Art. 210 it follows that these are
the only values which will satisfy the equations unless the deno-
minator there given vanishes, that is, unless

a (B —b'¢) +d (e —be")+ " (be —He) =0,

If this relation holds among the coefficients, the values found
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for @, 7, and # take the form g, and we must recur to the given

equations for further information.

We observe that when this relation holds the equations are
not independent; from any two of them the third can be deduced.
For multiply the first of the given equations by b”¢’ —¥&'¢”, the
second by bd”—b"c, and the third by &c—bc, and then a.dd the
results. It will be found that by virtue of the given relation we
arrive at the identity 0=0; thus, in fact, if the first equation be
multiplied by 5”¢’—b'c”, and the second by bc¢” —b"c, and the two
added, the result is equivalent to the third equation, for it may be
obtained by multiplying that equation by bc’ — ¥c.

Suppose then that this relation holds; we may confine our-
selves to the first two of the given equations, for values of x, ¥,
and 2z which satisfy these will necessarily satisfy the third equa-
tion. Divide these equations by «; thus

by ¢z b
J+—-+a=0, y+——+ =0
2 x
gL y cd—ca z ab—ab
hen L= Sl
x bc—obc’ xz b —be

We may therefore ascribe any value we please to x, and deduce
corresponding values of ¥ and z.  Or we may put our result more
symmetrically thus; let p denote any quantity whatever, then
the given equations will be satisfied by

w=p (b -be), y=p(ca'—ca), =z=p(ab—ab).

We might in the same way have used the second and third of
the given equations, and have omitted the first; we should thus
have deduced solutions of the form

w=q " =0b"), y=q(d"-c"d), z=q(ab’-a"t),
where ¢ is any quantity. These values however are substantially

equivalent to the former; for it will be found that by virtue of
the supposed relation among the coefficients,

p (b —be)y p(ca —ca) p (ab’ — a'b)

q( / // bl/cl) q ( cI/a/) g q (allbll i a”b’) »
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214. 'We shall now consider the peculiarities which may occur
when d, d’, and d” are not all zero.

‘We shall first shew that if the value of any one of the un-
known quantities takes the form l, the given equations are

inconsistent. Suppose, for instance, that the value of « takes this
form, that is, suppose that

a (b”C, ¥t b’C”) 5 a' (bc" bt ”6 i a" (b’C it bC’)

is zero. Of course if the given equations were consistent, any
equation legitimately deduced from them would also be true.
Now multiply the first of the given equations by "¢’ —b'¢”, the
second by bc”’— b”c, and the third by 0’c — b¢’ and add. It will be
found that the coefficients of ¥ and z in the resulting equation
vanish ; and the coefficient of x is zero by supposition. Thus the
first member of the resulting equation vanishes, but the second
member does not ; hence the resulting equation is impossible, and
therefore those from which it was obtained cannot have been con-
sistent,

215. 'We cannot however affirm certainly, that if the value of

o 0 :
one of the unknown quantities takes the form —, the equations are

consistent, but not independent. For it is possible that the value
of one of the unknown quantities should take this form, while

that of another takes the form %; and, as we have shewn in the

e B,
preceding article, the occurrence of the form o lsan indication

that the given equations are inconsistent. For example, suppose
the equations to be

ar+by+cz=d, adx+by+ez=d; da'z+by+cz=d".
Here it will be found that the values of % and z take the form

%f , and that of & takes the form g
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Moreover, if the values of @/l the unknown quantities take
the form g—, we cannot affirm certainly that the given equations

are consistent, but not independent. For example, suppose the
equations to be

ax+by+cz=d, ax+by+cz=d, ar+by+cz=d’;
here it will be found that the values of all the unknown quan-

tities take the form g ¢

inconsistent, unless d, ', and d” are all equal.

but the equations themselves are obviously

216. 'We may shew that if the numerators in the values of
2, 7, and %, all vanish, the denominator will also vanish, assuming
that d, d’ and d” are not all zero.
For supposing these numerators to vanish we have
d ' -0y +d (be" — b'c) + d’ (Ve — be') =0,
d (" — ")+ d (ca” — "a) + d'(da— ca) = 0,
d(a'd —a'b") + d' (ab” — a"b) + d" (a'b — ab’) = 0.
Let us denote these relations for shortness thus,
Ad+Bd' +0d"=0, A'd+Bd'+0'd"=0, A4"d+B"'d'+(C"d"=0.
By Art. 213, since d, d’ and d” are not all zero the following
relation must also hold,
A (BC"-B"0")+4'(B"C - BC")+ A" (BC" - B'C)=0.
It will be found that
BC"-B'C'=af{a(®c —b"¢)+d (b"c—be”) +a” (b’ — bc)};
and B”C — BC” and B(’ — B'C may be similarly expressed, so that
finally the relation becomes
—{a W =b"¢) +d (bc—be") +a’(bc' — Ve)}* = 0.
This establishes the required result.
217. If we adopt the method of indeterminate multipliers
given in Axt. 207, it may happen that the equations for finding
7 and m ave inconsistent; we will examine this case. Suppose

then &"¢’— b'¢” =0, so that these equations are inconsistent (Art.
205). In this case the value of z may be obtained from the
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second and third of the given equations, without using the first.
For multiply the second of the given equations by c¢”, and the
third by ¢/, and subtract; thus the coefficients of y and z vanish,
and we have an equation for. determining . For example, sup-
pose the equations to be
4r+2y+32=19, x+y+42=9, @x+2+82=15.

Here the value of 2 may be found from the second and third

equations; we shall obtain z=3; substitute this value of # in

the three given equations; from the first we have 2y + 32=17, and
from the second or third y + 42=6; hence y=2 and z=1.

Again, the values of / and m may take the form g, so that

the equations for finding them are not independent; we will

examine this case. Here we have 0"¢' — b'¢’ =0, b¢” — "¢ = 0, and

b'c —bc’ = 0; these suppositions are equivalent to the two relations
7/ ’ 77 77

%:% and % =%. Suppose then that & =pb, and therefore

¢/ =pe, and that 0" =g¢b, and therefore ¢”=gc. Thus the given

equations are

ax+by+ez=d, dz+pby+pez=d, a'z+qby+qez=d",
and they may be written thus,

! " ”

a d
ax+by+cz=d, —x+by+cz=—, —x+by+cz=—.
Y > 7 Y P’ 7 Y q

Here z may be found from any two of the equations; if we do
not obtain the same value from each pair, the given equations are
of course inconsistent,; if we do obtain the same value for @, then
the given equations are not independent; and in fact we shall in
the latter case have only one equation for finding by + cz, so that
the values of y and z are indeterminate. For example, suppose
the given equations to be

z+2y+32=10, 3wv+4y+62=23, x+6y+92=24

From any two of these equations we can find x=3; then
substituting this value of « in any one of the three equations we
obtain 2y + 3z =7, and thus y and z are indeterminate. If, how-
ever, the right-hand member of one of the given equations be
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altered, we shall not obtain the same value of z from each pair of
the equations, and thus the given equations will be inconsistent.

218. In the preceding articles we have supposed the given
equations to be solved, and from the peculiar forms of the solu-
tions have drawn inferences as to the nature of the given equa-
tions. We will now take one example of investigating a relation
between the equations without solving them. Suppose, as before,
that the equations are

ac+by+cz=d, dx+by+cdz=d, adz+b¥y+cz=d";
and let us find the relations which must exist among the known
quantities, in order that the third equation may be deducible from
the other two by multiplication by suitable quantities and addition.
Suppose then that by multiplying the first equation by A, and the
second by p, and adding, we obtain a result which is coincident
with the third equation. Thus,

(Aa +pa’) @+ b + pub) y + (Ae + pe) 2 = Ad + pd’
is equivalent to 'z +by+cz=d";
that is, we suppose that
Aa+pa’ o Ao+ b Ae+uc
Mipd =T Mapd ST M@ @
From the last three equations we deduce
A a'd -dd” N Vd'-Vd" N Jd'-cd”
PRy (el i el 15w e RN R e i

Hence in order that the third equation may be deducible from
the other two in the manner proposed, we must have the follow-
ing relations among the known quantities,

a'd' —a'd” YA —bd” A —cd”
ad”~d'd ~ bd"-V'd ~ ed"=d'd"
It is easy to shew that if these relations hold, the values of

x, ¥, and z take the form g For by multiplying up we obtain

results which shew that the numerators in the values of z, y,
and z vanish; and then by Art. 216 the denominator will also
vanish.
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MISCELLANEOUS EXAMPLES. CHAPTER XV,

ot + 32’ —Ta*— 212 — 36
'+ 220" —100* -~ 11— 12

1. Reduce to its simplest form.

2. Shew that
(a+b+c)(a®+ b + ¢ + abe) — (ab + be + ca) (a° + B° + ¢°) = a*+ b+ ¢

2 2 2

2
3. Ift=7"— w=g—, B L vyt find the

2—w’

relation between ¢ and .

4. Solve the simultaneous equations
z+y+2=0, axr+by+cz=0,
bex + cay + abz + (@ —b) (b —¢) (c — a) = 0.
153150

5, If -+~
a

gt = S ity shew that

1+l+l)za+1— 1
G*5+:) =mmEe

6. A person leaves £12670 to be divided among his five
children and three brothers, so that after the legacy duty has been
paid, each child’s share shall be twice as great.as each brother’s.
The legacy duty on a child’s share being one per cent. and on a
brother’s share three per cent., find what amounts they respectively
receive.

7. Solve the equation
5 2 3 6
e

z+6a xz—3a z+2a z+a'

8. If = be a quantity such that
(x—a)’+@—0)*+ (x—c)’ +...... =a’+b0+c+......
shew that the sum of the products of every two of the quantities

c—a, t—b, x—cyeun... will be equal to the sum of the products
of every two of the quantities @, b, ¢, ..... .
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XVI1. INVOLUTION.

219. If a quantity be continually multiplied by itself, it is
said to be wnwvolved or raised, and the power to which it is raised
is expressed by the number of times the quantity has been em-
ployed in the multiplication. The operation is called Znvolution.

Thus as we have stated (Art. 16), @ x @ or &’ is called the
second power of @; axaxa or a® is called the third power
of @; and so on.

220. If the quantity to be involved have a negative sign
prefixed, the signs of the even powers will be positive, and the
signs of the odd powers negative.

For, —ax—a=a", —ax—ax—a=a’'x-—-a=—a’
—ax—ax—a@x—a=—0 x—a=a'
and so on.

221. A simple quantity is raised to any power by multiply-
ing the index of every factor in the quantity by the exponent of
that power, and prefixing the proper sign determined by the pre-
ceding article.

Thus o™ raised to the ™ power is a™; for if we form the
product of n factors, each of which is @™, the result by the rule of
multiplication is a™. Also (ab)"=abxabxab... to n factors,
that is, e xa xa... to » factors xbxbxb... to n factors, that
is, @" x b". Similarly, @'’ raised to the fifth power is ¢'0'°¢’.
Also —a™ raised to the n'™ power is =a™, where the positive or
negative sign is to be prefixed according as n is an even or odd
number. Or as —a"=-—1xa"™ the n™ power of —a™ may be
written thus (—1)" x @™ or (—1)"a™.

