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AN ELEMENTARY TREATISE
ON THE

k

THEORY OF EQUATIONS,
WITH A COLLECTION OF EXAAIPLES.

BY

I. TODHUNTER, M.A. F.RS.

[Ecirαci from Prefa^eJ∖

This treatise contains all the propositions which are 
usually included in elementary treatises on the Theory of 
Equations, together with a collection of examples for exercise.

As the Theory of Equations involves a large number of 
interesting and important results, which can be demonstrated 
with simplicity and clearness, the subject may advantage­
ously engage the attention of a student at an early period 
of his mathematical course. This treatise may be read by 
those who are familiar with Algebra, since no higher know­
ledge is assumed, except in Arts. 175, 267, 308—314, which 
may be postponed by those who are not acquainted with 
De Moivre’s Theorem in Trigonometry. The work may in 
fact be regarded as a sequel to that on Algebra by the same 
writer, and accordingly the student has occasionally been
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Preface to Todhunters Theory of Equations. 

referred to the treatise on Algebra for preliminary information 
on some topics here discussed.

The Examples have been selected from the College and 
University examination papers, and the results have been 
given where it appeared necessary; in most cases however, 
from the nature of the question, the student will be able im­
mediately to test the correctness of his answer.

In order to exhibit a comprehensive view of the sub­
ject, this treatise includes investigations which are not 
found in all the preceding elementary treatises, and also some 
investigations which are not found in any of them. Among 
these may be mentioned Cauchy’s proof that every equation 
has a root, Horner’s method, the theories of elimination and 
expansion, Cauchy’s theorem on the number of imaginary 
roots, and the theory of determinants. The account of deter­
minants has been principally taken from a treatise on that 
subject by Baltzer, which was published at Leipsic in 1857.
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PREFACE TO THE SECOND EDITION.

This work contains all the propositions which are usually 
included in elementary treatises on algebra, and a large num­
ber of examples for exercise.

My chief object has been to render the work easily intel­
ligible. Students should be encouraged to examine carefully 
the language of the book they are using, so that they may 
ascertain its meaning or be able to point out exactly where 
their difficulties arise. The language, therefore, ought to be 
simple and precise; and it is essential that apparent concise­
ness should not be gained at the expense of clearness.

In attempting, however, to render the work easily intel­
ligible, I trust I have neither impaired the accuracy of the 
demonstrations nor contracted the limits of the subject; on 
the contrary, I think it will be found that in both these 
respects I have advanced beyond the line traced out by pre­
vious elementary writers.

The present treatise is divided into a large number of 
chapters, each chapter being, as far as possible, complete in 
itself. Thus the student is not perplexed by attempting to 
master too much at once; and if he should not succeed in 
fully comprehending any chapter, he w∏l not be precluded 
from going on to the next, reserving the difficulties for future 
consideration: the latter point is oξ, especial importance to 
those students who arc without the aid of a teacher.

The order of succession of the several chapters is to some 
extent arbitrary, because the position which any one of 
them should occupy must depend partly upon its difficulty 
and partly upon its. importance. But, since each chapter is
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vi PREFACE TO THE SECOND EDITION,

nearly independent, it will be in the power of the teacher to 
abandon the order laid down in the book and to adopt another 
at his discretion.

The examples have been selected with a view to illustrate 
every part of the subject, and, as the number of them is about 
sixteen hundred and fifty, I trust they will supply ample 
exercise for the student. Complicated and difficult problems 
have been excluded, because they consume time and energy 
which may be spent more profitably on other branches of 
mathematics. Each set of examples has been carefully 
arranged, commencing with some which are very simple and 
proceeding gradually to others which are less obvious; those 
sets which are entitled Miscellaneous Examples^ together with 
a few in each of the other sets, may be omitted by the student 
who is reading the subject for the first time. The answers 
to the examples, with hints for the solution of some in which 
assistance may be needed, are given at the end of the book.

I will now give some account of the sources from which 
the present treatise has been derived.

Dr Wood’s Algebra has been so long published that it has 
become public property, and it is so well known to teachers 
that an elementary writer would naturally desire to make use 
of it to some extent. The first edition of that work appeared 
in 1795, and the tenth in 1835; the tenth edition was the 
last issued in Dr Wood’s life-time. The chapters on Surds, 
Ratio, and Proportion, in my Algebra are almost entirely 
taken from Dr Wood’s Algebra. I have also frequently used 
Dr Wood’s examples either in my text or in my collections 
of examples. Moreover, in the statement of rules in the ele­
mentary part of my book I have often followed Dr ΛVood, as, 
for example, in the Rule for Long Division; the statement of 
such rules must be almost identical in all works on Algebra. 
I should have been glad to have had the advantage of Dr 
Wood’s authority to a greater extent, but the requirements of

www.rcin.org.pl



PREFACE TO THE SECOND EDITION. vil

the present state of mathematical instruction rendered this 
impossible. The tenth edition of Dr Wood’s Algebra con­
tains little more than half the matter of the present work, and 
half of it is devoted to subjects which are now usually studied 
in distinct treatises, namely. Arithmetic, the Theory of Equa­
tions, the application of Algebra to Geometry, and portions of 
the Summation of Series; the larger part of the remainder, 
from its brevity and incompleteness, is now unsuitable to the 
wants of students. Thus, on the whole, a very small number 
of pages comprises all that I have been able to retain of 
Dr Wood’s Algebra.

For additional matter I have chiefly had recourse to the 
Treatise on Arithmetic and Algebra in the Library of Useful 
Knowledge, and the works of Bourdon, Lefebure de Fourcy, 
and Mayer and Choquet; I have also studied with great ad­
vantage the Algebra of Professor De Morgan and other works 
of the same author which bear upon the subject of Algebra.

I have also occasionally consulted the edition of AVood’s 
Algebra published by Mr Lund in 1841, Hind’s Algebra, 
1841, Colenso’s Algebra, 1849, and Goodwin’s Elementary 
Course of Mathematics, 1853. In the composition of my book 
I took extreme care to avoid trespassing upon the works 
of these recent English authors. My rule was not to insert a 
proposition in the few cases where any doubt existed as to the 
right to do so, unless I found it in two or more of these 
authors; if I found it in so many places I concluded that it 
might be considered common property, and I inserted it in my 
own language and style.

Although I have not hesitated to use the materials which 
were available in preceding authors, yet much of the present 
work is peculiar to it; and I believe it will be found that my 
Algebra contains more that is new to elementary works, and 
more that is original, than any of the popular English works 
of similar plan. Originality however in an elementary work
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viii PREFACE TO THE SECOND EDITION.

is rarely an advantage; and in publishing the first edition of 
my Algebra I felt some apprehension that I had deviated too 
far from the ordinaiy methods. I have had great satisfaction 
in receiving from eminent teachers favourable opinions of the 
Λvork generally and also of those parts which are peculiar to it.

Several years have elapsed since I resolved to publish an 
Algebra and began to arrange the materials. Thus all the 
important chapters in the present work have been written and 
rewritten, and repeatedly revised by myself and my friends. 
With respect to some parts, which were original at the time 
when they first occurred to me, I have been anticipated in 
publication; this applies, for example, to Arts. 520, 611, and 
677. I mention this, not as attaching any importance to 
such points, but merely because otherwise it might appear 
that I had been indebted for them to preceding authors. 
My manuscripts on these articles were in use among my 
pupils before the date in which, so far as I know, these 
articles were printed; indeed it was not until aftei' my first 
edition was published that I saw the latter two articles in 
print elsewhere. Some portions of the present work were 
written long before I had any intention of publication; the 
chapter on the Multinomial Theorem, for example, was drawn 
up about fifteen years ago for the use of a fellow-student.

The task of preparing an elementary treatise is far from 
easy, and I must therefore request the indulgence of teachers 
and students for any defects which they may discover either 
in my plan, or in the mode of executing it. I have to return 
my thanks to many able mathematicians who have favoured 
me with suggestions, which have been of great service to me 
in preparing the Second Edition; and I trust I shall still 
continue to receive similar valuable remarks.

I. TODHUNTER.
St John’s College,

February, i860.
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Tue Third Edition has been carefully revised; and some 

additions have been made to the text, to the examples, and 

to the answers and the hints given at the end of the book. 
Λ treatise on the Theory of Equations has been drawn up by 

the author, to form a sequel to the Algebra; and the student 

is referred to that treatise as a suitable continuation of the 

present work.

St John’s College,
June, 1862.
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ALGEBRA.

I. DEFINITIONS AND EXPLANATIONS OF SIGNS.

1. The method of reasoning about numbers by means of 
letters which are employed to represent the numbers and signs 
which are employed to represent their relations, is called Algebra.

2. Letters of the alphabet are used to represent numbers, 
which may be either known numbers, or numbers which have to 
be found and which are therefore called unknown numbers. It is 
usual to represent known numbers by the early letters of the 
alphabet α, b, c, &c., and unknoum numbers by the final letters 
X, 2/, z∙, this is not however a necessary rule, and so need not be 
strictly obeyed.

Numbers may be either whole or fractional. The word quan­
tity is frequently used as synonymous with number.

3. The sign + signifies that the number to which it is prefixed 
must be added. Thus a + b signifies that the number represented 
by b must be added to the number represented by α. If a repre­
sent 9 and b represent 3, then a + b represents 12. The sign + is 
called the plus sign, and α + δ is read thus “ a plus b.”

4. The sign — signifies that the number to which it is prefixed 
must be subtracted. Thus a — b signifies that the number repre­
sented by b must be subtracted from the number represented by a. 
If a represent 9 and b represent 3, then a — b represents 6. The 
sign — is called the minus sign, and a—b is read thus “a minus b.”

δ. The sign × signifies that the numbers between which it 
stands must be multiplied together. Thus a × b signifies that the 

T. A. 1
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2 DEFINITIONS AND EXPLANATIONS OF SIGNS.

number represented by a must be multiplied by the number repre­
sented by b. If a represent 9 and b represent 3, then a × b repre­
sents 27. The sign × is called the sign of multiplication, and a × b 
is read thus “a into b.” Similarly α × ό × c denotes the product of 
the numbers denoted by a, b and c.

It should be observed that the sign of multiplication is often 
omitted for the sake of brevity; thus ab is used instead of a × b, 
and has the same meaning; so αδc is used for a × b × c. Sometimes 
a point is used instead of thd sign ×; thus α.δ is used for a×b 
01' ab.

The sign of multiplication must not be omitted when numbers 
are expressed by figures in the ordinary way. Thus 45 cannot be 
used to express the product of 4 and 5, because a different mean­
ing has already been appropriated to 45, namely forty-five. We 
must therefore express the product of 4 and 5 thus 4 × 5, or thus 
4.5, To prevent any confusion between the point thus used as a 
sign of multiplication and the point as used in the notation for 
decimal fractions, it is advisable to write the latter higher up; 
thus 4'5 may be kept to denote 4 +

6. The sign ÷ signifies that the number which precedes it 
must be divided by the number which follows it. Thus α÷δ sig­
nifies that the number represented by a must be divided by the 
number represented by δ. If α represent 9 and b represent 3, 
then a ÷ b represents 3. The sign ÷ is called the sign of division, 
and α ÷ δ is read thus “ a by b.” There is also another way of 
denoting that one number is to be divided by another; the divi­

dend is placed over the divisor with a line between them. Thus
is used instead of a ÷ b and has the same meaning,

7. The sign = signifies that the numbers between which it is 
placed are equal. Thus a = b signifies that the number repre­
sented by a is equal to the number represented by b, that is, a and 
b represent the same number. The sign = is called the sign of 
equality, and α = δ is read thus “a equals b” or “a is equal to b.”