222. If the quantity which is to be involved be a fraction,
both its numerator and denominator must be raised to the pro-
posed power, (Art. 142.)
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223. If the quantity which is to be involved be compound,
the involution may either be represented by the proper index, or
may actually be performed.

Let a+b be the quantity which is to be raised to any

power,
a+b a®+ 2ab + b° @ + 3a’b + 3ab® + b°
a+b a+b e+
a’+ ab a® + 2a°b + ab® a* + 3a®b + 3a°b® + ab®
+ab+0* +a®b + 2ab*+ b? + ab + 3a°b® + 3ab®+ bt

@' +2ab+ 0 '+ 3a’b+ 3ab’+ b° @'+ 4a’b + 62D’ + 4ab’ + b
Thus the square or second power of a+b is a*+2ab + 0% the

cube or third power of a+?b is a’+3a’b+ 3ab® +0°, the fourth
power of a+b is a*+4a’b + 6a’d® + 4ab® + b*, and so on.

Similarly, the second, third, and fourth powers of a—& will
be found to be respectively a®—2ab+ 8% a®—3a’b+ 3ab®— 0% and
a'—4a’b + 6’0" — 4ab® + b*; that is, wherever an odd power of b
occurs, the negative sign is prefixed.

‘We shall hereafter give a theorem, called the Binomial Theo-
rem, which will enable us to obtain any power of a binomial ex-
pression without the labour of actual multiplication.

924. Tt is obvious that the n*™ power of @™ is the same as the
m™ power of o', for each is @™ ; and thus we may arrive at the
same result by different processes of involution. We may, for
example, find the sixth power of @+ b by repeated multiplication
by a+b; or we may first find the cube of a+?b, and then the
square of this result, since the square of (@ +0)° is (2 +5)°; or we
may first find the square of @ + b and then the cube of this result,
since the cube of (a +b)* is (a +b)". '

225. It may be shewn by actual multiplication that
(@+b+c)=a"+ b+ ¢® + 2ab + 2bec + 2ac,
(a+b+c+d) =a’+ 0"+ ¢+ d” + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd.
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The following rule may be observed to hold good in the above
and similar examples; the square of any multinomial consists of
the square of each term, together with twice the product of every pair
of terms.

Another form may also be given to these results,
(@+b+cf=a’+2a(b+c) +b°+ 2bc+ ¢,
(@+b+c+dy=a’+2a(b+c+d)+b*+2b(c+d)+c*+ 2cd +d"
The following rule may be observed to hold good in the above
and similar examples; the square of a multinomial consists of the

square of each term, together with twice the product of each term by
the sum of all the terms which follow it.

These rules may be strictly demonstrated by the process of
mathematical induction, which will be explained hereafter.

226. The following are additional examples in which we
employ the first of the two rules given in the preceding article.

(a—b+c)'=a’+ b+ ¢ — 2ab — 2bc + 2ac,
(122 + 32%)° =1 + 42° + 92" — 4o — 122" + 62°
=1-—4x +102° — 122° + 9z*,

Q+z+a"+2°) =1+2"+a*+ 2+ 20 + 207 + 22° + 22° + 22 + 20°

=1+ 2x + 32® + 4a® + 3a* + 22° + &°

227. The following results should be noticed :
(@ + b)’=a® + b* + 3ab (a + b),
(a—b)*=a®— b*— 3ab (a — b),

(@a+d+c)'=a’+b"+ ¢+ 3a® (b + c) + 3b° (a + ¢) + 3¢* (w + b) + Gabe.

EXAMPLES OF INVOLUTION,
Find (1 + 2z + 32°)".
Find (1-a+2"— 2"
Find (a+b—¢)’
Find (a+b+c+d)"

Je oSS I
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5. Find (1- 3z + 32" —2°".
(27a* — 18a°b* — b*)* o (9a" - by’ (- a”) B
64a%b* 64a’b* i
7. Shew that (ax®+ 2bxy + ¢y®) (aX*® + 26XY + cT?)
={axX + cyY + b (2Y + yX )} + (ac — b°) (2¥ — yX)*.
8. Shew that (*+ pay + qy°) (X* + pX Y +¢T?)
=@X+pyX +qyY )’ +p(@X +pyX + qyY) (@Y — yX) + g(x¥ - yX )
and also

=(xX +pxY +quY )+ p@X +pzY + qyY)(yX—2Y) + g(a¥ —y X )"

6. Shew that

XVII. EVOLUTION.

228. Evolution, or the extraction of roots, is the method of
determining a quantity, which when raised to a proposed power
will produce a given quantity.

229. Since the n'* power of ™ is @™, an »™ root of ¢™ must
be a”; that is, to extract any root of a simple quantity, we
divide the index of that quantity by the index of the root re-
quired.

230. If the root to be extracted be expressed by an odd num-
ber, the sign of the root will be the same as the sign of the
proposed quantity, as appears by Art. 220. Thus,

Y-a)=-a
231. If the root to be extracted be expressed by an even
number, and the quantity proposed be positive, the root may be

either positive or negative; because either a positive or negative
quantity raised to an even power is positive by Art. 220. Thus,

J(@)==a

232. 1If the root proposed to be extracted be expressed by an
even number and the sign of the proposed quantity be negative,
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the root cannot be extracted; because no quantity raised to an
even power can produce a negative result. Such roots are called
umpossible.

233. A root of a fraction may be found by taking that root
of both the numerator and denominator. Thus,

65 = S5

234. We will now investigate the method of extracting the
square root of a compound quantity.

Since the square root of o®+ 2ab+b® is @+ b, we may be led
to a general rule for the extraction of the square root of an alge-
braical expression by observing in what manner a and b may be
derived from a® + 2ab + b°.

a’+2ab+0° (a+b

aE

%0+ ) 2ab + b°
2ab + b*

Arrange the terms according to the dimensions of one letter a,
then the first term is ¢°, and its square root is @, which is the first
term of the required root. Subtract its square, that is a°, from
the whole expression, and bring down the remainder 2ab + b°.
Divide 2ab by 2a and the quotient is b, which is the other term
of the required root. Multiply the sum of twice the first term
and the second term, that is 2a + b, by the second term, that is
b, and subtract the product, that is 2ab + 0% from the remainder.
This finishes the operation in the present case. If there were
more terms we should proceed with @+ b as we did formerly
with @; its square, that is a®+ 2ab +b° has already been sub-
tracted from the proposed expression, so we should divide the
remainder by the double of @+ b for a new term in the root, and
then for a new subtrahend we should multiply this term by the
sum of twice the former terms and this term. The process must
be continued until the required root is found.

T. A, 9
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130 _EVOLUTION.

235. For example, required the square root of the expres-
sion 4x* — 12a° + 52° + 6z + 1.
4ot —122° + 52+ 6z +1 ( 20°— 3z -1

4ot

40° — 3w ) —12a° + ba’ + 6 + 1

—122° + 92°
40° — 6w —1 ) — 4’ + 62 + 1

—42*+ 6+ 1

Here the square root of 4a* is 2a° which is the first term of
the required root. Subtract its square, that is 4z, from the
whole expression, and the remainder is. —12a°+ 52+ 6x + 1.
Divide — 122° by twice 2a°, that is by 4% the quotient is — 3z,
which will be the next term of the required root; then mul-
tiply 4a°— 3z by —3x and subtract, so that the remainder is
—42°+ 62+ 1. Divide by twice the portion of the root already
found, that is by 4@°— 6x; this leads to —1; the product of
42 — 6z —1 and —1 is — 4a2® + 6z + 1, and when this is subtracted
there is no remainder, and thus the required root is 22° — 3z — 1.

236. Again, extract the square root of
2° — 6ax® + 15a’x* — 200°2° + 15a'2® — 6a’x + a°.
The operation may be arranged as before,
@’ —6az’+ 150’ - 200’2 + 15a'a’ - 6a’z +a® ( &°— 3ax’+ 3a’z—a®

wo

20’ —3ax’ ) —6ax’ + 15a°x* — 20a°% + 1 5a*x* — 6a°% + a®

—6ax’+9a’z*

22° —6aa’+3a’z ) 6a’x* — 20a°c* + 1502’ — 6a’x + a’

6a’z*—18a’x® +9a’x®

2o’ —6ax’+6a’c—a’ )~ 2a°2® + 6a'a® — 6a‘z+a’
— 2a°%° + 6a’a’ — 6a’z+a’
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237. It has been already remarked, that all even roots admit
of a double sign. (Art. 231.) Thus in the example of Art. 235,
the expression 22°— 3z —1 is found to be a square root of the
expression there given, and — 22+ 3z +1 will also be a square
root, as may be verified. In fact, the process commenced by the
extraction of the square root of 4a*, and this might be taken as
2x* or as — 2a°; if we adopt the latter and continue the opera-
tion in the same manner as before, we shall arrive at the result
— 2" + 3z + 1.

238. The jfourth root of an expression may be found by ex-
tracting the square root of the square root. Similarly the eighth
root may be found, or the sizteenth root, and so on.

239. The preceding investigation of the square root of an
Algebraical expression will enable us to prove the rule for the
extraction of the square root of a mumber, which is given in
Arithmetic.

The square root of 100 is 10, of 10000 is 100, of 1000000 is
1000, and so on; hence it will follow that the square root of a
number less than 100 must consist of only one figure, of a number
between 100 and 10000 of two places of figures, of a number be-
tween 10000 and 1000000 of three places of figures, and so on.
If then a point be placed over every second figure in any number
beginning with the units, the number of points will shew the
number of figures in the square root. Thus the square root of
4356 consists of two figures, the square root of 611524 of three
figures, and so on.

240. Suppose the square root of 4356 required.

Point the number according to i i
the rule; thus it appears that the 4356 (60+6
root consists of two places of figures, it
Let a+b denote the root, where a is .1 20+6)756
the value of the figure in the tens’ 756
place, and b of that in the units i

9—2
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place. Then a must be the greatest multiple of ten which has
its square less than 4300; this is found to be 60. Subtract o
that is the square of 60, from the given number, and the remain-
der is 756. Divide this remainder by 2a, that is by 120, and the
quotient is 6, which is the value of 6. Then (2a +0)b, that is
126 x 6 or 756, is the quantity to be subtracted; and as there is
now no remainder, we conclude that 60+ 6 or 66 is the required
square root.

It is stated above that @ is the greatest multiple of ten which
has its square less than 4300. For a evidently cannot be a
greater multiple of ten. If possible suppose it to be some multi-
ple of ten less than this, say @; then since # is in the tens’ place,
and b in the units’ place, « + b is less than @ ; therefore the square
of #+0 is less than a’, and consequently x+0 is less than the
true root.