*
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DEFINITIONS AND EXPLANATIONS OF SIGNS. 3

8. The difference of two numbers is sometimes denoted by
the sign ~ j thus a ~ b denotes the difference of the number's 
denoted by a and b, and is equal to a — b or to according
as α is greater than ό or less than b.

9. The sign > denotes greater than, and the sign < denotes less 
than; thus α > δ denotes that the number represented by a is 
greater than the number represented by b, and b < a denotes that 
the number represented by b is less than the number represented 
by a. Thus in both signs the opening of the angle is turned 
towards the greater number.

10. The sign ,∙. denotes then or therefore; the sign ∙.∙ denotes 
since or because.

11. When several numbers are to be taken collectively they 
are enclosed by brackets. Thus (α — b + c) × {d + e) signifies that 
the number represented by a — b + c is to be multiplied by the 
number represented by d + e. This may also be written thus 
(α — δ + c) (<Z + e}. The use of the brackets will be seen by com­
paring the above expressions with (a —δ + c)<Z + ej the latter de­
notes that the number represented by α — δ + c is to be multiplied 
by d, and then e is to be added to the product.

Sometimes instead of using brackets a line called a vinculum 
is drawn over quantities which are to be taken collectively. Thus 
a— brc × d-∖-e is used Λvith the same meaning as (α — δ + c) ×(d+e∖

12. The letters of the alphabet, and the signs or marks which, 
we have already introduced and explained, together with those 
which may occur hereafter, are called Algebraical symbols, since 
they are used to represent the things about which we may be 
reasoning. Any collection of Algebraical symbols is called an 
Algebraical expression or a formula.

13. Those parts of an expression which are connected by the 
signs + or — are called its terms. When an expression consists of 
two terms it is called a binomial expression; when it consists of 
three terms it is called a trinomial expression; any expression

1—2
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4 DEFINITIONS AND EXPLANATIONS OF SIGNS.

consisting of several terms may be called a multinomial expression 
or a polynomial expression. When an expression does not contain 
parts connected by the sign + or the sign — it may be called a 
simple expression, or it may be said to contain only one term.

Thus abc is a simple expression; abc + x is a binomial expres­
sion, of which abc is one term, and x is the other; ab ac —be is 
a irino7Ziι'αZ expression, of which αδ, ac, and be are the terms.

14. When one number consists of the product of two or more 
numbers, each of the latter is called a factor of the product. Thus 
a, b and c are factors oi the product abc.

15. A. product may consist of one factor which is a number 
represented aiithmetically, and of another factor which is a num­
ber represented algebraically, that is, by a letter or letters; in this 
case the former factor is said to be the coefficient of the latter. 
Thus in the product.7αδc the factor 7 is called the coefficient of 
the factor abc. Where there is no arithmetical factor, we may 
supply unity; thus we may say that, in the product abc, the co­
efficient is unity.

And when a product is represented entirely algebraically, 
any one factor may be called the coefficient of the product of the 
remaining factors. Thus, in the product abc, we may call a the 
coefficient of he, or b the coefficient of ac, or c the coefficient of ab. 
If it be necessary to distinguish this use of the word coefficient 
from the former, we may call the latter coefficients literal coef­
ficients, and the former numerical coeffiicients.

16. If a number be multiplied by itself any number of times, 
the product is called a power of that number. Thus α × α is called 
the second power of a; also α × α × α is called the third power of 
a; and α×α×α×αis called the fourth power of a; and so on. 
The number a itself is often called the first power of a.

17. Any power of a quantity is usually expressed by placing 
above the quantity the number which represents how often it is 
repeated in the product. Thus a® is used to express αχα; also
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DEFINITIONS AND EXPLANATIONS OF SIGNS. 5

a® is used to express a × a × a; and α* is used to express a × a × a × a,; 
and so on. And a’ may be used to denote the first power of a 
Gι a itself; that is, α* has the same meaning as a.

Numbers placed above a quantity to express the powers of 
that quantity are called indices of the powers, or of the
powers; or more briefly indices or exponents.

18. Thus we may sum up the two preceding articles as 
follθΛvs “ a × a × a × «fee. to n factors is expressed by a", and n is 
called the index or exponent of a", where n denote any 
whole number.”

19. The second power of α or a® is often called the square of 
a, and the third power of a or is often called the cube oi a. 
The symbol α* is read thus “ a io the fourth power'^ or briefly “ a 
io tJiefourth;'' and α" is read thus “a io the

20. The square root oι any proposed number is that number 
which has the proposed number for its square or second power. 
The cube root of any proposed number is that number which has 
the proposed number for its cube or third power. The fourth 
root of any proposed number is that number which has the pro­
posed number for its fourth power. And so on.

21. The square root of a number a is denoted thus or 
simply thus ^a.' The cube root of a is denoted thus lja. The 
fourth root of a is denoted thus ↑Ja. And so on.

The sign is said to be a corruption of the initial letter of 
the word radix.

22. Terms are said to be like or similar when they do not 
difier at all or differ only in their numerical coefficients; otherwise 
they are said to be unlike. Thus 4α, dab, 9a® and 3α*δc are 
respectively similar to 15α, 3αδ, 12a® and 15a‰. And ab, a^b, 
db^ and abc are all unlike.

23. Each of the letters which occurs in an algebraical product 
is called a dimension of the product, and the number of the 
letters is the degree of the product. Thus (db^c or a×a×b×b×b×c 
is said to be of six dimensions or of the sixth degree. A numerical
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6 EXAMPLES. CHAPTEK I.

coefficient is not counted; thus 9α®ό* and are of the same 
dimensions, namely of seven dimensions. Thus the degree of a 
term or the number of dimensions of a term is the sum of the 
exponents, provided we remember that if no exponent is expressed 
the exponent 1 must be understood as indicated in Art. 17.

24. An algebraical expression is said to be homogeneous when 
all its terms are of the same dimensions. Thus 7a® + 3<x¾ ÷ 4.abc 
is homogeneous, for each term is of three dimensions.

The following examples will serve for an exercise in the 
preceding definitions.

' EXAMPLES.

If α = 1, δ = 3, c = 4, d=Q, e = 2 and f=0, find the numerical 
values of the following twelve algebraical expressions:

I.

3.

5.

7.

9.

11.

2.

4.

6.

8.

10.

12.

13. Find the value of ( 
when ic = 3 and v = 5.

14. Find the value of 
and y = 3.

when x = ι)

15. Find the value of a 
and α = 8.

when X = 5

16. Find the value of α+i when
α = 10, b = 8, a; = 12 and 2/ = 4.
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CHANGE OP THE ORDER OF TERMS. 7

17. If α=16, & = 10, x = 5 and 7/ = 1, find the value of

and of

18. find the value of

II. CHANGE OF THE ORDER OF TERMS. REDUCTION OF LIKE

TERMS. ADDITION, SUBTRACTION, USE OF BRACKETS.

25. When the terms of an expression are connected by the 
sign + it is indifferent in what (yrder they are written; thus 
α + b and b + a give the same result, namely the sum of the 
numbers which are denoted by a and b. We may express this 
fact algebraically thus

a + b = b + a.
Similarly

α + 6 + c = α + c + 0 = 0 + α + c = δ + c + α = c + α + δ = c + δ + α.

26. If an algebraical expression consist of some terms pre­
ceded by the sign + and some terms preceded by the sign — 
we may write the former terms first in any order we please, 
and the latter terms after them in any order we please. 
This appears from the same considerations as before. Thus, foi’ 
example,

α + 6- c — e=α + δ- e — c=5 + α- c — e = δ + α- e — c.

27. In some cases it is obvious that we may vary the order 
of terms still further by mixing up the terms preceded by the 
sign — with those preceded by the sign + . Thus, for example, 
if α denote 10, b denote 6, and c denote 5, then

α + 5- c = α- c + 0 = 6- c + α.

If however a denote 2, b denote 6, and c denote 5, then 
the expression α — c + δ presents a difficulty because we are thus
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8 CHANGE OF THE ORDER OF TERMS.

apparently required to take a greater number from a less, namely 
5 from 2. It will be convenient to agree that such an expression 
as a — c + b when c is greater than a shall be understood to mean 
t1ie same thing as a + b — c. At present we shall never use such 
an expression except when c is less than a + &, so that a + b — c 
presents no difficulty. Similarly we shall consider — δ + α to mean 
the same thing as, a —b. We shall recur to this point hereafter.

28. Thus the numerical value of an algebraical expression 
remains the same whatever may be the order of the terms which 
compose it. This as we have seen follows, partly from our notions 
of addition and subtraction, and partly from an agreement as to 
the meaning we ascribe to an expression when our ordinary 
arithmetical notions are not strictly applicable. Such an agree­
ment is called in Algebra a convention, and conventional is the 
corresponding adjective.

29. We shall frequently, as in Article 26, have to distinguish 
the terms of an algebraical expression which are preceded by the 
sign + from the terms which are preceded by the sign —, and thus 
the following definition is adopted. The terms in an algebraical 
expression which are preceded by no sign or which are preceded 
by the sign + are called positive terms; the terms which are 
preceded by the sign — are called negative terms. This definition 
is introduced merely for the sake of brevity, and no meaning is 
to be given to the words positive and negative beyond what is 
expressed in the definition. The student will notice that terms 
preceded by no sign are treated as if they were preceded by the 
sign +.

30. Sometimes an expression includes several Idee terms; in 
this case the expression admits of simplification. For example, 
consider the expression 4α¾-3α^c + 9αc^-2α®δ+ 7α^c-6δ’; this 
may be λ∖τitten 4α¾- 2cdb + Ιa^c- 3a®c + 9ac’ — 66’ (Art. 28). 
Now 4α¾-2α¾ is the same thing as 2α¾, and 7a’c —3α^c is 
the same thing as 4a®c. Thus the expression becomes
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ADDITION·.

31. The addition of algebraical expressions is performed by 
writing the terms in succession each preceded by its proper sign.

For suppose we have to add c —<Z + e to a-b', this is the 
same thing as adding c + e — d to a — δ (Art. 28). Now if we 
add c + e to a — b obtain a —δ + c + e; we have however thus 
added <∕ too much, and must consequently subtract d. Hence 
we obtain a — δ + c + e-d, which is the same as a — δ + c- + 
thus the result agrees with the rule above given. The result is 
called the sum.

We may write our result thus :

a — b-∖-{c- d+e) = a — b + c — d + e.

32. When the terms of the expressions which are to be 
added are all unlike, the sum obtained by the rule does not 
admit of simplification. But when like terms occur in the ex­
pressions, we may simplify as in Art. 30. Hence we have the 
following rules:

When like terms have the same sign their sum is found by 
taking the sum of the coefficients with that sign and annexing the 
common letters.

'Example; add 5a— 3δ and 4a— lb’, the sum is 9α-10δ. 
For the 5a and the 4a together make 9a, and the 3δ and 7δ 
together make 10δ.

Again; add 4a^c-10bde, 6a^c-9bde and lla^c-3bde. The 
sum is 21a^c- 22bde.

When like terms occur with different signs their sum is found 
by taking the difference of the sum of the positive and the sum of 
the negative coefficients with the sign of the greater sum and an­
nexing the common letters as before.

Example; add 7α-9δ and 5b- 4a. The sum is 3a- 4b.
Again; add 3α^ + 4δc-e’ +10, 5α* + 6δc +2e’—15 and 

4a’ —9δc-10e^ + 21. The sum is 12α’ + δο —9e’ +16.
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SUBTRACTION.

33. Suppose we have to take δ + c from a. Then, as each of 
the numbers b and c is to be taken from a the result is denoted by 
a — b — c. That is

, a-ψ + c) = a-b-c.