If the root consist of three places of figures, let a represent
the hundreds and & the tens; then having obtained @ and b as
before, let the hundreds and tens together be considered as a new
value of «, and find a new value of b for the units.

241. The cyphers may be omitted for the sake of brevity,
and the following rule may be obtained from the process.

Point every second figure beginning with
the units’ place, and thus divide the whole
number into several periods. Find the great- 36
est number whose square is contained in the 126 )75 6
first period; this is the first figure in the 756
root; subtract its square from the first period,
and to the remainder bring down the next period. Divide this
quantity, omitting the last figure, by twice the part of the root
already found, and annex the result to the root and also to the
divisor, then multiply thé divisor as it now stands by the part of
the root last obtained for the subtrahend. If there be more
periods to be brought down the operation must be repeated.

4356(66

www.rcin.org.pl



"EVOLUTION. 133

242. Extract the square root of 611524 ; also of 10246401.

611524 (782 10246401(3201
49 9
148)1215 62)124
1184 124
1562)3124 6401)6401
3124 6401

In the second example the student should observe the occur-
rence of the cypher in the root.

243. The rule for extracting the square root of a decimal
follows from the preceding rule. We must observe, however, that
if any decimal be squared there will be an ever number of decimal
places in the result, and therefore there cannot be an exact square
root of any decimal which in its simplest state has an odd number
of decimal places.

The square root of 21-76 is one-tenth of the square root of
100 x 21-76, that is of 2176. So also the square root of ‘0361 is
one-hundredth of that of 10000 x ‘0361, that is of 361. Thus we
may deduce this rule for extracting the square root of a decimal ;
put a point over every second figure beginning at the units’ place,
and continuing both to the right and left of it; then proceed as
in the extraction of the square root of integers, and mark off as
many decimal places in the result as the number of periods in the
decimal part of the proposed number.

244, 1In the extraction of the square root of an integer, if
there is still a remainder after we have arrived at the figure in
the units’ place of the root, it indicates that the proposed number
has not an exact square root. We may if we please proceed with
the approximation to any desired extent by supposing a decimal
point at the end of the proposed number, and annexing any even
number of cyphers and continuing the operation. We thus obtain
a decimal part to be added to the integral part already found.
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Similarly, if a decimal number has no exact square root, we
may annex cyphers and proceed with the approximation to any
desired extent.

245. The following is the extraction of the square root of
twelve to seven decimal places.
120000...(34641016

9 .
64)300
256

686)4400
4116

6924)28400
27696

69281)70400
R TE

6105 8 2089 T 1 41:19100:16.0
6928201

69282026)426179900
415692156

10487744

246. When n+1 figures of a square root have been obtained
by the ordinary method, n more may be obtained by division only,
supposing 2n + 1 to be the whole number.

Let NV represent the number whose square root is required,
@ the part of the root already obtained, 2 the part which remains
to be found; then

NV =a+x,
so that N =a® + 2ax + o,
therefore, N —a® = 2ax + 2°,
and IX_—_a_’ =@+ Gl .

2a 2a ",
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Thus NV —a® divided by 2« will give the rest of the square
2 2

root required, or x, increased by % ; and we shall shew that %

is a proper fraction, so that by neglecting the remainder arising
from the division we obtain the part required. For « by sup-

position contains n digits, so that 2 cannot contain more than
2
2n digits; but @ contains 2n + 1 digits, and thus A proper

2a

fraction.

247. We will now investigate the method of extracting the
cube root of a compound quantity.

The cube root of a®+ 3a’b + 3ab®+b° is @ + b, and to obtain
this we proceed as follows; arrange E : g
the terms according to the dimen- % + 30’0+ 3ab* +5° (a + b
sions of one letter @, then the first _&
term is @°, and its cube root is @, 3a’) 3a’h + 3ab® + b°
which is the first term of the re- 3a’b + 3ab® + b°
quired root. Subtract its cube, that T AR
is @’, from the whole expression, and bring down the remainder
3a’b + 3ab®+ b°. Divide the first term of the remainder by 3,
and the quotient is b, which is the other term of the required
root; then subtract 3a°6 + 3ab® + b° from the remainder, and the
whole cube of @+ b has been subtracted. This finishes the opera-
tion in the present case. If there were more terms we should
proceed with a+b as we formerly did with «; its cube, that is
a’+ 3a’b + 3ab®+ b° has already been subtracted from the pro-
posed expression, so we should divide the remainder by 3 (a + b)*
for a new term in the root; and so on.

248. It will be convenient in extracting the cube root
of more complex Algebraical expressions, and of numbers, to
arrange the process of the preceding article in three columns,
as follows:
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3a+b 3a’ a’+ 3a°b + 3ab® + 0° (a +b
(3a+b)b a’
3o . 3ab-1 b 3a’b + 3ab® + b*

3a’b + 3ab® + b°

Find the first term of the root, that is @; put & under the
given expression in the third column and subtract it. Put 3a
in the first column, and 3a¢® in the second column; divide 3a°b
by 3a¢® and thus obtain the quotient 4; add b to the quantity
in the first column; multiply the expression now in the first
column by b, and place the product in the second column and add
it to the quantity already there; thus we obtain 3a°+ 3ab + b°;
multiply this by b and we obtain 3a’b + 3ab®+ b°, which is to be
placed in the third column and subtracted. We have thus com-
pleted the process of subtracting (@ +0b)* from the original ex-
pression. If there were more terms the process would have to
be continued.

249. In continuing the operation we must add such a quan-
tity to the first column as to obtain there three times the part of
the root already found. This is conveniently effected 5 A
thus; we have already in the first column 3a +5b; 2
place 26 under the b and add; thus we obtain 3a + 3b,
which is three times a + b, that is, three times the
part of the root already found. Moreover, we must add such a
quantity to the second column as to obtain there three times the
square of the part of the root already found.

3a + 3b

This is conveniently effected thus; we have (3a+0)b
already in the second column (3a +b6)0, and 3a’ + Jab + b’
below that 3a®+ 3ab + b*; place b* below and b*

add the expressions in the three lines; thus we 3a° + Gab + 3b°
obtain 3a®+ 6ab + 3b°, which is three times

(@ +b)’, that is, three times the square of the part of the root
already found.
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250. Example; extract the cube root of
82° — 36cx’ + 66¢x* — 63c°2® + 33c*x® — 9c’x + .

6x® — 3ex 12a*
- 6cac} — 3cx (62° — ex) }

62® — 9ex + ¢* 122* — 18ca® + 9c’x®
+ 9¢c%2°

122* — 36¢x® + 27¢°°
+ ¢* (62° — 9ex + ¢°)

122* — 36¢x®+ 33¢’x® — 9¢c’x + ¢*
8a° — 36¢ca” + 66c%x* — 63c%x® + 33c*x® — 9c’x + ¢® \ 22° — 3ex + ¢”
8x°

— 36¢a® + 66¢%2* — 63c%® + 33c*x® — 9c®x + ¢°
— 36¢a® + bdc’xt — 27

12¢%* — 36¢°2® + 33¢*x® — 9c’x + ¢°
12¢%x* — 36c%° + 33¢*2® — 9c’x + ¢°

The cube root of 82°is 2z which will be the first term of the
root; put 82° under the given expression in the third column and
subtract it. Put three times 22° in the first column, and three
times the square of 22° in the second column; that is, put 62° in
the first column, and 12z* in the second column. Divide — 36ea®
by 122, and thus obtain the quotient — 3¢z, which will be the
second term of the root; place this term in the first column,
and multiply the expression now in the first column, that is,
6a° — 3cx by — 3cx; place the product under the quantity in the
second column and add it to that quantity; thus we obtain
122" — 18¢2® + 9¢®; multiply this by — 3ex, and place the product
in the third column and subtract. Thus we have a remainder in
the third column, and the part of the root already found is
2a* — 3ea.
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We must now adjust the first and second columns in the
manner explained in Art. 249. We put twice — 3cx, that is,
— 6ew, under the quantity in the first column, and add the two
lines; thus we obtain 62°— 9cx, which is three times the part of
the root already found. 'We put the square of — 3ca, that is, 9¢%2?,
under the quantity in the second column, and add the last three
lines in this column; thus we obtain 12z*— 36ca’® + 27¢°%2°, which
is three times the square of the part of the root already found.

Now divide the remainder in the third column by the ex-
pression just obtained, and we arrive at ¢’ for the last term of
the root; proceed as before and the operation closes.

251. The preceding investigation of the cube root of an
Algebraical expression will enable us to deduce a rule for the
extraction of the cube root of any number.

The cube root of 1000 is 10, of 1000000 is 100, and so on;
hence it will follow that the cube root of a number less than
1000 must consist of only one figure, of a number between 1000
and 1000000 of two places of figures, and so on. If then a point
be placed over every third figure in any number beginning with
the units, the number of points will shew the number of figures in
the cube root.

252. Suppose the cube root of 405224 required.

210+4 14700 405224 (70+4
856 343000
15556 62224

62224

By pointing the number according to the direction, it appears
that the root consists of two places; let @ be the value of the
figure in the tens’ place, and b of that in the units’ place. Then
a must be the greatest multiple of ten which has its cube less
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than 405000; that is, @ must be 70. Place the cube of 70,
that is 343000, in the third column under the given number and
subtract. Place three times 70, that is 210, in the first column,
and three times the square of 70, that is 14700, in the second
column. Divide the remainder in the third column by the number
in the second column, that is, divide 62224 by 14700; we thus
obtain 4, which is the value of 5. Add 4 to the first column;
multiply the sum thus formed by 4, that is, multiply 214 by 4;
we thus obtain 856 ; place this in the second column and add it
to the number already there. Thus we obtain 15556; multiply
this by 4, place the product in the third column and subtract.
The remainder is zero, and therefore 74 is the required root.
The cyphers may be omitted for brevity, and the process will
stand thus:

214 147 40522474
856 343
15556 62224

62224

253. Example; extract the cube root of 12812904.

63} 12 12812904 (234
6 189 8
694 1389} 4812
9 4167
1587 645904
2776 645904
161476

After obtaining the first two figures of the root 23, we adjust
the first and second columns in the manner explained in Art, 249.
We place twice 3 under the first column and add the two lines
giving 69, and we place the square of 3 under the second column
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and add the last three lines giving 1587. Then the operation is
continued as before. The cube root is 234.

254. Example; extract the cube root of 144182818617453.

152} 75 144189818617453(52437
4 304 125
1564 7804} 19182
8} 4 15608
15723 8112 3574818
6} 6256 3269824
157297 817456} 304994617
16 247259907
823728 57734710453
47169 57734710453
82419969}
9
82467147
1101079
8247815779

The cube root is 52437.

255. If the root have any number of decimal places the cube
will have thrice as many; and therefore the number of decimal
places in a decimal number, which is a perfect cube, and in its
simplest state, will necessarily be a multiple of ¢hree, and the
number of decimal places in the root will be a third of that
number. Hence if the given eube number be a decimal, we
place a point over the units’ figure, and over every third figure to
the right and left of it; then the number of points in the decimal
part of the proposed number will indicate the number of decimal
places in the cube root.
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256. Required the cube root of 1481-544.