We enclose the term δ + c in brackets, because both the num­
bers b and c are to be taken from a.

Similarly, α + <Z - (δ-i-c + e) = α + <7-δ-c — e.

34. Next suppose we have to take b — c ίτοια. a. If we take 
b from α we obtain a — b] but we have thus taken too much 
from a, for we are required to take, not b but, b diminished by c. 
Hence we must increase the result by c; thus '

Similarly, suppose we have to take b — c — d + e from a. This 
is the same thing as taking b + e — c — d from a. Take away ό + e 
from a and the result is a — b — e; then add c-^d, because we 
were to take away, not b + e but, b + e diminished by c + d ∙, thus

35. From considering these cases we arrive at the following
I ule for subtraction. Change the sign of every term in the expres­
sion to be subtracted, and then add il to the other expression. Here 
as before, we suppose for shortness, that where there is no sign 
before a term, + is to be understood.

For example; take a — b from 3α + b.
3α + b — {a — b) = 3α + δ — a + δ = 2a + 2b.

Again; take 5a^ + iab — Qxy from 1 la® + 3αδ — ^iXy.
II α* + 3αό - 4a:?/ - {5a* + 4αδ - Qxy} =

1 lα* + Zab — ^ixy — 5α* — 4αδ + Qxy = 6a® — ab + 2xy.
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BRACKETS.
36. ·« On account of the frequent occurrence of brackets in 

Algebraical investigations, it is advisable to call the attention 
of the student explicitly to the laws respecting their use. These 
laws have already been established, and we have only to give 
them a verbal enunciation.

lΓAen an expressior), within bracJcetβ is preceded by the sign + 
tlie brackets may be removed.

And consequently any number of terms in an expression may be 
enclosed by brackets, and the sign + placed before the whole.

Thus a — 0 + c — (∕ + e may be written in the following ways.

and so on.
When an expression within brackets is preceded by tlw sign — 

the brackets may be removed if tit,e sign of every term within the 
brackets be changed, namely + to — and — to +.

And consequently any number of terms in an expression may 
l>e enclosed by brackets and the sign — placed before the whole, 
provided the sign of every term within the brackets be changed.

Thus a — b + c + d — e may be written in the following ways.

and so on.

37. Expressions may occur with more than one pair of 
brackets; these brackets may then be removed by the preceding 
i-ules. Thus 

or, proceeding in a different order.

Similarly, we may if we please introduce more than one pair 
of brackets.
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EXAMPLES.

1. Add together
and

2. Add together

3. Add together

4. Add together

5. Add together

6. From

7. From

8. Subtract

9. Subtract

10. Subtract

11. Remove the brackets from

12. Remove the brackets from
13. Remove the brackets from

14. Remove the brackets from

15. Also from

16. Also from

17. Also from

18. Also from
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19. find the value of

20. Simplify

III. MULTIPLICATION.

38. We have already stated that the product of the numbers
denoted by any letters may be denoted by writing those letters in 
succession without any sign between them; thus oibcd denotes the 
product of the numbers denoted by α, δ, c and d. suppose the
student to know from Arithmetic, that the product of any num­
ber of factors is the same in whatever order the factors may be 
taken; thus αδc — acb — bca, and so on.

39. Suppose we have to form the product of 4α, 5b and 3c; 
this product may be written at full thus, 4×α×5×δ×3×c, or 
4 × 5 × 3 × abc, that is 60αδc. And thus we may deduce the 
following rule for the multiplication of simple terms: multiply 
together the numerical coefficients and write the letters after this 
product.

40. The notation adopted to represent the powers of a num­
ber, (Art. 17), will enable us to prove the following rule: the 
powers of a number are multiplied by adding the exponents, for 
a^ ×a^ = a×a×a×'a× a = a^ = a®·*·®; and similarly any other case 
may be established.

Thus if m and n are any whole numbers, a” × α" =

41. We may if we please indicate the product of the same 
powers of different letters by writing the letters within brackets, 
and placing the index over the whole. Thus α’χδ’=(αά)’; this ' 
is obvious since («&)“ = ab ×ab = a×a×b×b. Similarly,

Thus α"×δ" = (αδ)"i α" × ά" × c" = (αδc)"j and so on for any 
number of factors.
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14 multiplication.

42. Suppose it required to multiply α + δ by c. The pro­
duct of a and c is denoted by αc, and the product of δ and c 
is denoted by δcj hence the product of a + b and c is denoted by 
αc + be. For it follows, as in Arithmetic, from our notion of 
multiplication, that to multiply any quantity by a number we 
have only to multiply all the parts of that quantity by the number 
and add the results. Thus

43. Suppose it required to multiply a — b by c. Here the 
product of a and o must be diminished by the product of b 
and c. Thus

44. Suppose it required to multiply a + b by c + d. It 
follows, as in Arithmetic, from our notions of multiplication, 
that if a quantity is to be multiplied by any number, we may 
.separate the multiplier into parts the sum of which is equal to 
the multiplier, and take the product of the quantity by each part, 
and add these partial products to form the complete product.

Thus 
also 
thus

45. Suppose it required to multiply a — b by c + d. Here 
the product of a and c + d must be diminished by the product of 
b and c + d. Thus

46. Suppose it required to multiply a + b by c — d. Here 
the product of a + b and c must be diminisJied by the product 
Qi a + b and d. Thus
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47. Suppose it required to multiply a — b by c — d. Here 
the product of α — δ and c must be diminished by the product 
of a — b and <∕. Thus

48. From considering the above cases we arrive at the fol­
lowing rule for multiplying two binomial expressions. Multiply 
ea∙ch term of the multiplicand by each term of the multiplier; if tlt^ 
terms have the same sign, prefix the sign + to the product, if they 
leave different signs prefix the sign then collect these partial 
products to form the complete product.

The rules with respect to the sign of each partial product are 
often enunciated thus for shortness: like signs produce +, and 
wtilike signs produce —.

49. It appears from the preceding articles, that correspond­
ing to the terms — b and c which occur in two binomial factors, 
there is a term — be in the product of the factors. Hence it is 
often stated as an independent truth that — b × c = — be.

Similarly, we observe, that corresponding to the terms — b and 
— c which occur in two binomial factors, there is a term be in the 
product of the factors; hence it is often stated as an independent 
ti’uth, that -b×-c~bc. These statements will be examined and 
explained in a subsequent chapter.

50. The rule given in Article 48 will hold for the multipli­
cation of any algebraical expressions. This will appear from 
considering a few examples. Suppose, for instance, we have to 
multiply 4α* — 5αδ + 6δ® by 2α* — 3αδ + 4δ^ The required pro­
duct here is 

thus we obtain 

that is.
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16 MULTIPLICATION.

This result agrees with the rule. If we simplify the result by 
collecting the like terms we obtain

The whole operation may be conveniently arranged thus:

51. The student should carefully notice the arrangement of 
the above operation. The expressions which we wish to multiply 
are here said to be arranged according to descending powers of a; 
for in the expression 4a® — 5αδ + 60® the term which contains the 
]bighest power of a is 4a®, and this is placed first; next we place 
— 5αδ which contains α, and last we place the term + 65®, which 
does not contain α at all. Similarly the other factor 2a®— 3αδ + 4δ® 
is arranged. The partial products which arise are so arranged 
that like terms occur in the same column, and thus we collect 
them more easily. The factors might also have been arranged 
thus Gb^-5ab + 4a® and 4δ®-3αδ + 2α®; they are then said to 
be arranged according to cbscending powers of a.

52. Again; multiply The opera­
tion may be arranged thus:

Thus the product is x* + »® + 1.
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53. The following three examples are deserving of special 
notice,

The first example gives the value of (α + b')(a + b), that is, of 
(α + by; we thus find

Thus the square of the sum of two numbers is equal to the sum 
of the squares of the two numbers increased by twice their product.

Again we have

Thus the square of the difference of two numbers is equal to the sum 
of the squares of the two numbers diminished by twice their product.

Also we have

Thus the product of the sum and difference of two numbers is 
equal to the difference of their squares.

5i. ΛVe may here indicate the meaning of the sign ÷ which 
is sometimes used.

Since 
and 
we may write

Thus ± indicates that we may take either the sign + or the 
sign — ; a ± b is read thus, “ a plus or mimts b.”

55. The results given in Art. 53 furnish a simple example of 
the use of Algebra; we may say that Algebra enables us to

T. A. 2 
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18 MULTIPLICATION.

prove general theorems respecting numbers, and also to express 
Uu)se tJieorems briefly. For example, the result

is proved to be true, and is stated thus by symbols more com­
pactly than by words.

56. By using the formvloe given in Art. 53, the process of 
multiplication may be often simplified. Thus suppose we have to 
multiply α + δ + c + <∕ by a + b —c — d. This is the same thing as 
multiplying (α + δ) + (c + iZ) by (α + &) — (c + d'). Then by the 
third formula we have

Next we can express (α + δ)* and (c + by means of the first 
formula; thus finally

57. From an examination of the examples here given, and 
those which are left to be worked, the student will recognise the 
truth of the following laws with respect to the result of multi­
plying algebraical expressions.

The number of terms in the product of two algebraical ex­
pressions is never greater than the product of the numbers of the 
terms in the two expressions, but may be less, owing to the 
simplification produced by collecting like terms.

When the multiplicand and multiplier are both arranged in the 
same way according to the powers of some common letter, the first 
and last terms of the product are unlike any other terms. For in­
stance, in the example of Art. 50, the multiplicand and multiplier 
are arranged according to powers of a; the first term of the 
product is 8α* and the last term is 24δ∖ and there are no other 
terms which are like these; in fact, the other terms contain a 
ι∙aised to some power less than the fourth power, and thus they 
difier from 8a*; and they all contain a to some power, and thus 
they difier from 24δ*.

When the multiplicand and multiplier are both homogeneoiis 
' the product is homogeneous, and the number of the dimensions of

www.rcin.org.pl



EXAMPLES OF MULTIPLICATION. CHAPTER III. 19 

the product is the sum of the numbers which express the dimen­
sions of the multiplicand and multiplier. Thus in the example of 
Art. 50, the multiplicand is homogeneous and of two dimensions, 
and the multiplier is homogeneous and of two dimensions; the 
product is homogeneous and of four dimensions.

EXAMPLES OF MULTIPLICATION.

1. Multiply
2. Multiply
3. Multiply
4. Multiply
5. Multiply
6. Multiply
7. Multiply

8. Multiply
9. Multiply

10. Multiply
11. Multiply
12. Multiply
13. Multiply

14. Multiply
15. Multiply
16. Multiply

17. Multiply
18. Multiply

19. Multiply
20. Multiply

21. Multiply
2—2
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20 EXAMPLES OF MULTIPLICATION. CHAPTER III.

22. Multiply
23. Multiply
24. Multiply
25. Multiply
26. Multiply
27. Multiply
28. Shew that
29. Shew that
30. Multiply ι
31. Multiply 1
32. Multiply ∙
33. Simplify I
34. Simplify i

35. Prove that
36. Simplify

37. Simplify
38. Simplify
39. Simplify
40. Prove that

41. Prove that 4xy
42. Prove that 4xy∣

43. Multiply together
44. Multiply
45. Multiply
46. If s = a + b + c, prove that
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IV. DIVISION.

58. Division, as in Arithmetic, is the inverse of Multipli­
cation. In Multiplication we determine the product arising from 
two given factors; in Division we have the product and one of 
the factors given, and our object is to determine the other factor. 
The factor to be determined is called the quotient.