31 3 1481-544 (11-4
2} 311 1
334 331 481
1 331
363 150544
1336 150544
37636

The cube root is 11-4.

257. When n +2 figures of a cube root have been obtained
by the ordinary method, n more may be obtained by division
only, supposing 2n +2 to be the whole number.

Let NV represent the number whose cube root is required,
a the part of the root already obtained, « the part which remains
to be found ; then

N = ata,
so that N = a® + 3a°z + 3az’ + 2°;
therefore, N —ad® = 3a’x + 3ax® + °,
N-a o e
and 3.2 :w+;+£2.

Thus N —a® divided by 3a® will give the rest of the cube
2 3
root required, or z, ncreased by %+ % ; and we shall shew

that the latter expression is a proper fraction, so that by neglect-
ing the remainder arising from the division, we obtain the part

required. For by supposition, z is less than 10", and « is not
2n

2
less than 10”““; thus % is less than 4 that is, less than

102n+1 ’
1 107 " 1
10" And = 3 is less than — 35 105 that is, less than T
2
Hence & +§—, is legs than 110 35 }0,,, , and is thus less than
unity..
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EXAMPLES OF EVOLUTION. CHAPTER XVII.

EXAMPLES OF EVOLUTION.

Extract the square roots of the expressions contained in the
following examples from 1 to 15 inclusive,

1

© o»

10.
4.

12.

13.

14,
15.

16.

Mo ;e e

ot — 2% + 32— 22 + 1.
a'— 42’ + 8w + 4.
4ot + 122° + 5o’ — 6 + 1.
4ot — 42® + 5’ — 22 + 1.
4ot — 12a2° + 25a°0° — 240’z + 1640,
25x* — 30aa® + 49a’s’ — 24a’x + 16a’.
a® — 6ax’® + 15a’x* — 20a°2° + 15a*2° — 6a’x + a’.
(a—0b)'—2 (&’ + b°) (a—D)* + 2 (a" + D).
4 {(a® = b%) ed + ab (¢ — d°)} + {(a® — °) (¢* — d*) — 4abed .
a'+ b+ ¢+ d*— 2a° (0 + d°)—20° (" — d°) + 2¢° (a* — d°).
D
@ x
2

@
xt—a®+

4
7l +4x—2+;,.

atsra¥! o x’
e +;2—aac—2+;,.
a*+2 (20— c¢) @* + (4b° — 4be + 3¢°) a* + 2¢° (20 — ¢) @ + .
(@ — 20y &' — 2a (a — 20) 2° + (a® + 4ab — 6a — 80" + 120) &*
— (4ab — 6a) @ + 46°— 120 + 9.
Find the square root of the sum of the squares of ‘2, -4,
*6, -86.

Extract the cube root of the expressions and numbers in the
following examples from 17 to 24 inclusive.

17
18.

82° — 362° + 662 — 632° + 33x°— 9z + 1.
82° + 48cx® + 60c%x* — 80c%® — 90¢'a® + 108c¢°%x — 27¢".
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19, 8a®—36cx® +102¢°* — 171c%° + 204c¢*2x® — 144c%x + 64¢°.
20. 167-284151.
21, 731189187729.
22, 10970-645048.
23. 1371742108367626890260631.

2 2
24. Extract the fourth root of ( ®+ %,) -4 (ac +%) +.12,

25. If a number contain 7 digits, its square root contains
1{2n +1— (- 1)"} digits.

26. Shew that the following expression is an exact square :

(= 92 + (" — 22 + (&~ 2)° ~ 3 (0" - 92) ('~ ) (" — ay).

XVIII. THEORY OF INDICES.

258. We have defined ™, where m is a positive integer, as
the product of m factors each equal to @, and we have shewn that

a™ . :
a™ x a" = a™*", and that i a™™" or according as m is greater

an—m

or less than n. Hitherto then an exponent has always been a
positive integer; it is however found convenient to use exponents
which are not positive integers, and we shall now explain the
meaning of such exponents.

259. Positive Fractional Expoment. " is used to denote
the »™ root of a", that is /(a™).

Negative Exponent. a7 is used to denote -3; whether p be

whole or fractional.
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144 THEORY OF INDICES.
260. Thus, for example, according to the first definition,
ad= Nl at= Jas af = =g,
and so on.

According to the second definition,

1 a-
= -
J“ at o

-2 =
a :vg, a$:

1
o a*

and so on.

261. Thus it will appear that it is not absolutely necessary
to introduce fractional and negative exponents into Algebra, since
they merely supply us with a new notation for quantities which
we had already the means of representing. It is, as we have said,
a convenient notation, which the student will learn to appreciate
as he proceeds. We may, however, shew at once that the new
notation is not arbitrary, but founded on an important principle ;
to this we proceed.

262. The relation a™ x a" = a™*", which holds when m and n
are positive integers, occurs perpetually in Algebraical operations ;
if we wish to give a meaning to fractional and negative exponents,
it is reasonable that the meanings should be such as will allow this
smportant relation still to subsist. 'We shall shew hereafter that
the meanings we have given do satisfy this condition, and we will
here briefly indicate how these meanings might have been sug-
gested by the condition. Take the given relation, and suppose,
for example, that m and n are each 3, so that the relation be-
comes a!xat=a'=a. Thus ¢ must denote a quantity such
that if it be multiplied by itself the product is @ ; now the square

root of @ is, by definition, such a quantity. Thus a* must be the
square root of a, that is, must denote the same thing as \/a.

263. Similarly we can indicate the way in which the meaning
of negative exponents might have been suggested by the condition
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THEORY OF INDICES. 145

of making the relation @™ x " =a™*" universally true, For write
—n for » in this relation, then it becomes

n n

=a™

a”xa”
But we know if m be greater than » that

m
e O _ o 1.
an an)

hence we see that ™" and ‘% must denote the same thing.

264. We have shewn in Arts. 62 and 63 that

am
-— m-—n o
R or ———s

a

according as m is greater or less than 7; in consequence of the
meaning which we attach to negative exponents, it will no longer
be necessary to distinguish between these two cases, For

1

=0

—(n—m) —aq™ "

@iy

so that we may for the future use

= and ™" indifferently.

265. In the relation % = a" " suppose that m=mn; the left-

hand member is then obviously unity, and the right-hand member
takes the form «”; the last symbol has not hitherto received a
meaning, so that there is nothing to prevent our giving it the
meaning which naturally presents itself. Hence we may put
a’=1;

266. The notation which we have explained will now be
used in establishing some propositions relating to roots and
powers.

1 1 1
267. To shew that a* x b= (ab)".

p 3 b
Let " x §" = «; therefore
1 1

o = (a% x )" = (a")" x (5", (by Art. 41), =a x b
T. A, 10
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146 THEORY OF INDICES.

1
Thus «" = ab, therefore z= (ab)", which was to be proved.

In the same manner we can prove that
18 g
a"=b" = <5> .

L g ) B &
268. Hence a" xb" x ¢" = (ab)" x ¢" = (abc)".
And by proceeding in this way we can prove that

1 1 1 ) 8

3
G B ot X ]c7=(abc....k)".

Suppose now that there are m of these quantities a, b, ¢, ...k,
and that each of them is equal to @; then we obtain

4 i
(a n)m Fe (alm)n'
1 m
But (a™)" is, by definition, a"; thus
1 m
(a_")"‘ = a,7'-.

; 3

13
269. To shew that (a™)"=a™.

-

y o |
Let 2= (a")"; therefore a"=a™; therefore 2™ =a; there-
1 3. 1 |
fore x=a™. Thus ()" =a™, which was to be proved.

m mp
P
.

270. To shew that a" = a

m
Let z=a"; therefore a"=a"; therefore ™ =a™; therefore
mp m mp

#=a". Thus a"=a™, which was to be proved.

271. The student may infer from what we have said in
Art. 261, that the propositions just established may also be
established without using fractional exponents. Take for example
that in Art. 267 ; here we have to shew that

Ja x 3b= {/(ab).

www.rcin.org.pl



THEORY OF INDICES. 147

Proceed as before; let z=a x /b; therefore
a" = (ofa x 2b)" = (Ja)" x (J/b)", (by Art. 41),=a xb.
Thus &= ab, therefore x= ?/(ab), which was to be proved.

9272. We shall now proceed to shew that the relations
a" xa"=a"™ and (a")"=a™ are universally true, whatever m
and » may be.

b x »
= = =4
273. To shew that a?xa’=a’

»
8
.

” ps qr

B e ien
a'x a'=a® x a®, by Art. 270,
e 3
= (a*)® x (a”)*, by definition,

1
= (a™ x a”)®, by Art. 267,

AL o i P.r
= (apcﬂ' C—q ¥ =gl °

274. In the same way we can prove that

» r A

a’ra'=a' "’

275. Thus the relation @™ x a"=a™"" is shewn to be true
when m and = are positive fractions, so that it is true when m
and n are any positive quantities. It remains to shew that it is
also true when either of them is a negative quantity, and when
both are negative quantities.

(1) Suppose one to be a negative quantity, say »; let

n=—y.
" n m =l " 1 am -
Then a®*xa*=a"xa’=a x;:—:a"‘ ”, (by Art. 274),

av

i am+ n.

(2) Suppose both to be negative quantities; let
=—p® and n=—w
10—2
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Then

1 1

a"xa'=aFxa == % —
a* a’

= 5, (by Art. 273),

T a*xa’

276. Similarly a™x a”x a’=a™"" x a’=a™*"*?; and so on.
Thus if we suppose there to be » quantities m, n, p, ..., and
that each of the others is equal to m, we obtain
(am)r — am',
whatever m may be.

rr

W
277. To shew that («?)=a™

2L = [
Let x=(a’)’; therefore #’=(a’)"=a’ by Art. 276; there-

or
fore 2= a*"; therefore == a*, which was to be proved.

278. To shew that (¢™)"= @™ universally.

By the preceding article this is true when m and = are any
positive quantities; it remains to shew that it is true when either
of them is a negative quantity, and when both are negative
quantities,

(1) Suppose n to be a negative quantity, and let it = —v.
1 1

m\n __ [, m\—V _ b bl e L
Then (@)= (a =@y - a a™.

(2) Suppose m to be a negative quantity, and let it = —p.
m\n vl uwl 1 . 1 —pn mn
Then  (a""=(a F)=(J>:ZF=““=“ ;

(3) Suppose both m and % to be negative quantities; let

m=—p and n=—v.

Then (a"‘)" = (a,'f")" =

—
—

a—,;,)v a "
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10.
1031

12.

13.
14.

15.

16.

EXAMPLES OF INDICES.

EXAMPLES OF INDICES.

1
Simplify (2% x 2tys.

Find the product of a’L‘, a,"'!‘, a,‘i, and o™ %,

@) @

Simplify the product of

a’b

and <L

i

at, o at i i/a% and (a,‘;)67
v b b ’ ) ¥

=Y.