59. Since the product of the numbers denoted by a and h 
is denoted by ab, the quotient of ab divided by α is thus 
ab÷a=b", and also ab ÷ b = a. Similarly, we have abc ÷a=bc, 
abc ÷b = ac, abc ÷ c = ab∙, and also abc ÷bc = a, abc ÷ a/: = b, 
abc ÷ (ib~c. These results may also be written thus:

60. Suppose we require the quotient of 60αδc divided by 3c. 
Since 60αδc = 2(iab × 3c we have 00αδc ÷ 3c = 2^ab. Similarly, 
60αδc ÷ 4α = 150c; 60αδc÷ 5αδ = 12c; and so on. Thus we may 
deduce the following rule for dividing one simple term by another; 
If the numerical coefficieTit and literal product of the divisor be 
found in the dividend, the other part of the dividend is the 
quotient.

61. If the numerical coefficient and literal product of the 
divisor be not found in the dividend, we can only indicate the 
division by the notation we have appropriated for that purpose. 
Thus if 5a is to be divided by 2c, the quotient can only be indi-

5αcated by 5a ÷ 2c, or by . In some cases we may however ZlC
simplify the expression for the quotient by a principle already 
used in Arithmetic. Thus if 15α'δ is to be divided by 6δc, the 

1
quotient is denoted by ∙ Here the dividend = 3δ × 5α*, and
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22 DIVISION.

the divisor = 3δ × 2c; thus in the same way as in Arithmetic we 
may remove the factor 3δ, which occurs in both dividend and 

5a’divisor, and denote the quotient by .

62. One power of any quantity is divided by another power 
of the same quantity by subtracting the index of the latter power 
from the index of the former.

Thus α*÷α* = α×αχα×α×α÷α×α = α×α×α = α≡ = a’~’. 
Similarly any other case may be established.

Hence if m and n be any whole numbers, and m greater

tlian w, we have

63. Again, suppose we have such an expression as We

may write it thus then, as in Art. 61, we may remove

Tthe common factor a’. Thus we obtain = . Similarly any

other case may be established. Hence if m and n be any whole 
a” 1numbers, and τα less than n. yiQ have α*" ÷ α" or — = —— .’ a;‘ a’'~”

64. Suppose such an expression as to occur; this may be

written thus . For means × , and we know from

Λ CbArithmetic that × Similarly any other case may be

established.

Hence if n be any whole number = .

65. When the dividend contains more tJian one term, and the 
divisor contains only one term, we mu^t divide each term of the 
dividend by the divisor, and then form the partial quotients to ob­
tain the complete quotient.
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Thus,

In the first example we see that corresponding to the term ab 
in the dividend and to the divisor h there is the term a in the 
quotient; and corresponding to the term — ch in the dividend 
and to the divisor h there is the term — c in the quotient.

We have already stated in Art. 49, that the following results 
are admitted for the present, subject to future explanation,

δ X — c = — δc, -h×-c = hc.

Similarly, the following results may be admitted.

Thus in Division as in Multiplication, the sign of the quotient 
is deduced from the signs of the dividend and divisor by the rule, 
like signs produce +, and unlike signs produce —.

66. When the divisor as well as the dividend contains more 
than one term, we must perform the operation of algebraical 
division in the same way as the operation called Long Division in 
Arithmetic. The following rule may be given:

Arrange both dividend and divisor according to the powers of 
some common letter—either both according to ascending powers, or 
both according to descending powers. Find how often the first term 
of the divisor is contained in the first term of the dividend, and 
write down this result for the first term of the quotient; multiply 
t1iβ whole divisor by this term, and subtract the product from the 
dividend. Bring down as many terms of the dividend as the case 
may require, and repeat the operation till all the terms are brought 
down.
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24 DIVISION.

Example. Divide a* — lab + δ® by a — b.
The operation may be arranged thus :

The reason for the rule is, that the whole dividend may be 
divided into as many parts as may be convenient, and the com­
plete quotient is found by taking the sum of all the partial quo­
tients. Thus, in the example, a® — 2αδ + δ* is really divided by the 
process into two parts, namely, a* — ab and -ab + b'∖ and each of 
these parts is divided by α — δ; thus we obtain the complete 
quotient a — b.

67. It may happen, as in Arithmetic, that the division can­
not be exactly performed. Thus, for example, if we divide 
a’ — 2αδ + 2δ® by α — δ, we shall obtain as before α — δ in the 
quotient, and there will tlixn be a remainder b^. This result is 
expressed in a manner similar to that used in Arithmetic; we say 
α*-2αδ + 2δ≡ δ^ . . .----------z----- = a — 0 + ----- γ ; that is, there is a complete quotienta—δ a—b

b^ a — b and a fractional part ---- . To the consideration of alge­

braical fractions we shall return in a subsequent chapter.

68. The following examples are important:
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The student may also easily verify the following statements:

Each of these examples of division furnishes an example of 
multiplication, as the product of the divisor and quotient must be 
equal to the dividend. Thus we have the following results which 
are worthy of notice:

69. It will be useful for the student to notice the following 
facts:

as" — α" is always divisible by a; — α whether the index n be an 
odd or even number.

as" — α" is divisible by as + α if the index n be an even number.
as" + α" is divisible by a; + α if the index n be an odd number.
It will be easy for the student to verify these statements in 

any particular case, and hereafter we shall give a general proof of 
them. See Chapter xxxιιι.

70. By means of the results which have been obtained in 
the preceding articles we may often resolve algebraical expres­
sions into factors. Thus whatever A and £ denote we have

2*-5≡ = (ri +B}{A-B),

and the student will frequently have occasion to use this general 
result with various forms of A and J5. Thus, for example, sup­
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26 DIVISION.

pose Λ = a∖ and B = h*, so that ^* = α*, and J5* = δ*j then we 
have

and as 
we obtain

Again, suppose A = a^, and B = so that A’ ≈ a®, and = δ’;
then we have

and, as in Art. 68,

so that

Again, suppose A = α* and B = b*, so that 4* = a^, and B* =. b^; 
then we have

Again, take the general result

and suppose A = a*, and B = b^∙, thus we obtain

and by comparing this with the result just proved.

we infer that

This can be easily verified by the method of Art. 56.
For
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We may also in some cases obtain useful arithmetical applica­
tions of our formulae. For example,

thus the value of (127)’ —(123)’ is obtained more easily than it 
would be by squaring 127 and 123, and subtracting the second 
result from the first.

The following additional examples are deserving of notice.

The student may verify the following result by multiplication 
or division.

71. The following are additional examples of Division.
Divide

The quotient is 4«’ — 5αδ + 6δ’.
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Divide

The quotient is x® — (6 + c) x + be.

EXAMPLES OF DIVISION.

1. Divide
2. Divide
3. Divide

4. Divide
5. Divide
6. Divide
7. Divide
8. Divide
9. Divide

10. Divide

11. Divide

12. Divide

13. Divide
14. Divide

15. Divide
16. Divide

17. Divide
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18. Divide the product of ;

19. Divide the product of

20. Divide the product of

21. Divide the product of

22. Divide the product of

23. Divide
24. Divide
25. Divide the product of

26. Divide
27. Divide
28. Divide
29. Divide

30. Divide
31. Divide the product

32. Divide
33. Divide
34. Divide
35. Divide

36. Divide
37. Divide
38. Divide
39. Divide
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40. Divide
41. Divide
42. Resolve into two factors.
43. Divide b

44. Shew that is divisible by

45. Shew that is divisible by

46.

find the value of

47. Resolve a*®— a:'® into five factors.
48. Resolve into four factors.

49. Resolve into four factors.

50. Shew that
IS divisible by

V. OF NEGATIVE QUANTITIES.

72. In Algebra we are sometimes led to a subtraction 
which cannot be performed because the number which should 
be subtracted is greater than that from which it is required to 
be subtracted. For instance, we have the following relation: 
a — {b + c) — a — b — c; suppose that α=7, Z>=7 and c = 3 so that 
δ + c=10. Now the relation a —(b + c) = a-b-c tacitly sup­
poses δ + c to be less than a; if we were to neglect this supposi­
tion for a moment we should have 7 — 10 = 7 — 7 — 3; and as 7 — 7 
is zero we might finally write 7-10 = -3.

73. In writing such an equation as 7 — 10 = — 3 we may be 
understood to make the following statement: “ it is impossible to 
take 10 from 7, but if 7 be taken from 10 the remainder is 3.”
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74. It might at fiι*st sight seem to the student unlikely that 
such an expression as 7 —10 should occur in practice; or that if 
it did occur it would only arise either from a mistake which could 
be instantly coιτected, or from an operation being proposed which 
it was obviously impossible to perform, and which must therefore 
be abandoned. As he proceeds in the subject the student will 
find however that such expressions occur frequently; it might 
happen that a — δ appeared at the commencement of a long investi­
gation, and that it was not easy to decide at once whether a were 
greater or less than δ. Now the object of the present chapter is 
to shew that in such a case we may proceed on the supposition

. that a is greater than δ, and that if it should finally appear that a is 
less than δ we shall still be able to make use of our investigation.

75. Let us consider an illustration. Suppose a merchant to 
gain in one year a certain number of pounds and to lose a certain 
number of pounds in the following year, what change has taken 
place in his capital? Let a denote the number of pounds gained 
in the first year, and δ the number of pounds lost in the second. 
Then if α is greater than δ the capital of the merchant has been 
increased by α — δ pounds. If however δ is greater than a the 
capital has been diminished by b~ a pounds. In this latter case 
α — δ is the indication of what would be pronounced in Arithmetic 
to be an impossible subtraction; but yet in Algebra it is found 
convenient to retain α — δ as indicating the change of the capital, 
which we may do by means of an appropriate system of interpre­
tation. Thus, for example, if a = 400 and h = 500 the merchant’s 
capital has sufiered a diminution of 100 pounds; the algebraist 
indicates this in symbols, thus

400-500 = -100,

and he may turn his symbols into words by saying that the 
merchant’s capital has been increased by — 100 pounds. This 
language is indeed far removed from the language of ordinary life, 
but if the algebraist understands it and uses it consistently and 
logically his deductions from it will be sound.
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76. There are numerous instances like the preceding in which 
it is convenient for us to be able to represent not only the 
magnitude but also what may be called the quality or affection of 
the things about which we may be reasoning. In the preceding 
case a sum of money may be gained or it may be lost; in a ques­
tion of chronology we may have to distinguish a date before a 
given epoch from a date after that epoch; in a question of posi­
tion we may have to distinguish a distance measured to the north 
of a certain starting-point from a distance measured to the south, 
of it; and so on. These pairs of related magnitudes the algebraist 
distinguishes by means of the signs + and —. Thus if, as in Article 
75, the things to be distinguished are gain and loss, he may denote 
by 100 or by + 100 a gain, and then he will denote by —100 a 
loss of the same extent. Or he may denote a loss by 100 or by 
+ 100, and then he will denote by —100 a gain of the same extent. 
There are two points to be noticed; first, that when no sign is 
used + is to be understood; secondly, the sign + may be ascribed 
to either of the two related magnitudes, and then the sign — will 
throughout the investigation in hand belong to the other mag­
nitude.

77. In Arithmetic then we are concerned only with the 
numbers represented by the symbols 1, 2, 3, &c., and intermediate 
fractions. In Algebra, besides these, we consider another set of 
symbols —1, —2, —3, Ac., and intermediate fractions. Symbols 
preceded by the sign — are called negative quantities, and symbols 
preceded by the sign + are called positive quantities. Symbols 
without a sign prefixed are considered to have + prefixed.

The absolute value of any quantity is the number repre­
sented by this quantity taken independently of the sign which 
precedes the number.

78. In the preceding articles we have given rules for the 
Addition, Subtraction, Multiplication, and Division of algebraical 
expressions. Those rules were based on arithmetical notions and 
were proved to be true so long as the expressions represented such 
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things as Arithmetic considers, that is positive quantities. Thus, 
when we introduced such an expression as α — δ we supposed both 
a and b to be positive quantities and α to be greater than b. But 
as we wish hereafter to include negative quantities among the 
objects of our reasoning it becomes necessary to recur to the con­
sideration of these primary operations. Now it is found con­
venient that the laws of the fundamental operations should be the 
same whether the symbols denote positive or negative quantities, 
and we shall therefore secure this convenience by means of suitable 
definitions. For it must be observed that we have a power over 
the definitions; for example, multiplication of positive quantities 
is defined in Arithmetic, and we should naturally retain that defini­
tion ; but multiplication of negative quantities, or of a positive and 
negative quantity has not hitherto been defined ; the terms are at 
present destitute of meaning. It is therefore in our power to· 
define them as we please provided we always adhere to our 
definition.

79. The student will remember that he is not in a position to 
judge of the convenience which we have intimated will follow from 
our keeping the fundamental laws of algebraical operation perma­
nent, and giving a wider meaning to such common words as 
addition and multiplication in order to insure this permanence. 
He must at present confine himself to watching the accuracy of 
the deductions drawn from the definitions. As he proceeds he will 
see that Algebra gains largely in power and utility by the intro­
duction of negative quantities and by the extension of the meaning 
of the fundamental operations.

80. Two quantities are said to be equal and may be con­
nected by the sign = when they have the same numerical value 
and have the same sign. Thus they may have the same absolute 
value and yet not be equal; for example, 7 and — 7 are of the same 
absolute value but they are not to be called equal.

81. In Arithmetic the object of addition is to find a number 
which alone is equal to the units and fractions contained in certain

T. A. 3
www.rcin.org.pl



34 NEGATIVE QUANTITIES.

other numbers. This notion is not applicable to negative quan­
tities; that is, we have as yet no meaning for the phrase “ add — 3 
to 5,” or “add — 3 to — 5.” We shall therefore give a meaning to 
the word add in such cases, and the meaning we propose is deter­
mined by the following rules. To add two quantities of the same 
sign add the absolute values of the quantities and place the sign of 
the quantities before the sum. To add two quantities of unlike signs, 
subtract the less absolute value from the greater, and place before 
the remainder the sign of that quantity which has the greater ab­
solute value.

Thus, by the first rule, if we add 3 to 5 we obtain 8; if we 
add — 3 to — 5 we obtain — 8. By the second rule, if we add 3 
to — 5 we obtain — 2 ; if we add — 3 to 5 we obtain 2.

82. It will be seen that the rules above given leave to the 
word add its common arithmetical meaning so long as the things 
which are to be added are such as Arithmetic considers—namely, 
positive quantities—and merely assign a meaning to the word in 
those cases when as yet it had no meaning. The reader may 
perhaps object that no verbal definition is given of the word add 
but merely a rule for adding two quantities. We may reply that 
the practical use of a definition is to enable us to know that we 
use a word correctly and consistently when we do use it, and the 
rules above given will ensure this end in the present case.

83. The rules are not altogether arbitrary—that is, the stu­
dent may easily see even at this stage of his progress that they are 
likely to be advantageous. Thus, to take the numerical example 
given above, suppose a man to be entitled to receive 3 shillings 
from one person and 5 from another, then he may be considered 
to possess 8 shillings. But suppose him to owe 3 shillings to one 
person and 5 shillings to another; then he owes altogether 8 
shillings; this may be considered to be an interpretation of the 
— 8 which arises from adding — 3 to — 5. Next, suppose that he 
has to receive 3 shillings and to pay 5 shillings; then he owes 
altogether 2 shillings; this may be considered to be an interpreta­
tion of the — 2 which arises from adding 3 to — 5. Lastly, suppose 
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that he has to receive 5 shillings and to pay 3 shillings, then he 
may be considered to possess 2 shillings; this may be considered 
to be an interpretation of the 2 which arises from adding 
-3 to 5.

84. Thus in Algebra addition does not* necessarily imply 
augmentation in an arithmetical sense; nevertheless the word 
sum is used to denote the result. Sometimes when there might 
be an uncertainty on the point, the term algebraical sum is used to 
distinguish such a result from the arithmetical sum, which would 
be obtained by the arithmetical addition of the absolute values of 
the terms considered.

85. Suppose now we have to add the five quantities — 2, + 5,
— 13, — 4 and + 8. The sum of — 2 and + 5 is + 3 ; the sum 
of + 3 and —13 is —10; the sum of —10 and —4 is —14; the 
sum of —14 and +8 is —6. Thus —6 is the sum required. 
Or we may first calculate the sum of the negative quantities — 2,
— 13 and —4, and we thus get —19; then calculate the sum 
of the positive quantities + 5 and + 8, and we thus get + 13. 
Thus the proposed sum becomes + 13-19, that is, —6 as before. 
It will be easily seen on trial that the same result is obtained 
whatever be the order in which the terms are taken. That is, 
for example, —2 — 13 + 5 + 8 — 4, 8—13 — 2 — 4 + 5, and so on, 
all give — 6.

86. Next suppose we have to add two or more algebraical 
expressions; for example, 2α-3δ + 4c and — a — 2b + c + 2d. We 
have for the sum

2a — 3b + 4c — a — 2b + c + 2d.
Then the like terms may be collected; thus

2a —a —a, -3b-2b = -bb, 4c + c = 5c;
and the sum becomes

a — 5b + 5c + 2d.

Thus we may give the following rule for algebraical addition : 
Write the terms in the same line preceded by their proper signs;

3—2 
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collect like terms into one, and arrange the terms of the result 
in any order.

87. In arithmetical subtraction we have to take away one 
number, which is called the subtrahend, from another which is 
called the minuend, and the result is called the remainder. The 
remainder then may be defined as that number which must be 
added to the subtrahend to produce the minuend, and the object 
of subtraction is to find this remainder.

We shall use the same definition in algebraical subtraction, 
that is, we say that in subtraction we have to find the quantity 
which must be added to the subtrahend to produce the minuend. 
From this definition we obtain the rule: Change the sign of every 
term in the subtrahend and add the result so obtained to the minu­
end, and the result will be the remainder required.

For it is obvious, that if to the expression thus formed we add 
the subtrahend, giving to each term its proper sign, all the terms 
of the subtrahend will disappear and leave the minuend; which 
was required.

88. We have still another point to notice. According to 
what has been laid down, the sum of + α and — δ is denoted by 
α — δ; if we take — δ from a, the result is α + δ; and the sum of
— a, + δ, and —c is —α+δ-c; and so on. But we have as yet 
supposed that the letters themselves stand for positive numbers; 
for example, when we say that the sum of + α and — δ is a — δ, 
a τaa,y be 6, and δ may be 10; but suppose that α is — 6, and δ is
— 10, do the rules adopted apply here? Since δ is —10, — δ or 
—(—10) will naturally be taken to mean 10, and +a or +(-6) 
will be taken to mean — 6; and the sum of 10 and — 6 is 4.

89. Thus if a be itself a negative quantity, we have assigned 
a meaning to + α and to — α; and the meanings are these, let 
a = -0., so that α is a positive quantity, then + a or + (— a) = — a, 
and — a or — (—α) = α. We said in the preceding article that 
these meanings followed naturally from what had preceded; it is 
however of little consequence whether we consider these meanings 

www.rcin.org.pl



NEGATIVE QUANTITIES. 37

to follow thus, or whether we look upon them as new interpreta­
tions ; the material point is to use them uniformly and consistently 
when once adopted.

Since + ( — α) = — α, and — ( — α) = α, that is, + a, we may enun­
ciate the same rule as formerly, namely, that like signs produce + 
and unlike signs —.

90. There are four cases to consider in multiplication. Let 
a and b denote any two numbers, then we have to consider

The first case is that of common Arithmetic and needs no 
remark. The ordinary definition of multiplication may also he 
applied to the second case; for suppose, for example, that δ = 3, 
then — α × 3 indicates that — α is to be repeated three times, that 
is, we have — a — a — a or — 3α as the result. Thus

In the other two cases the multiplier is a negative quantity, 
and thus the common arithmetical notion of multiplication is not 
applicable; we may therefore give by definition a meaning to the 
term in this case. Now we observe that when the multiplier is 
positive, the sign of the multiplicand is preserved in the product; 
thus we are led to adopt the following convention: When the mul­
tiplier is negative, perform the multiplication as if the multiplier 
were positive, and change the sign of the product. Hence we con­
clude immediately that

91. Hence we have the following rule: To multiply two 
quantities whatever be their signs, multiply them without consider­
ing the sigΙis, and put + or — before the product according as the 
two factors have the same sign or different signs. As before re­
marked, the rule for the sign of the product is abbreviated thus: 
Like signs give + and unlike signs give —.

92. In the preceding articles we supposed a and b themselves 
to denote arithmetical numbers; it is important however to 
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observe that if they denote any quantities, positive or negative, the 
four results obtained are true; that is,

Take, for example, the last of these, and suppose that α is a 
negative quantity, and so may be denoted by —a; then —a is a 
positive quantity, and = a. (Art. 89.) Hence — α× - b = a×- & ; 
and this by the third case = — αδ. And ab = — a×b = - ab by 
the second case.

Thus the result — a × — b = ab holds when α is a negative 
quantity. Similarly any other case may be established.

93. We must now shew that the rule for multiplying bino­
mial and polynomial expressions given in Art. 48 is true, whatever 
the symbols denote. Take, for example, the case

(α - δ) c = αc — be.

When this was proved, we supposed c a positive quantity; we 
will now suppose that c is a negative quantity, namely — γ. 
Now by virtue of the convention in Art. 90, to find the product 
oi a — b and — γ we must multiply a — b by γ and then change 
the sign of each term in the result. Now, 

thus

But since c = —γ, we have 

thus the relation 
holds whatever c may be, positive or negative. Similarly, any 
other case may be established.

94. The ordinary definition of division will be universally 
applicable; we suppose a product and one factor given, and we 
have to determine the other factor.

Hence if we perform the division without regarding the signs 
we obtain the quotient apart from its sign. It remains then 
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to determine the sign, for which we may give the following 
rule:

1Γ/ί€?ό the dividend and divisor leave the same sign, the quotient 
ιnτιst have the sign +/ w1een the dividend and divisor have differ­
ent signs, tlee quotient must have the sign —.

This rule follows from the fact that the product of the divisor 
and quotient must be equal to the dividend. The rule for the 
sign of the quotient may as before be abbreviated thus: Like signs 
give + and unlike signs give

95. The words greater and less are often used in Algebra in 
an extended sense. We say that a is greater than b or that b is 
less than a if a—b is a positive quantity. This is consistent with 
ordinary language when a and b are themselves both positive, and 
it is found convenient to extend the meaning of the words greater 
and less so that this definition may also hold when α or δ is nega­
tive, or when both are negative. Thus, for example, in algebraical 
langiiage 1 is greater than — 2 and — 2 is greater· than — 3.