Multiply o + 6%+ a3 by ab~4—ad + 8t

Simplify

"
1 3
a’—a’'+a

d-adt+1-atia? by a+1+ad

4

3

CHAPTER XVIII.

3 § 5
—xy*+x*y —y* by x+ x*y*+y.

5

—a*+dt—a+at-1 by at 1.

—3a°+2a7*07" by —2a*— 3a™*b.

3

]

Divide z* - zy +xéy—y% by a:%-y

%.

...... ot + 2¥ad + ol by ab + addad v ad,

...... 2%y~ — baty P+ T’y ™' — ba® + 2ay

149

by oy~ — 2y 4 ay.

...... at—att+ abt— 2adp + ot by a¥—abt+ ah - B,

Simplify

F L) 3

a —aa:§+a, €x—x

a

§

—a's + a2 - 3aat + 4
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150 EXAMPLES OF INDICES. CHAPTER XVIII.

17. Extract the square root of
v, 2 oo
# el
18. Extract the square root of
40— 1248 + 96% + 16act — 248%ct + 16.%
19. Extract the square root of

256a" — 5122 + 640a° — 51228 + 304 — 12823 + 400~ — 827 1 2

a a

20. If &*=10° shew that (g)z =a®'; and if a =25, shew
tha.t b= 2.

XIX, SURDS.

279. When a root of an Algebraical quantity which is re-
quired, cannot be exactly obtained, it is called an irrational or
surd quantity. Thus Ja® or a? is called a surd. But Ja® or a%,
though apparently in a surd form, can be expressed by « and so
is not called a surd.

The rules for operations with surds follow from the proposi-
tions established in the preceding chapter, as will now be seen.

280. A rational quantity may be expressed in the form of a
gwen surd, by raising it to the power whose root the surd expresses,
and affixing the radical sign.

Thus a=,/a*=7/a’, &c.; and a+z=(a+)". In the same
manner the form of any surd may be altered ; thus
(a+ x)é = (o + ::c)"F =(a+ a:)%, &e.

The quantities are here raised to certain powers, and the roots of
those powers are again taken, so that the values of the quantities
are not changed.
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© 281. The coefficient of a surd may be introduced under the
radical sign, by first reducing it to the form of the surd and then
multiplying according to Art. 271,

For example,
@z = ot x Jo=(@2); ay=(@y);
z \/(2a —x)= /(202" — 2°); ax(a— x)% ={a’(a — x)”}%,'
4,/2=,/(16 x 2) = /32.
282.  Conversely, any quantity may be made the coefficient of

a surd, if every part under the sign be divided by the quantity
raised to the power whose root the sign expresses.

Thus ,/(¢’—ax)= at x J(@—2z); ,\/(a; —a’z) =a /(a—2);

1 2

(@ =2 =a" x <1 ~ZVF5 W60 =k x 15) =2 /15

(-1 1By 1@ el
o b x o \b b

283. When surds have the same wrrational part, their sum or

difference is found by affizing to that irrational part, the sum or
difference of their coefficients.

Thus a,/z=b /o= (a<d) . /z;
3005 ,/3=10,/3+5,/3=15,/3 or 5,/3;
NV (3a’b) + /(3°0) = @ \/(3D) + @ \/(3b) = (@ + ) /(3D).
284. If two surds have the sume index, their product is found

by taking the product of the quantitics under the signs and retain-
ing the common indea. ‘

1

Thus a,% = (ab)%, CATER2BTY o I xci, 8=+ f6);
(a+ ) x (a—b)t = (& - 27},
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285. If the surds have coefficients, the product of these coeffi-
cients must be prefized.

Thus @ Jax b \/y=ab J/(zy); 3./8x5,/2=15,/16=60.

286. If the indices of two surds have a common denominator,
let the quamtities be raised to the powers expressed by their respective
nwmerators, and their product may be found as before.

Thus PLIVE LI LN T ILR
(a+ :1:)% x (@ — ac)’}= {(a + ) (a—x)s}é.

287. If the indices have not a common denominator, they may
be tramsformed to others of the same value with a common deno-
minator, and their product found as in Art. 286.

Thus
(a®— x’)é x (a— az:)é = (a*— :zc’)i x (@ — a:)% ={(a*-a°) (a— :1:)’}*;
2dx 33 = 2% « 3E_ gl 98 = (72)},
288. If two surds hawve the same rational quantity under the

radical signs, their product is jfound by making the sum of the
wndices the index of that quantity.

1 : § 4 1
& tiay

Thus a*xa"=a" ", (Art. 273);
J2x Y2=28xoh ool i of,

289. If the indices of two surds have a common denominator,
the quotient of one divided by the other is obtained by raising them
respectively to the powers expressed by the mwmerators of their
indices, and extracting that root of the quotient which is expressed
by the common denominator.

-

n 1 :!: m
Thus, %= (%‘) (Art. 267); % = (Z_;)
bl

dot-@do 0P G
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290. If the indices have not a common denominator, reduce
them to others of the same value with a common denominator, and
proceed as before.

Thus

(@ =)t (0= o)t = (o' )b = (o x”)%:{%%:;}é.

291. If the surds hawe the same rational quantity under the
radical signs, their quotient is obtained by making the difference of
the indices the index of that quantity.

-

1

& Sl
Thus, a" +a"=a™ *, (Art. 274);
J2+ o=t ol o
292, It is sometimes useful to put a fraction which has a
simple surd in its denominator into another form, by multiplying

both numerator and denominator by a factor which will render the
denominator rational. Thus, for example, ‘

2 28 2.8
Jo Jaix g &'

If we wish to calculate numerically the approximate value of

i it will be found less laborious to use the equivalent form

NE
2,/3 vy a a,/b
3 Similarly, ;/b s

293. Tt is also easy to rationalise the denominator of a frac-
tion when that denominator consists of fwo quadratic surds.

For a a (/b= \/c) a(Jb*Jc)
o Jo~ (Jo=io)(Jb=iJo) ~  b-c

a a (b= \Je) a,(ba=,,/c)
beJo (bxNJo)brio) e

So also
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294. By two operations we may rationalise the denominator

of a fraction when that denominator consists of three quadratic
surds. For suppose the denominator to be ,/a + ,/b+ \/c; first
multiply both numerator and denominator by ,/a +,/b ~ /¢, thus
the denominator becomes @+ b — ¢+ 2,/(ab); then multiply both
numerator and denominator by @+ b—c — 2 ,/(ab), and we obtain
a rational denominator, namely (@ +b— ¢)*— 4ab, that is,

@+ b+ ¢ — 2ab — 260 ~ 2ea

295. A factor may be found which will rationalise any bino-
mial.

1 1 1 1
(1) Suppose the binomial a” +57. Put z=a?, y=07; let
n be the least common multiple of p» and ¢; then «" and y" are
both rational. Now
(x+y) (mﬂ—l 1 4 wﬁ—ﬂy +wu—3y2 I :’/n—l> - xn i:‘l/'l’
where the upper or lower sign must be taken according as = is odd
or even. Thus

wn-—l o) mn—zy £ xn—aya_ & yn—l
is a factor which will rationalise z + 7.

3

1
(2) Suppose the binomial a* —b?. Take z, y, and 7 as be-
fore. - Now

(e~y) (@' +2" "y +a" % + .. +y" =a"-o"~

Thus T+ Y+ +
is a factor which will rationalise x—.

Take, for example, at +bF ; here n=6. Thus we have as a
rationalising factor
@’ —a'y + &y — Y + wy' — o,

- 3 4.1 3.2 2.8 174 13
that is, a® — a®b® + a*b? — a*b? + q?0% — B3,

. 5 y 1 3.2 1Y 5
that is, a® — a’b® + a? b — ab + a?b% — b®.

The rational product is «° — 3°, that is, a® — ¥, that is, - b°.
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296. The square root of a rational quantity cannot be partly
rational and partly o quadratic surd.
If possible let ,/n=a + /m; then by squaring these equal
quantities we have n=a’+ 2a /m +m; thus 2a /m=n —a’—m,
n—a’—m
and J/m=——F—

9a @ rational quantity, which is contrary to

the supposition.

297.  If two quadratic surds cannot be reduced to others which
have the same irrational part, their product is irrational.

Let /z and ,/y be the two quadratic surds, and if possible
let \/(xy) =7z, where r is & whole number or a fraction. Then
zy =7r%°, and y =1z, therefore \Jy=r /o, that is, \/y and ,/x
may be so reduced as to have the same irrational part, which is
contrary to the supposition.

298. One quadratic surd cannot be made up of two others
which have not the same irrational part.

If possible let \/z=,/m + . /n; then, by squaring, we have
z=m+n+2,/(mn), and \/(mn)=3 (x—m—mn), a rational quan-
tity, which is absurd.

299.  In any equation X + /y =a + /b which involves rational
quantities and quadratic surds, the rational parts on each side are
equal, and also the irrational parts.

For if 2 be not equal to @, suppose x=a+m; then
a+m+Jy=a+,/b,

so that m + /y=,/b; thus /b is partly rational and partly a
quadratic surd, which is impossible by Art. 296. Therefore z = a,
and consequently /7 = ,/b.

300, If J(a+ . b)=x+,/y, then \J(a— /b)=2— .y
For since J/(a + ,/b) =z + \Jy, we have by squaring
Ca+Jb=at+ 22 Jy+y;

www.rcin.org.pl



156 SURDS.
therefore a=2"+y, b =2z \Jy, (Art. 299).
Hence a—,Jb=a'—2x,/y+y,
and J(@—\Jb) =z —/y.

Similarly we may shew that if

W@+ ) =Jz+y,

then NJ(@—/b) = Jx —Jy.

301. The square root of a binomial, one of whose terms is a

quadratic surd and the other rational, may sometimes be expressed
by a binomial, one or each of whose terms is a quadratic surd.

Let a+,/b be the given binomial, and suppose
@+ Jb) = Jx+ ,[y.
By Art. 300, J(a—Jb) = Jz—\Jy.
By multiplication, ,/(a®—b)=2—.

By squaring both sides of the first equation,

a+,Jb=x+2,/(ey)+y;
therefore a=z+y.

Hence, by addition and subtraction,
a+,/(a’ - b) = 2, a—,/(a’-b)=2y;
therefore x=1{a+,/(a’-0b)}, y=2L{a—./(a’-0)}

Thus # and y are known, and therefore ,/(a+ ,/b), which is
JZ +\y.
Also ,/(a—,/b) is known, for it is /o —,/y.

302. For example, find the square root of 3 +2,/2.
Here a=3, o =2,/2, a@d-b=9-8=1;

therefore ~ x=3(3+1)=2, y=43B-1)=1,
Thus NE+2/2)=/2+./1=,/2 +1.

www.rcin.org.pl



SURDS. 157
303. Again; find the square root of 7 —2,/10.