.96. Before leaving this part of the subject we may make a 
few general remarks. The subject of Algebra has been divided 
by some modern writers into two parts, which they have called 
Arithmetical Algebra and Symbolical Algebra. In Arithmetical 
Algebra symbols are used to denote the numbers and the opera­
tions which occur in Arithmetic. Here, as shewn in the preced­
ing chapters of the present work, we begin by defining our 
symbols, and then arrive at certain results, as for example, at 
the result (α + δ) (α — b)= fd— ό®. In Symbolical Algebra we 
assume that the rules of Arithmetical Algebra hold universally, 
and then determine what must be denoted by the symbols and 
the operations, in order to ensure this result. Thus we may 
consider, that in the present chapter we have been examining λvhat 
meanings must be given to the symbols to make the results of the 
previous chapters hold universally. And we have thus been led 
to the theory of negative quantities, and to an extension of the 
meaning of the words addition, subtraction, multiplication and 
division.
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97. In some of the older works on Algebra, scarcely any 
reference is made to the extensions of meaning which we have 
given to some simple arithmetical terms. In such works the 
proofs and investigations are only valid so long as the symbols 
have purely arithmetical meanings; and the proofs and investiga­
tions are really assumed without demonstration to hold when the 
symbols have not purely arithmetical meanings. In recent works, 
as in the present, an attempt is made to establish the proofs 
completely. It must not however be denied that this branch of 
the subject presents considerable difficulty to the beginner, and it 
will probably only be after repeated examination of the subject 
that the student will obtain a conviction of the universal truth 
of the fundamental theorems.

The student is recommended to proceed onwards as far as the 
chapter on equations; he will there see some further remarks on 
negative quantities, and he may afterwards read the present 
chapter again. It would be inconsistent with the plan of this 
work to enter very largely on this branch of Algebra; but the 
present chapter may furnish an outline which the student can 
fin up by his future reading and reflection.

We shall require in the course of the work certain propo­
sitions which are obvious axioms in Arithmetic, and which are 
also true when we give to the terms and symbols their extended 
meanings.

98. If equal quantities be added to equal quantities, the sums 
will be equal.

99. If equal quantities be taken from equal quantities, the 
remainders will be equal.

Thus, for example, if Λ =pB + 6*, then by taking G from these 
equal quantities we have Λ— C =pB,

100. If equal quantities be multiplied by the same or equal 
quantities, the products will be equal.

Thus too if (I = δ then
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101. If equal quantities be divided by the same or equal 
quantities, the quotients will be equal.

102. If the same quantity be added to and subtracted from 
another, the value of the latter will not be altered.

103. If a quantity be both multiplied and divided by another, 
its value will not be altered.

104. It is important to draw the attention of the reader to 
the fact, that these propositions are still true whether the quanti­
ties spoken of are positive or negative, and when the terms addi­
tion, subtraction, multiplication, and division have their extended 
jneanings. For example, if α = δ, and c=<∕, then ac = bd', this is 
obvious if all the letters denote positive quantities. Suppose 
however that c is a negative quantity, so that we may represent 
it by — γ; then d must be a negative quantity, and if we denote 
it by — δ, we have γ=δj therefore αγ = δδj therefore — αγ = — δδ; 
and thus ac = bd.

MISCELLANEOUS EXAMPLES. CHAPTER V,

1. Shew that £c® + 'if + 4«® + 2ajy + Sxz and 4 (a: + zf become 
identical when x and y each =α.

2. find the value ofandIf

5

3. If find the value ofand

4. If α = ∣, δ = 2, = and .y = ⅜, find the value of

5. Substitute y + 3 for x in α* - a:®+ 2a3*- 3 and aιτange the 
result.
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6. Prove that

7. If 2s = a ÷ b + c, shew that

8. Prove that

9. Prove that if then

shew that10.

VI. GREATEST COMMON MEASURE

105. In Arithmetic the greatest common measure of two or 
more whole numbers is the greatest number which will divide each 
of them without remainder. The term is also used in Algebra, and 
its meaning in this subject will be understood from the following 
definition of the greatest common <measure of two or more Alge­
braical expressions. Let two or more Algebraical expressions be 
arranged according to descending powers of some common letter; 
then the factor of highest dimensions in that letter which divides 
each of these expressions without remainder is called their greatest 
common measure.

106. The term greatest common measure is not very appro­
priate in Algebra, because the words greater and less are seldom 
applicable to Algebraical expressions in which specific numerical 
values have not been assigned to the various letters which occur. 
It would be better to speak of the kigfcest common divisor or of 
the highest common measure; but in conformity with established
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usage we retain the term greatest common measure. The letters 
g. c. M. will often be used for shortness instead of this term.

When one expression divides two or more expressions we shall 
say that it is a common measure of them, or more briefly, that it 
is a measure of them.

107. The following is the rule for flnding the G. c. M. of two 
Algebraical expressions :

Let Λ and £ denote the two expressions; let them be arranged 
according to descending powers of some common letter, and suppose 
the index of the highest power of that letter in A not less than 
the index of the highest power of that letter in £. Divide Λ by 
£; then make the remainder a divisor and £ the dividend. 
Again, make the new remainder a divisor and the preceding 
divisor the dividend. Proceed in this way until there is no 
remainder; then the last divisor is the G. c. M. required.

108. Example: find the o. c. m. of

Thus a; — 4 is the g. c. m. required.
109. The truth of the rule given in Art. 107 depends upon 

the following principles:
(1) If P divide A, then it will divide mA. For since P 

divides A, we may suppose A = aP, then mA=maP, thus P 
divides mA.
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(2) If P dirtde Λ and P, then it will divide mΛ ^nB. Toτ 
since P divides j4 and B, we may suppose j4 = aP, and B — bP, 
then τn4 ÷ nB = (ma nb)P; thus Τ’ divides mA ÷ nB.

can now prove the rule given in Art. 107,

110. Let A and B denote the two expres­
sions. Divide A by B; let y> denote the quo­
tient, and G the remainder. Divide A by C; 
let q denote the quotient and T) the remainder. 
Divide C by D, and suppose that there is no 
remainder, and let r denote the quotient. 
Thus we have the following results :

We shall first shew that D is a common measure of A and B.

P divides C, since G = rD∙, hence (Art. 109) D divides ¢-(7 and 
also gC + Bj that is, T) divides .5. Again, since D divides B and 
C, it divides pB + C ] that is, D divides A. Hence T) divides A 
and □δ.

We have thus shewn that D is a common measure of A and B∙, 
we shall next shew that it is their greatest common measure.

By Art. 109 every expression which divides A and B divides 
A -pB∙, that is, (7; thus every expression which is a measure of 
A and A is a measure of B and G. Similarly every expression 
which is a measure of B and (7 is a measure of G and D. Thus 
every expression which is a measure of A and B divides D. But 
no expression higher than D can divide D. Thus D is the G. c. m. 
required.

111. In the same manner as it is shewn in the preceding 
article that D measures A and B, it may be shewn that every 
expression which divides D also measures A and B. And it is 
shewn in the preceding article that every expression which mea­
sures A and B divides D. Thus every measure of A and B 
divides their g. C. m. ; and every divisor of their G. c. m. measures 
A and A.
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112. Example: find the G. c. m. of

This example introduces a new point for consideration. The 
last divisor here is fix + 6; this, according to the rule, must be 
the G. c. M. required. We see from the above process that when 

X* + 5x +4: is divided by 6x + 6 the quotient is + . If the 

other given expression, namely ic’ + 4χ® + 5aj + 2, be divided by 
OS 16ic + 6, it will be found that the quotient is + — + . It may

at first appear to the student that fia? + 6 cannot be a measure 
of the two given expressions, since the so-called quotients really 
contain fractions. But we see that in these quotients the letter 
of reference x does not appear in the denominator of any fraction 
although the coefficients of the powers of x are fractions. Such 

expressions as + and + + , therefore, may be said to be

integral expressions so far as relates to x.

Thus, in the example, when we say that 6ic + 6 is the G. c. M. 
of the two given expressions, we merely mean that no measure 
can be found which contains higher powers of x than 6x + 6.
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Other measures may be found which differ from this so far as 
respects numerical coefficients only. Thus 3x + 3 and 2ic + 2 will 
be found to be measures; these are respectively the halj" and the 
third of 6x + 6, and the coιτesponding quotients when we divide 
the given expressions by these measures will be respectively twice 
and three times what they were before. Again, x + 1 is also a 
measure, and the corresponding quotients are £C + 4 and x^+3x + 2; 
we may then conveniently take ic + 1 as the greatest common mea­
sure, since the quotients are free from fractional coefficients.

113. In order to avoid fractional coefficients in the quotients 
it is usual in performing the operations for finding the G. c. M. to 
reject certain factors which do not form part of the G. C. M. required. 
The process may be conducted thus:

suppose, suppose,

0 suppose,

where neither m nor n has a factor common to A and B. Then 
D’ shall be the G. c. m. of Λ and B.

We have the following results:
A=pB + C=pB+ mC'; B = qC'+ D = qC'+ nD'∙, C'= rD'.

We shall first shew that 7/ is α measure of Λ and B. 
D' divides G', therefore it divides qC + ηΙΪ (Art. 109); that is, 
D' divides .5. Again, since D' divides B and C', it divides pB+mC'∙, 
that is, D' divides Λ. Hence 7/ is α measure of Λ and B.

shall next shew that D' is the greatest common measure 
of Λ and By Art. 109, every measure of A and .δ divide∙s 
√4 —pB, that is, C, that is, mC'', but m has no factor which is com­
mon to A and B∖ thus every measure of A and B divides C', and
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therefore is a measure of B and G'. Similarly, every measure of B 
and C' is a measure of G' and 7/. Thus every measure of A and 
B divides 7)∖ But no expression higher than 7/ can divide D'. 
Thus D’ is the G. c. M. required.

114. A factor of a certain kind may also be introduced at 
any stage of the process. Thus,

Now let mB = B', where m has no factor 
which G has.

Let nG = G', where n has no factor which 
D has.

C)

Then 7) shall be the G. c. M. of A and B.
NiiQ have the following results:
A=pB + G', B' or mB = qG + D∙, G' or nG- rD.

~Wo shall first shew that 7> is α measure of A and 7> 
divides C", that is, nG; but no factor of D is contained in n, so 
that D divides G', therefore D divides qG + D, that is, B' or mB. 
Then, as before, D divides B, and therefore q)B + G, that is, 4. 
Hence 7) is α measure of A and 5.

We shall next shew that D is the greatest common measure of 
A and J?. By Art. 109, every measure of A and B divides A—pB, 
that is, G, and therefore is a measure of B and G', and every 
measure of .δ and G divides mB — qG, that is, D. Thus every 
measure of A and B divides 7). But no expression higher than D 
can divide 7>. Thus D is the G. c. M. required.

115. By means of such modifications of the process for find­
ing the G. c. M. as are indicated in the preceding two articles, we

suppose.
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may avoid the introduction of fractional coefficients. The follow­
ing example will guide the student. Required the G. c. M. of

Before proceeding to the next division we may strike out the 
factor 2 from every term of the new divisor, and multiply every 
term of the new dividend by 3. Then continue the operation 
thus:

Remove the factor 2 from every term of the last expression, 
and then multiply every term by 3. Thus we have

Proceed with the division

Remove the factor 2 and then continue the operation thus:

Thus a® + + 3x + 1 is the g. c. m. required.

www.rcin.org.pl



GREATEST COMMON MEASURE. 49

116. Suppose the original expressions Λ and B to contain a 
common factor F, which is obvious on inspection; let Λ = aF, and 
B=bF. Then F will be a factor of the G. c. M. For in the process 
of Art. 110, if F divide Λ and it may be shewn successively 
that it divides C and 7); that is, F is a factor of the G. c. M. We 
may then find the G. c. M. of a and b, and multiply it by F, and the 
product will be the g. c. m. of √1 and B.

117. Similarly, if at any stage of the operation we perceive 
that a certain factor is common to the dividend and divisor, we 
may strike it out, and continue the operation with the remaining 
factors. The factor omitted must then be multiplied by the last 
divisor which is obtained by continuing the operation, and the 
product will be the required G. c. M.