Instead of using the result of Art. 301 we may go through the
whole operation as follows :

Suppose V(T =2J10)=Jx—Jy;
then, by squaring, 7-2,/10=2—2 /(zy)+y;

hence D T R T (1),
and 2 J(xy)=2,/10;

therefore (z+ y)° — 4oy = 49— (2 ,/10)",

that is, (x—y)?*=49-40=9,

and LY B s e ottt 4 e Y 2);

therefore, from (1) and (2), «=95, and y=2.
Thus V(T =2 ,/10)=,/5 — /2.

304. It appears from Art. 301 that

Jx:\/{a+\/;a’—b) ’ pridy \/ J(@ —b) ’

hence, unless a®— b be a perfect square, the values of ,/x and ,/y
will be complex surds, and the expression ,/xz +,/y will not be so
simple as ,/(a +,/b) itself.

305, A binomial surd of the form ,/(a’)+ ,/b may be written
thus, /¢ (a + \/ cé) . If thena’ ——I; be a perfect square, the square
root of @ + \/ f; may be expressed in the form ,/z + /.

Hence the square root of ,/(a’) +,/b is /e (J/z + /¥).

306. For example, find the square root of /32 + ,/30.
Here V32 +4/30 = /2 (4 + ,/15) ;
thus VW32 + 4/30) = ,;/2 x /(4 +\/15) ;
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and it may be shewn that

5 3
N/(4+,J15)=\/§ * \/E'
Henoe J(/32 + 30 = 42 (. /2 + /3L s+
=82 (/3*0/3) - g

307. Sometimes we may extract the square root of a quantity

of the form a + /b + /¢ +,/d by assuming
@+ Jb+ Je+ Jd)=Jx + . Jy+./z;
then a+,/b+ Je+ Jd=x+y+2+2,/(xy) + 2./ (y2) + 2 /() ;
we may then put
2J@y)=Nb,  2J@)=Ne  2/()=\d,

and if the values of x, y, and z, found from these, also satisfy

z+y + 2= a, we shall have the required root.

308. For example, find the square root of
8+2,/2+2,/5+2,/10.
Assume /(8 +2,/2 +2,/5 + 2,/10) = Jx + \Jy + /%;
then
8+2./2+2,/5+2,/10=x+y+2z+2 /(xy)+ 2 /(y2) + 2 |/ (2).
Puab 2 /(@) =2./2, . 2 @Ry =25, 2 J(zzx) =210 ;
hence, by multiplication, ,/(zy) x \/(yz) = /10,

and o (zx) = /10;
therefore, by division, o=t
hence ae 2, Jand le=b

These values satisfy the equation  + y +2 = 8.
Thus the required square root is \/2 + \/1+ /9,
that is, 1+,/2 +./5.
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309. If 3(a+,/b)=x+,/y, then }/(a—\/b)=z—,/y.
For suppose Ya+ Jo)y=z+,Jy;
then, by cubing, a+ /b=a’+3a*,/y+ 3wy +y /¥ ;
therefore a = o’ + 3wy, Mo =32 Jy+y Sy (Art. 299);
hence a—Jb=a"—3a® Jy+3xy —y.Jy,
and J@—=Jb) =z~ /y.

310. The cube root of a binomial @=,/b may be sometimes
found.

Assume J(a+ Jb) =z + Sy,
then Ma—Jb) = x—,/y.
By multiplication, ¥(a®-0) =a"—y.

Suppose now that a®— b is a perfect cube, and denote it by ¢,

thus c=x"-y;

and, as in Art. 309, a =2+ 3xy.
Substitute the value of y;

thus a=a+ 3z (2" ~¢);

therefore 40’ — 3ex = a.

From this equation 2 must be found by #rial, and then y is
known from the equation y =2°— c.

Thus it appears that the method is inapplicable unless a®—b
be a perfect cube; and then it is imperfect since it leads to an
equation which we have not at present any method of solving
except by trial. The proposition, however, is of no practical
importance.

311. For example, find the cube root of 10 +,/108.
Assume J0 +,J108) =z + /v,
then J(10 =, /108) =z — /y-
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By multiplication, 3/(100 — 108) = a* — 7,

that is, —2=ax'—y.
Also 10 = ® + 3y

=2+ 3z (2* + 2) ;
therefore 42° + 62 = 10.

We see that this is satisfied by 2 =1; hence y=3 and the

required cube root is 1 + ,/3.

10.
il

EXAMPLES OF SURDS.

Find a factor which will rationalise a* — b3,
Find a factor which will rationalise ,/2 —2/3.

Find a factor which will rationalise ,/3 + /5.

Shew that a;f_;‘i%gf__:;)} =z +,/(x - a’).

. 1
Given ,/3=1-7320508, find the value ofm.

B+/3)B+,/5)G/5-2) 1
Shew that ézJ;)Z{+J§} —5J15.

Shew that = =5 (1+ 2.

10+ ,/20 +,/40 — /5 — /80
Extract the square root of

9% _94 \/3’+34_24 Jﬂ +97.

Extract the square root of (a +b)* — 4(a —b) /(ab).
Extract the square root of 4 + 2,/3.
Extract the sﬁuare root of 7 — 4 ,/3.
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12.  Extract the square root of 7 + 2 ,/10.
13.  Extract the square root of 18 + 8 /5.
14.  Extract the square root of 75— 12 ,/21.
15. Extract the square root of 16 + 5 ,/7.
16.  Extract the square root of ab + ¢* +,/{(a’ — ¢*) (8*—¢?)).
17,  Extract the square root of — 9 + 6,/3,
18. Extract the square root of 1 + (1 — c’)*4.
19. Find the value of
I +1~/JE1x+ o) 1+i/(1x— 3 e ”2%‘3 '
20. Find the value of
1+ 3/212 ) ot 4 i/?lx— @) et # ;
21.  Extract the square root of 6 +2 /2 + 2,/3 +2,/6.
22.  Extract the square root of 5 +,/10 —,/6 — /15,
23. Extract the square root of
15-2,/3-2,/15+6 /22 ,/6+2,/5 -2 ,/30.
24, Extract the cube root of 7 +5 /2. :
25. Find the cube root of 16 + 8 \/5.
26. Find the cube root of 9 /3 —11 /2.
27.  Find the cube root of 21 ,/6 — 23 ,/5.
28. Shew that J(\/5 +2)—~ J(/5-2)=1.
T. A, 11
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XX. QUADRATIC EQUATIONS.

312. When an equation contains only the square of the
unknown quantity the value of this square can be found by the
rules for solving a simple equation ; then by extracting the square
root the values of the unknown quantity are found. For example,
suppose

82772 +102° =7 — 24a® + 89 :

by transposition, 42z =168 ;
by division, ot 3
therefore o= 4 =2,

The double sign is used because the square root of a quantity
may be either positive or negative. (Art. 231.)

313. It might at first appear that from 2°=4 we ought to
infer, not that z==2, but that =2==2. It will however be
found that the second form is really coincident with the first. For
+x==+2 gives either +x=+2, or +2=-2, or —z=+2, or
—x=—2; that is, on the whole, either z =2, or x =— 2. Hence
it follows, that when we extract the square root of the two mem-
bers of an equation it is sufficient to put the double sign before the
square root of one of the members.

314. Quadratic equations which contain only the square of
the unknown quantity are called pure quadratics. Quadratic
equations which contain the first power of the unknown quantity
as well as the square are called adfected quadratics. We proceed
now to the solution of the latter.

315. We shall first shew that every quadratic equation may
be reduced to the form a°+ px=gq, where p and ¢ are positive or
negative. For we can reduce any quadratic equation to this form by
the following steps ; bring the terms which contain the unknown
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quantity to the left-hand side of the equation, and the known
quantities to the right-hand side ; if the coefficient of 2* he nega-
tive, change the sign of every term of the equation ; then divide
every term by the coefficient of #°. Thus we may represent any
quadratic equation by

o’ + pr=q.

To solve this we add }Z p® to both sides ; thus

P°
4

The left-hand member is now a complete square; extract the square
root of each member ; thus

2
m+'§~:=k/J(%+g);

, and we obtain

2
o+ px + =%+q.

transpose the termg

el i
x= 2*J<4+q).

316. For example, suppose
- 32® + 36x—105 =0;

transpose, — 32* + 362 = 105 ;
change the signs, 3’ — 36z = — 105 ;
divide by 3, o'~ 122 = - 35 ;

2
add to otk sise (%2) . that s, 36 ; thus

—122+ 36=36-35=1;
extract the square root of both members ; thus
x—6==1.

Therefore 2=6=1; that is, =7, or 5. If either of these
values be substituted for « in the expression — 3z* + 362 — 105, the
result is zero.

11—2
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317. Hence the following rule may be given for the solution
of a quadratic equation :

By tramsposition and reduction arrange the equation so that
the terms involving the unknown quantity are alone on one side,
and the coefficient of x* is + 1; add to both sides of the equation
the square of half the coefficient of x, and extract the square root of
both sides. .

318. As another example we will take

ax’ +br+c=0;

transpose, at +bxr = —c¢ ;
b T 4
divide by a, x® + el 1
b\? o bx b® b ¢ b —dac
d (5;): ””*'&*m—m—r—@v,
2
extract the square root, x + — _ = /(O — 4aq) 4“0)
2 R e
—b=,/(b*—4
transpose, e __‘\Z;T_fﬁ) )

319. When an example is proposed for solution we may,
instead of going through the process indicated in Art. 317, make
use of the formula in Art. 318. Thus, take the example in Art.
316, namely, — 32+ 362 —105 =0, and by comparing it with the
formula in Art. 318 we see that we may suppose a=—3, b= 36,
c=-105. Hence if we put these values for a, b, and ¢ in the
result. of Art. 318, we shall obtain the value of . Here

b*—4ac=(36)°—~12x 105 =36 ;

-36=6
therefore T= —3_£6— =5 010,
320.  For another example take the equation
' =26 =—2;
6\* n
vdd (5), & —6x+9=9-2=T;
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extract the square root, 2z—3==,/7,
transpose, A=A

Here /7 cannot be found exactly; but we can find an ap-
proximate value of it to any assigned degree of accuracy, and thus
obtain the value of z to any assigned degree of accuracy.

321.  In the examples hitherto considered we have found two
different roots of a quadratic equation; in some cases however we
shall find really only one root. Take for example the equation
' —12x+ 36 =0; by extracting the square root we have z— 6 =0,
and therefore = 6. It is however convenient in this case to say
that the quadratic equation has fwo equal roots.

322, If the quadratic equation be represented by
ar’+bx+c=0,
we know from Art. 318 that the two roots are respectively

—b+ B —dac) . —b- J(b’ 4ac)

2a

Now these will be different unless 4*— 4ac =0, and then each of
them is —2%1 . This relation 5°— 4ac=0 is then the condition that
must hold in order that the two roots of the quadratic equation
may be equal.

323. Consider next the example 2* — 10z + 32 =0.

By transposition, o’ —10x = —-32;
by addition, o —-102+25=25-32 = —17.
If we proceed to extract’the square root we have

w-b==%,/-T.

But —7 has no square root either exact or approximate (Art.
232); thus no real value of  can be found to satisfy the proposed
equation. In such a case the quadratic equation has no real roots ;
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this is sometimes expressed by saying that the roots are imaginary
or impossible. We shall return to this point in a subsequent
chapter. See Chapter xxv.

324. If the quadratic equation be represented by
ax®+bx+c=0,

we see from Art. 318 that the roots are real if b° — 4ac is positive,
that is, if 4° is algebraically greater than 4ac, and that the roots
are impossible if b — 4ac is negative, that is, if 0° is algebraically
less than 4ac.

EXAMPLES OF QUADRATICS.

1. a*—b5z+4=0. 2. 6x°—132z+6=0.
3. -42+3=0. 4, 3a*—Tx=20.

5. 22— Tax+3=0. 6. 32°—53x+34=0.
7. @ +10z+24=0. 8. 7" — 3aw=160.

9. ldw—a'= 33. 10. 2#-295_%:0.
11. mﬂ_s=%(x_3). 12, 4(@-1)=4da_1.
13. 110°—2lc+1=0. 14. 780273z +1=0,
15. (z-1)(x—2)=6. 16. (3w-2)(x—1)=14

17. (8z—5)(2x—5)=(x+3)(x—1).

18. (2x+1)(x+2)=3a"-4.

19.  (z+1) (2% + 3) =4a"— 22.

20. (z—1)(x—2)+(x—2)(x—4)=6(2x-5).

21. (%—3)*=8a 92, (bz—3)—T=44z+5.
93, (w—T)(e—4) + (20— 3) (@~ 5)=103.

5 7 73
24, 7m’+3x+m=0.
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(=

26.

27.

28.

30.

32.

34.

35.

36.

38.

40.

42.

44.

46.

48.

50.

EXAMPLES OF QUADRATICS. CHAPTER XX. 167

@ e )

+

81[\')
8lw

w8

25
2

5z 1 4
ﬁ(w+l)——(2x’+m—1):—35(m+1).

7_21+65a: 6 m~5(ac—1)

8c+1l+—= 7 A 29. ;;+§— 4
x 21 21 x
—7+£+—5*—3?. 31. ‘5-'——_:0'—7:3%.

R OIS (S i
2(@"-1) 4(x+1) 8° e T T R ST
%  3w+50 _ 12270
15 73(10-a) 190
2m+ 3z - 50 ~Ea;+70
15" 3(10+2) 190
D 7 a*— bx J.
AT 3 AR R e
@—6 212 5 g, 2tk w4 _10
212 w266 Vgt wr il 8
x+2+t;2~1_3 41 @ +zlr;+1_l3
R RN T e
T 3 w1 1 2 3
P e i - Roidmors-y
t 6 A8 ko i N 14
2+l o+2 ©+3° T L B
93 3x—5_§ 47 3x—2+2x—5_10
3%—b 2x—3 2 Bl wes . e el
z+3 x-3 2o-3 49 m—2+x+2_2(a:+3)
BT i D e S TR N

10 2z +3) (- 3)+ (Tz + 3)"=20 (x +3) (x~ 1).
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51,
52.
53.

54.

55.
56.

5T.
58.

59.
60.
61.

62.

XXI. EQUATIONS WHICH MAY BE SOLVED

325. There are many equations which, though mnot really
quadratics, may be solved by processes similar to those given in

EXAMPLES OF QUADRATICS. CHAPTER XX.
(T-4,/3)"+ (2-,/3)z=2.
' —2ax+a®—0°=0. -
(3a®+0°) (2 — 2+ 1) = (30" + @°) (@ + 2 + 1).
z* — 2ax + b°= 0.
1 il 1

+ ——

r—a -0 xz—0¢c

i 1 3 1

1

(w—b)(w—c)+(a+c)(a+b) :(a+c)(a:—c)+(a,+b)(ac—b)°

3 et Ll g

a+b+z a b m
(az—b) (bx — a) ="
a b 2¢

VR I Ry

s 3a’x 6a*+ab-20° b
aba:+T:__~_.cg—__?_

r+a =x+b x+c 3

r—a x-b x—c

atc(@+z) a+x_ @
a+c(a—x) x  a—2cx

LIKE QUADRATICS.

the preceding chapter. For example, suppose

x*— 9’ + 20 = 0.
Transpose, xt— 9x*=—20;
i bR 7N i1
by addition, x* - 9z* + (§> = <§> o= § ;
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extract the square root, x® — g = *% H
el

therefore o= g=5="0,0r 4;

therefore z==,/5 or =2.

326. Similarly we may solve any equation of the form

ax®™ + bz" +¢c=0.

Transpose, ar’ + b =—c;
divide by a, a2,
by addition, ™ + b% + (%}9 " (%)E 8 bz; ;“c;
extract the square root, " + % = i(b;___;[mc) ;
therefore "= ﬁ“[g;iﬂ) :

Hence by extracting the ™ root the value of  is known.

327. Suppose, for example,

z+4,/r=2];
therefore z+4,Jr+4=25;
therefore NZ+2 =25
therefore Je=—2=5=3 or —7;
therefore =09, or 49,

328. . Again, suppose
a7 +zi=6;

o b Ol e
therefore P B #4_1:_4 ; .‘
f kel
therefore i+ g i’
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i 15k 56
therefore x 5:—5 §='2 or —3;
therefore ot=4.0r 9,
1 1}
and Z=7, OF 5.

329. Suppose we require the solutions of the equation
x+ /(b5 +10) = 8.
By transposition, ,/(5x+10)=8—x;
square both sides ; thus
52+ 10=64 - 16+ 2*;

therefore o' =2l =—-54;

therefore ot —21x+ (21) ( ) — 54 _272:5
therefore @ — % S 1_?? 3

therefore x= gzl 1—5 =180

Substitute these values of « in the left-hand side of the given
equation; it will be found that 3 satisfies the equation but that 18
does not ; we shall find however that 18 does satisfy the equation

x— /(5 +10) = 8.

In fact the equation 5z + 10 =64 — 16z +a° which we obtained
from the given equation by transposing and squaring might have
arisen also from x—,/(5x+10)=8. Hence we are not sure that
the values of # which are finally obtained will satisfy the proposed

equation ; they may satisfy the other form.

330. "Again, consider the example
-2,/ +z+5)—14=0.
By transposition, z—14 =2, /(2" + = + 5);
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by squaring, 2" — 28z + 196 = 4a® + 4 + 20 ;
therefore 3a® + 32z = 176.
From the last equation we shall obtain x=4, or _—gé oAb will,

however, be found on trial that neither of these values satisfies the
proposed equation ; each of them however satisfies the equation

z+2,/(@+x+5)-14=0.

From this and the preceding example we see that when an
equation has been reduced to a rational form by squaring, it will
be necessary to examine whether the roots which are finally
obtained satisfy the equation in the form originally given.

331. Suppose that all the terms of an equation are brought to
one side and the expression thus obtained can be represented as
the product of simple or quadratic factors, then the equation can
be solved by methods already given. For example, suppose

(@ —c)(x® — 3ax + 24%) = 0.
The left-hand member is zero either when z—¢=0, or when
x'—3ax+2a*=0. Butif x—c=0, we have x=c; and if
a* — 3ax + 20’ = 0,
we shall find that z=a, or 2a. Hence the proposed equation is
satisfied by = ¢, or a, or 2a.

332. TFacility in separating expressions into factors will be
acquired by experience ; some assistance however will be furnished
by a principle which we will here exemplify. Consider the
example ‘

z(x—c)' =a(@—c).
Here it is obvious that x= & satisfies the equation ; and we shall
find that if we bring all the terms to one side 2 — a will be a factor
of the whole expression. For the equation may be written

2-a’ -2 -a’)+c’ (x—-a)=0;
that is, (x—a) {2 + ax + a* — 2¢(z + a) + "} =0.
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Hence the other roots besides @ will be found by solving

the quadratic :
' +ax+a’— 2 (x+a)+c’=0.

In this manner when one root is obvious on inspection, we
may succeed in arranging the equation in the manner named in
Art. 331.

333. We will now add some miscellaneous examples of equa-
tions reducible to quadratics.

(1) Suppose
' —Te+,/(z* — To+ 18) = 24.

Add 18 to both sides ; thus
o —Te+18+,/(a*— Tz + 18) =42 ;

complete the square; thus

&= Tw+ 18+ /@ - 7m+18)+%:42g=$;
therefore J@ — Tz +18) +—12=*l2§;
therefore J@ =Tz +18)=6,0r - 7;
therefore 2’ — Tz + 18 = 36, or 49.

Hence we have now two ordinary quadratic equations to
solve. We shall obtain from the first =9, or — 2, and from the
second =3 (7=,/173). It will be found on trial that the first
two only are solutions of the proposed equation ; the others apply

to the equation
o' —Te— /(@ — Tz +18) = 24.

(2) Suppose
o+’ -4t +ax+1=0.
Divide by «*; thus

m’+w——4+é+%:0;
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or :v’+—1;+x+1—4=0;
@ x
TN 1
therefore (x+—-> +<w+—)—6=0;
x x
j ity 1
therefore (.’z: i _) + (ac 5 -) =6,
x x
1N 1 1 25
and <m+§)+<w+5)+z=6%=_{,
3 R 5
therefore x+‘;+§=*§;
i
therefore x+ — 2o 23
’ 1
First suppose S PR 2
therefore 22-2x+1=0;
therefore =l
Next suppose T+ alc =-3;
therefore 2'+3z=—1;
9 =9 5
therefore a,’+3w+z=1_1=z,
: 3 5 —-3=,/5
therefore x+ B oL ':/2*, and = = _2_~_ )

(3) Suppose

!+ 3x+1=3x’+§w’.

2
Transpose, -3+ 3x+1= ég"_ H
3x\* 9a* 42°
therefore (a:’— 7) e 3e+1l= 5
3xz\* 3z\ =« 4z°
2 2 ; iy
therefore (ac——2—) -—2<x—-? —Z+1 5
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3x\* . 3w o 4a' 252"
therefore (x’——2-> —-2(a:—~2—- +1_I+7— 35 "

Extract the square root,

3 ba
2 — oS5
FYmisey
! . S iBaE Sx
‘We have now ordinary quadratics, namely, z’— g ) -1= G
and 2°— 37)3-’ Sl [P 5% . From the former we shall obtain

=1 (7= ,/85), and from the latter =} (1=,/10).

(4) Suppose
6z, Jr—1lz+6,/x—1=0.

‘We may write the equation in the form
(-3 Jo) +2 (-3 \Jx) + 1=2".
Hence -3 Jrx+l==a
Take the upper sign; thus
z-3 Jr+l=2;
| 1
therefore = 3 and z=x.
9
Take the lower sign; thus
-3 Jr+l=—g;
therefore 2 —3 \Jz+1=0.