118. Suppose, for example, that we require the G. c. m. of 
(aj — 1)’ (x — 2)(ic- 3) and (a; — l)®(ic —4) (ic — 5). Here the factor 
{x-1)^ is common to both the proposed expressions, and is there­
fore a factor of the G. C. M. Moreover in this example (x —1)^ forms 
the entire G. c. M.; for no common measure can be found, except 
unity, of {x — 2) (a? — 3) and (a; — 1) (a; — 4) (a; — 5) which are the 
remaining factors of the proposed expressions. The last statement 
can be verified by trial, but when the student is acquainted with 
the theory of the resolution of algebraical expressions into factors 
it will be obvious on inspection.

119. Next suppose we require the G. c. M. of three algebraical 
expressions A, B, C. Find the g. c. m. of two of them, say Λ and 
B∙, let D denote this g. c. m. ; then the G. c. m. of D and G is the 
required G. c. n. of √1, .5 and C.

For by Art. Ill every measure of D and C is a measure of 
Λ, B and G∖ and also every measure of Λ, B and C is a measure 
of D and G. Thus the G. c. m. of D and G is the G. c. m. of A, B 
and C.

120. In a similar manner we may find the G. c. m. of four 
algebraical expressions. Or we may find the G. c. m. of two of

T. A. 4 
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the given expressions and also the G. c. m. of the other two; then 
the G. c. M. of the two expressions thus found will be the G. c. m. 
of the four given expressions.

121. The definition and operations of the preceding articles of 
this chapter relate to polynomial expressions. The meaning of 
the term greatest common measure in the case of simple expressions 
win be seen from the following example:

Required the G. c. m. of 432α*δ⅛y, 270α¾⅛⅛ and 90α‰≡.

We find by Arithmetic the G. c.m. of the numerical coeffi­
cients 432, 270, and 90; it is 18. After this number we wι∙ite 
every letter which is common to the simple expressions, and we 
give to each letter respectively the least index which it has in 
the simple expressions. Thus we obtain 18α⅛aj, which will divide 
all the given simple expressions, and is called their greatest com­
mon measure.

EXAMPLES OF THE GREATEST COMMON MEASURE,

Find the G. c. M. in the following examples:

1. Of — 3® + 2 and — x — 2.

2. ... x^ + 3x^ + 4x +12 and x^ + 4rc^ + 4ic + 3.

3. ... x^ + x^ + x —3 and x^ + 3«’ + 5x + 3.

4. ... ic® + 1 and α;θ+TOic'' + wiic +1,

5. ... fix’ —7αx^-20α⅛ and 3x’+ax —4α*.

fi. ... X® -y^ and x’‘ — y^.

... 3x≡-13x≡ + 23x-21 and fix’+ x’-44x + 21.

8. ... X*—3x’+ 2x’ +X — 1 and x’ —x’—2x + 2.

9. ... X*—7x’ +8x’ +28x —48 and x’ —8x’+19x-14.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

VII. LEAST COMMON MULTIPLE.

122. In Arithmetic the least common multiple of two or more 
whole numbers is the least number which contains each of them 
exactly. The term is also used in Algebra, and its meaning in this 
subject will be understood from the following definition of the least 
common multiple of two or more Algebraical expressions. Let two 
or more Algebraical expressions be arranged according to descend­
ing powers of some common letter; then the expression of lowest 
dimensions in that letter which is divisible by each of these 
expressions is their least common multiple.

4—2
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123. The letters L. c. m. ∙will often be used for shortness 
instead of the term least common multiple; the term itself is not 
very appropriate for the reason already given in Art. 106.

Any exj)ression which is divisible by another may be said to 
be a multiple of it.

124. We shall now shew how to find the L. c. m. of two 
Algebraical expressions. Let A and B denote the two expres­
sions, and D their greatest common measure. Suppose A = aD 
and B = bD. Then from the nature of the greatest common 
measure, a and b have no common factor, and therefore their 
least common multiple is ab. Hence the expression of lowest 
dimensions which is divisible by aD and bD is obD.

And abD ■= Ab = Ba = .

Hence we have the follθΛving rule for finding the L. c. M. of 
two Algebraical expressions: find their G. c. M.; divide either ex­
pression by this G. c. m., and multiply the quotient by the other 
expression. Or thus;—divide the product of the expressions by 
their G. c. M.

125. If J∕ be the least common multiple of A and B, it is 
obvious that every multiple of J∕ is a common multiple of A 
and B.

126. Every common multiple of two Algebraical expressions is 
a multiple of their least common multiple.

Let A and B denote the two expressions, J∕ their l. c. m. ; and 
let N denote any other common multiple. Suppose, if possible, 
that when A is divided by J∕ there is a remainder B∙, let q denote 
the quotient. Thus A = qM + B ■ therefore 7? = A — gM. Now √1 
and A measure J7 and A, and therefore (Art. 109) they measure 
B. But 7i is of lower dimensions than Jf; thus there is a common
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multiple of A and -B of lower dimensions than their L. C. M. This 
is absurd; hence there can be no remainder Ji; that is, JJ is a 
multiple of J∕.

127. Next suppose we require the L. c. m. of three Algebraical 
expressions ^1, G. Find the L. c. m. of two of them, say A and 
B; let J∕ denote this L. c. M.; then the L. c. M. of J∕ and 6* is 
the required n. c. m. of ∠1, -δ and G.

For every common multiple of M and G is a common multiple 
of d, B and C (Art. 125). And every common multiple of A 
and 7/ is a multiple of M (Art. 126); thus every common multi­
ple of A, B and G is a common multiple of M and (7. Therefore 
the L. c. M. of J∕ and G is the l. c. m. of A, B and (7.

128. By resolving Algebraical expressions into their compo­
nent factors, we may sometimes facilitate the process of determin­
ing their α. c. si. or L. c. si. For example, required the L. c. si. of

and x® — aJ'. Since 

we infer that x — α is the G. c. si. of the two expressions; con­
sequently their L. c. si. is (x + a} (x® — a^'), that is.

129. The preceding articles of this chapter relate to polyno- 
τnxal expressions. The meaning of the term least common mul­
tiple in the case of simple expressions will be seen from the 
following example. Required the l. c. si. of 432α'*δ⅛y, 270(ΐ*δθχ®« 
and 90α’δχ®. We find by Arithmetic the L. c. si. of the numeri­
cal coeflicients 432, 270 and 90; it is 2160. After this number 
we write every letter which occurs in the simple expressions, and 
we give to each letter respectively the greatest index which it has 
in the simple expressions. Thus we obtain 2160a*&’x’y2:, which is 
divisible by all the given simple expressions, and is called their 
least common multiple.
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130. The theories of the greatest common measure and of the 
least common multiple are not necessary for the subsequent chap­
ters of the present work, and any difficulties which the student 
may find in them may be postponed until he has read the theory 
of equations. The examples however attached to the preceding 
chapter and to the present chapter should be carefully worked, on 
account of the exercise which they afford in all the fundamental 
processes of Algebra.

EXAMPLES OF THE LEAST COMMON MULTIPLE.

1. Find the L. c. m. of Qx^ — x—1 and 2x^+8x-2.

2. Find the L. c. M. of Sx^-5x + 2 and 4x^~ 4ic^- x + 1.

3. Find the l. c. m. of x^ — 1 and of + x~2.
4. Find the l. c. m. of i»’—9ic*+23ic —15 and £c® — 8x + 7.

5. Find the l. c. m. of {x + 1) {x^ - 1) and a:®-l.
6. Find the L. c. M. of + 2'3?y — x'lf-2ι∕ and

x^ — 2x^y — χy∕ + 2.↑f'∙
Find the L. c. m. of 2ic-1, 4»;^ —1 and 4rc^ +1.

8. Find the L. c. m. of x^ — x, x≡-1 and χ®+1.
9. Find the l. c. m. of x^~4a^, (a? + 2a)® and (x-2aγ.

10. Find the l. c. m. of a:®—6a:®+llic—6, a;®—9a:®+26aj — 24
and aj® — 8χ“ + 19a; — 12.

11. Find the L. c. M. of a:® —4a®, as® + 2aa;® + 4a®a; + 8a® and
a;® — 2aa:® + 4a®a: — 8a®.

12. Find the L. c. M. of
a;® — (α + δ) a: + ab, x^ - (b + c)xΛ- be, and a;® — (c + α) a; + ca.

13. Required the L. c. M. of
2a:®+ (2α - 8b')x^- {2b^ + 3αδ) x + 8b^ and 2a:® - (3δ -2c)x- Zbc.

14. Required the L. c. M. of
6(α®-ά®)(α-ό)®, {a^-b^}(a-bγ and 12(α®-ύ®)’
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VIII. FRACTIONS.

131. We propose to recall to the student’s attention some 
propositions respecting fractions which he has already found in 
Arithmetic, and then to shew that these propositions hold uni­
versally in Algebra. In the following articles the letters repre­
sent whole numbers, unless it is stated otherwise.

132. By the expression we indicate that a unit has been 

divided into b equal parts, and that a of such parts are taken. Here

is called a fraction; a is the nwnierator and b the denominator, 

so that the denominator indicates into how many parts the unit is 
to be divided, and the numerator indicates how many of those 
parts are to be taken.

Every integer may be considered as a fraction with unity for 

its denominator; that is, ∕' = ∣∙

133. To multiply a fraction by an integer we multiply the 
numerator by that integer, and to divide a fraction by an integer we 
divide the numerator by that integer.

Let denote any fraction, and c any integer; then will 

‰ c = . For in each of the fractions ~, and ~, the unit is
0 0 0 0 
divided into b equal parts; and c times as many parts are 
taken in the latter fraction as in the former; hence the latter 
fraction is c times the former. This proves the rule for multipli­
cation.

In a similar manner we may shew that ÷ c — , and thus 

prove the rule for division.
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134. Or we may use the following rules:—To divide, a frac­
tion by an integer multiply the denominator by that integer, and to 
multiply a fraction by an integer divide the denominator by that 
integer.

Let denote any fraction, and c any integer; then will 

v÷c = ∙^∙ For in each of the fractions y, and , the same 
b be b be
number of parts is taken; but each part in the latter is ^th of 

each part in the former, since in the latter the unit is divided into 
c times as many parts as in the former; hence the latter fraction 

is -th of the former. This proves the rule for division.

In a similar manner we may shew that × c = , and thus

prove the rule for multiplication.

135. If any quantity be both multiplied and divided by the 
same number its value is not altered. Hence if the numerator 
and denominator of a fraction be multiplied by the same number 
the value of the fraction is not altered. For the fraction is 
multiplied by any number by multiplying its numerator by that 
number, and is divided by the same number by multiplying its 
denominator by that number. (Arts. 133 and 134.) Thus

= . And so also if the numerator and denominator of a0 be
fraction be divided by the same number the value of the fraction 
is not altered.

136. Hence, an Algebraical fraction may be reduced to an­
other of equal value by dividing both numerator and denominator 
by any common measure; when both numerator and denominator 
are divided by their O. c. M. the fraction is said to be reduced to ι<s 
, , ., , , . 6√-7aj-2Olowest terms. For example, consider the fraction —27x^+^5* 
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Here the G. c. M. of the numerator and denominator will be found 
to be 2x — 5; hence, dividing both numerator and denominator by 
this we obtain

137. Since = (Art. 94) it is obvious that we may 

change the signs of the numerator and denominator of a fraction 
without altering the value of the fraction.

t

138. To reduce fractions to a common denominator ;—multi­
ply the numerator of each fraction by all the denominators except 
its own for the numerator corresponding to that fraction, and mul­
tiply all the denominators together for the common denominator.