From this we obtain ,/z=1, or %, and therefore z =1, or % ;

(5) Suppose

z+c+p J(@—c) 9(x+c)
z+c—,J(@—¢) 8¢

In solving this equation we shall employ & principle which
often abbreviates algebraical work.
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a _p
Suppose that L
then will
a+b p+gq a-b p—q a+d p+gq
R N Gir 0 e a—b p-g¢q°

For the first of these three results is obtained by adding unity
to each of the given equal quantities, the second is obtained by
subtracting unity from each of the given equal quantities, and the
third result is obtained by dividing the first by the second. Each
result is sometimes serviceable. For the present example we
employ the last. Thus from (1) we deduce

2(x+c)  9x+1Tc
2 J@'=c) 9z+c °

Square both sides, and simplify the left-hand member; thus

z+e  (9z+17¢)
Pyl s 2)

Again, by employing the third of the above results we deduce
from (2)

z_ (9z+17c)"+ (9z+¢)* (92 +17c) + (9z +0)*

¢ (9x+1Tcf—(9x+c) 16¢ (18z+ 18¢)

By reducing, we obtain
632 — 18xc — 145¢* = 0,

and from this, o=

(6) Suppose
% o)+ (Bam—a) =22 (1 - 4a).
3

Transpose; thus
%J(l-tix)-J(%— )= /(Baz—2).
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2
By squaring, 9—:’— (1 —4z)—3a /(1 - 4x) \/(3?“ ——m) = 3aac-§4i—;

== 20 _4)
Divide by ,/(1 —4z); thus :

2038 1~ 4= 3a \/@f ~2).

By squaring, (1 + 3a)’ (1 —4x)=16 (ﬁ —ac) s

+
therefore 4z {(1 +3a)’— 4} = (1 + 3a)’ — 12a = (1 - 3a)’;
therefore 4 (3a+3) (Ba—1)=(3a—1)%;
3a—1
therefore b= B+l

Also corresponding to the factor \/(1 — 4x), which was removed,

we have the root z = —1-

4

This example is introduced in order to draw the attention of
the student to the circumstance that when both sides of an equa-
tion are to be squared, an advantageous arrangement of the terms
on opposite sides of the equation should be made before squaring.
If in this example as it originally stands we square both sides, no
terms will disappear; but by transposing before squaring we ob-
tain a result in which — occurs on both sides, and may therefore

be cancelled.
(7) Suppose
@+ 9) + /(@ - 9)=,/(34) + 4.
We have identically
'+ 9—(2*-9)=18=34-16.

Hence, dividing the members of this identity by the cor-
responding members of the proposed equation, we obtain

N@ +9) = /(@' = 9)=,/(34) - 4.
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Therefore, by addition, ,/(z*+ 9)=,/(34);
therefore x*=25, and x==35.

This equation is introduced for the sake of illustrating the
artifice employed in the solution. This artifice may often be em-
ployed with advantage; for instance, example (6) may be solved
in this way.

®) J(2x+4)_2J(2-x)=:/gi”i;—‘13®.

‘We may write this equation thus,
2{2x+2)-4(2-=
@+ 4)—2, J@—a)=21 (¢(993)9+ 1((5) ),

The factor /(2 +4) -2 ,/(2—x) can now be removed from
both sides; thus we obtain

VO +16)=2{/(2x + 4) + 2,/(2 - 2)}.
By squaring, 92" +16=4 {12 -2z + 4 ,/(8 — 24°)} ;
therefore @' +8x =4 (8 —2«°) + 16 /(8 — 22°);
therefore o' +8x+16 =4 (8 —22%) + 16 /(8 — 22°) + 16.
Extract the square root; thus
=(x+4)=2,/8-22" + 4.
The solution can now be completed; we shall obtain

and also a pair of imaginary values.
Also, by equating to zero the factor ,/(2z+4)—2,/(2-x),

which was removed, we shall obtain = g

It will be seen that very artificial methods are adopted in some
of these examples; the student can acquire dexterity in using

such transformations only by practice. More examples will be
found in Chapter r1v.

LoAL 12
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15
13.
15.

{17
19,

20.

21.
22.
23.

25.

26.

27.

28.
29.

EXAMPLES OF EQUATIONS REDUCIBLE TO QUADRATICS.

3x+2,/z-1=0. 2. "+ 31a’=32.
1 1
32 + 427 = 3321. 4, o —137"-14.
1 )
a® — 352° + 216 = 0. 6. ' —a"+2=0.
z+2,/(ax)+c=0. 8. 3az'— Ta’=43076.
Q" 3 5
Aoy S2 16, A Py LR
3 x+:/w,, 16 10 w+2x§ 32
J(2@) = T = — 52. 12, «'—14a°+40=0.
7 P)
2w+J(4w+8)=—2-. 14. 2,‘/1:+:/:—E=5.
ot + 5t —22=0. 16, St dah=1,
1 1
@+ 5—,J(x+5)=6. 18. 2(z"+z ")=5.

@+ T)+ (32— 18) = /(T + 1).

SR
B T g | i e

J(@+x)+J(a—z)=/b.

N +9)=2,Jx—3.

x+,/(bx +10) =8. 24, 2°*' 4+ 47=80.
(01,é + :1;5)% = (a,i + acé)é.

Ja+a) _Ja-a)
Ja+ Ja+x)  Ja—Jla—x)

(a?f—l)’+ (x—f-i)g =n(n-1)

(a+0) J(@ + b+ 2~ (a=b) J(a"+ V"~ z") = a" + V",

\m+,\/x+~/(a:+2)+,\/(a:'+ 2x) = a.
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30.

31.

EXAMPLES OF EQUATIONS, &c.  CHAPTER XXI. 179
2x+./(2+2z)=c (1 —).

a—x a+x

o+ /(a- ) ,ja+J(a+x) TN
@+ 2a) - flx— 2a)_£.

T 2a) +J(@+2a) " 2a

33.
34.

35.

36.

37.

38.

40.

41.
43.
44.
45.

46.

47.

48.
49.

50.

@+ 8) — Sz + 3) = /.
NJ@+3)+ S+ 8)=5 /.

wz—a’+w’+a' 34
2ra’  oiled T 1h

N (@ +bx") — Ja =c,/(bx").

@+ 4) - Je= \/(ac—*-g)

2 1 2 1 850 wn(x4_a4)
w+z§—-a—(-b—g=0. 39, e
V@) +J@-1) | a1 @t 1) i

NEEDENCES) J(x+1)+J ) =4,/ -1).

3 2 2 2 2
®—4x -1 39 49, a+x a—-x
=2 x+1 a+x a—x

Nl —-2z+2°) - J(1 +2+2%)=m.
z + /(2* — 1) m—,\/(x”—l)
x— J(@®—1) ac+,J(a:’—1)
V@ = 3ax +a’) + /(2 + Baw + a°) = \/(2a* + 20°).

=34.

@)~ g (¥ + ) =0,

Vot (w1 -)) =1,
(x+a)’— (z—a)’ = 2424°.

+1 N/G
o e B e
x'—1 (.20
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51.

54.

55.
56.

57.
59.

60.

61.

67.

68.
69.

70.
7L

@+ ax + %) + /(& + b + a®) = a +b.
950~ 16 3 (a* - 4)
102 +8 =~ 22—4 °

2z +9)+ \/(Bx —15) =, /(Tx + 8).

T

@+ 28 —1) + (@ + 2+ 1)= /2 +,/3.

@ +ax—1) + /(@ + bz —1) = \Ja+ /b

o -1 11

O ¢ PR Tl

(z—a) (x—b) (x— c) + abc = 0.
1 8 1o dp

Vit ST Tt
R TR

z+a+b w—a+d =x+a—b x—a-b

0.

(a—x)(w+m): (u+w)(xin).
T+n T—n

a+x)’ o
— ) =1+—.
<a—-x ab
9+ 1 +a,/(@+2)+(@+1) /(@ +2x+3)=0.
o+ 3=2 /(x*— 22 + 2) + 2a.
@+ bx+4="5,/(«° + b+ 28).

m?
\/(x’-—2a:+9)~—§=3—ac.
3a® + 152 — 2, /(2" + 5+ 1) = 2.
(x+8) (x—2)+3 /{z(x+3)}=0.
2+ 3 (20— 3+2) = o o+ 1)

@ (x+ 1)+ 3 /(24" + 6z + 5) = 25 — 2.
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87.

88.

89.

90.

91.
93.
94.
95.

EXAMPLES OF EQUATIONS, &e. CHAPTER XXI.

x'—2,/(32°— 2ax + 4) + 4 = %‘f (a:+g+l).

@'—w+3,/(2" 3w+ 2) =T+ 7.
%:5—95—:1:’.

l+z+a

(z + a) (z + 2a) (z + 3a) (z + 4a) = ¢*.

16z (z+1) (z+2) (z+3)=9.
‘IZLM::L—I—:. 78. a=a;‘-+(1—a;)‘.
& —ax+2'  x

-2+ x=a. 80. 2'—22%+2=132.
e+ (e +T)+ 2 /(2 + Ta) = 35 — 2.

‘2?8 (x+1), Jr+182+1=0.

2(m2+am)é+,‘/:c+ J(@+z)=b— 2.

o'+ 2% — 11 + 42+ 4 =0.
* + 40°c = a*,
a:‘+aa:a+bx’+cx+£;=0.
1+\/<1_‘l>=\/1+?>.
x a
m’+l,+2<m+l>=%.
@, 9

J( _1)_\/<1_1>:’f__

x, z x
x4+ 1 _1
@+1) 2
2+1=0. 92, nl®+x+n+1

(x=2)(z—3) (x—4)=1.2.3.
(x—=1)(xz-2) (x—-3)—(6—1)(6-2)(6—3)=0.
(x—1) (x—2)(x—3) =24
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96. 62°— 52" +x=0. 97, v’ —dp—_4=0.
) bl T
98. E+5+E‘=l+ﬁ+¢?'
99. 8a®+16w=9. T SR T
STy

101. (@' - 2)=m (& + 2max + 2).

102. (@*-a’)(@+a)b+(a"—0°) (a+b)ax+ (B —a*) (b+a)a=0.

103. wa+pm’+<p—l+?i—1>w+1=0.

104, (p—1)% + paf+ (p—l+p~1—)w+l=0.

105. 3a®+ 8x'— 8x*=3.

XXII. THEORY OF QUADRATIC EQUATIONS AND
QUADRATIC EXPRESSIONS.

334. A quadratic equation cannot have more than two roots.

If possible let three different quantities a, B, y be roots of
the quadratic equation aa®+ bz + ¢ = 0; then, by supposition,

ac®+ba+¢=0, af+bB+c=0, ay’+by+c=0.

By subtraction,
a(a’~p)+b(a-pB)=0;

divide by a— B which is, by supposition, not zero; thus

a(a+B)+b=0.
Similarly we have a(a+y)+56=0.
By subtraction, a(B—-v)=0;

this however is impossible, since by supposition @ is not zero, and
B—17 is not zero. Hence there cannot be three different roots
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