Thus, suppose and to be the proposed fractions; then,

1 A , n o ►. ® O'df c cbf , e ebd ,, adf cbf , 
by Art. 135, r=r-7>j j = rτ>, ι∙= Γjt) T7J∙ι' b bdf’ d bdf f bdf^ bdj bdf'

8Jfθ fractions of the same value respectively as the proposed 

fractions, and having the common denominator bdf

139. If the denominators have any factors in common, we 
may proceed thus :—-find the L. c. M. of the denominators and use 
this as the common denominator; then for the new numerator cor­
responding to each of the proposed fractions, mτdtiply the numerator 
of that fraction by the quotient which is obtained by dividing the 
L. c. M. by the denominator of that f raction.

Thus suppose, for example, that the proposed fractions are

-- , — , and --. Here the L. c. m. of the denominators is mxyz; mx my mz
, a auz b bxz , c cxu and — = —— , —=------ , and — = —— .mx mxyz my mxyz mz mxyz

140. To add or subtract fractions,—reduce them to a common 
denominator, then add or subtract the numerators and retain the 
common denominator.
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For example, + = follows immediately from the

meaning of a fraction.

141. The mle for the multiplication of two fractions is,— 
multiply the numerators for a new numerator, and the denomina­
tors for a Ιiew denominator.
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The following is usually given for a proof. Let and be 

two fractions which are to be multiplied together; put = and

= v; therefore , , ,d a = bx, and c = ay,
therefore αc = bdxy; 

divide by δ<Ζ; thus ^^=xy.

This process is satisfactory when x and y are really integers, 
though under a fractional form, because then the word multiplica­
tion has its common meaning. It is also satisfactory when one of 
the two, X and y, is an integer, because we can speak of multiplying 
a fraction by an integer, as in Art. 133. But when both x and y 
are fractions we cannot speak of multiplying them together with­
out defining what we mean by the term multiplication, for, ac­
cording to the ordinary meaning of this term, the multiplier must 
be a whole number.

In fact the so-called rule for the multiplication of fractions is 
really a definition of what we find it convenient to understand by 
the multiplication of fractions. And this definition is so chosen 
that when one of the fractions we wish to multiply is an integer 
in a fractional form, or when both are such, the result of the 
definition coincides with the consequences drawn from the ordi­
nary use of the word multiplication.

142. The following verbal definitions may shew more clearly 
the connexion between the meaning of the word multiplication 
when applied to integers, and its meaning when applied to frac­
tions. When we multiply one integer a by another b, we may 
describe the operation thus': what we did with unity to obtain b 
we must now do with a to obtain b times a. To obtain b from 
unity the unit is repeated b times; therefore to obtain b times a 
the number a is repeated b times. Now let it be required to 

multiply the fraction by ; adopting the same definition as

www.rcin.org.pl



60 FRACTIONS.

0 
above, we may say that, ιυhat we did with unity to obtain we 

miist now do with to obtain % times ~. To obtain -. from unity
b d b d

the unit is divided into d equal parts, and c of such parts are taken; 

therefore, to obtain -. times , the fraction is divided into d d b b
equal parts, and c such parts are taken. Now, by Art. 134, if be 

divided into d equal parts, each of them is , and if c such parts 

be taken the result is .bd
The definition then of multiplication may be given thus; to 

obtain the product of the multiplier and multiplicand we treat the 
multiplicand in the same way as unity was treated to obtain the 
multiplier.

143. To multiply three or more fractions together,—multiply 
all the numerators for the new numerator, and all the denominators 
for the new denominator.

144. Suppose we have to divide Here, by'the

nature of division, we have to find a quantity such that if it be 

multiplied by the product shall be . This is the meaning of 
division applied to integers, and we shall give the same meaning 
to division applied to fractions, an operation which hitherto has 
not been defined.

a c .- a c xc ,, - adLet τ- ÷ = X: then = x× -.= ∙ thereiore — = xc, andb d b d d b
=x. Thus we obtain the rule for dividing one fraction by be

another; invert the divisor, and proceed as in multiplication.

145. Hitherto we have supposed, in the present chapter, that 
the letters represented whole numbers; and have thus only recalled
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rules and proofs which are familiar to the student in Arithmetic. 
But in virtue of our extended definitions it may be proved that all 
the rules and formulae given are true when the letters denote any 
numbers whole or fractional. Take, for example, the formula

= and suppose we -wfish to shew that this is true when

Thus the formula is shewn to be true.

146. Moreover these formulae and rules hold when the letters 
denote negative quantities by virtue of the remarks already made 
in Chapter v,

147. By means of the foregoing rules and formulae we can 
simplify Algebraical fractious, in which the numerator and de- 
nominatoχ∙ are themselves fractional expressions. For example,

EXAMPLES OF FRACTIONS.

Simplify the following fractions:

1.

3.

2.

4.
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5.

7.

9.

11.

13.

15.

16.

6.

8.

10.

12.

14.

Perform the additions and subtractions indicated in the fol­
lowing examples from 17 to 37:

17.

19.

20.

21.

22.

23.

24.

18.
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25.

26.

28.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Multiply

Multiply

Multiply togetKeι

Prove that
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42. Multiply together

43. Multiply

44. Simplify

45. Simplify

46. Simplify

47. Multiply

48. Multiply

49. Simplify

50. Divide γ
. ('

51. Divide -

52. Divide -Ά

53. Divide -£

54. Simplify

55. Simplify

56. Simplify
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57. Divide

58. Divide

59. Divide

60. Divide

61. Divide

62. Divide

63. Divide

64. Divide

65. Simplify

66. Simplify

67. Simplify

68. Simplify

69. Simplify

T. A. » 5
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7 0. Simplify

71. Simplify

7 2. Simplify

7 3. Simplify

7 4. "Simplify

7 5. Simplify

7 6. Simplify

IX. EQUATIONS OF THE FIRST DEGREE.

148. Any collection of Algebraical symbols is called an ex­
pression. When two expressions are connected by the sign of 
equality the whole is called an equation. The expressions thus 
connected are called sides of the equation, or members of the equa­
tion. The expression to the left of the sign of equality is called 
the first side, and the expression to the right the second side.
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149. An identical equation is one in which the two sides are 
equal whatever numbers the letters stand for; for example, 

is an identical equation. An identical equation is called briefly 
an identity.

150. An equation of condition is one which is not true for 
every value of the letters, but only for a certain number of values; 
for example,

aj+l = 7

cannot be true unless a; = 6. An equation of condition is called 
briefly an equation.

151. A letter to which a particular value or values must be 
given in order that the statement contained in an equation may 
be true is called an unknown quantity. Such particular value of 
the unknown quantity is said to satisfy the equation, and is called 
a root of the equation. To solve an equation is to find the parti­
cular value or values.

152. An equation involving one unknown quantity is said to 
be of as many dimensions as is denoted by the index of the 
highest power of the unknown quantity. Thus, if x denote the 
unknown quantity, the equation is said to be of O7te dimension 
when X occurs only in the first power; such an equation is also 
called a simple equation, or an equation of the first degree. If no 
power of x higher than x^ occur, the equation is said to be of two 
dimensions; such an equation is also called a quadratic equation, 
or an equation of the second degree. If no power of x higher 
than x^ occur, the equation is said to be of three dimensions; 
such an equation is also called a cubic equation, or an equation of 
the third degree. And so on.

It must be observed that these definitions suppose both mem­
bers of the equation to be integral exq)ressions so far as relates to x.

5—2.
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153. We shall now indicate some operations which may be 
performed on an equation without destroying the equality which 
it expresses. It will be seen afterwards that these operations are 
useful when we have to solve equations.

154. If every term on each side of an equation be multiplied 
or divided by the same quantity the results are equal. This follows 
from Art. 100.

155. The principal use of the preceding article is to clear an 
equation of fractions; this is effected by multiplying every term 
by the product of all the denominators of the fractions, or, if we 
please, by the least common multiple of those denominators. 
Suppose, for example.

Multiply every term by 2 × 3 × 4; thus,
3×4×aJ+2×4×ic + 2×3×ic=13×2×3×4j

that is, 12x + 8ic + 6ic= 312.
Divide every term by 2; thus,

6x + 4ic + 3a3= 156.
Instead of multiplying every term by 2 × 3 × 4 we may multi­

ply by 12, which is the L. c. m. of 2, 3 and 4. Thus we obtain 
at once

6ic + 4ic + 3aj= 156.

156. Any quantity may be transposed from one side of an 
equation to the other side by changing its sign.

Thus suppose x — a = b — y.

Add a to each side (Art. 98); then
a—α + α = δ- 2∕ + α, 

that is, x = b + a-y.
Now subtract b from each side; thus,

x-b≈bΛ-a-y-b-a-y.
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Here we see that —a has been removed from one side of the 
equation, and appears as +α on the other side; and +ό has been 
removed from one side and appears as — δ on the other side.

157. If the sign of every term in an equation be changed the 
equality still holds.

This follows from the preceding article by transposing every 
term. Thus suppose

aj-α= b — y.
By transposition, y — b = a — x,
that is, a-x = y-b',
this result is what we shall obtain if we change the sign of every 
term in the original equation.

158. We can now give a luile for the solution of any simple 
equation with one unknown quantity.

Let the equation first be cleared of fractions ; then transpose all 
the terms which involve the unknown quantity to one side of the 
equation, and the known quantities to the other; divide both sides 
by the coefficient or the sum of the coefficients of the unknown 
quantity, and the value required is obtained.

The tι∙uth of the rule will be obvious from the principles of 
the preceding articles, and we shall now apply it to some ex­
amples; in these examples the unknown quantity will be de­
noted by X, and when other letters occur, they are supposed to 
represent knoion quantities,

159. Solve 3x — 4 = 24 — x.
By transposition, 3a; + a; = 24 + 4;
thus, 4a; =28;
1 J∙ ∙ ∙ 28 .by division, χ =-=7.

We may verify the result by putting 7 for x in the original 
equation. The first side becomes 3 × 7 — 4, that is, 21 — 4, that is, 
17; the second side becomes 24 — 7, that is, 17.
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160. Solve

Multiply by 96, which is the n. c. m. of the denominators;
thus, 
that is, 
by tχ∙ansposition, 
thus.

by division.

We may verify the result by putting 12 for x in the original 
equation; it will be found that each side of the equation then 
becomes 1.

161. Sometimes it is convenient to clear of fractions par­
tially, and then to effect some reductions before getting rid of the 
remaining fractional coefficients. For example, solve

Here we may conveniently multiply by 12 ; thus.

that is,

By transposition and reduction.

Multiply by 11; thus.

by transposition,

by division,
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162. Solve

Multiply by thus,

that is, 

by transposition,

by division.

163. Solve

Multiply by thus,

that is.

Take away 12x^ from both sides; thus.

by tι∙ansposition, 

thus.

164. Solve

Multiply by 12; thus.

by transposition.

by division.

We may verify this result; each side of the equation will be 
9

found to become — 5.
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165. Solve ax + δ = ex + d.

transposition, 

that is, 

by division,

Verificatxcyii; put this value for x in the original equation;

then the first side becomes that is.

that is, And the second side becomes that

that is.

166. We may remark that an equation of the first degree 
cannot have more than one root. For any equation of the first 
degree will take the form ax = l> if the unknown quantity is 
brought to one side of the equation, and the known quantities to 
the other. Suppose then, if possible, that this equation has two 
different roots α and β; then by supposition, 

therefore, by subtraction, 

but this is impossible, since by supposition α — β is not zero, and 
a is not zero. Thus an equation of the first degree cannot have 
more than one root,

EXAMPLES OF EQUATIONS OF THE FIRST DEGREE.
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4.

5.

7.

8.

9.

10.

11.

13.

14.

15.

16.

17.

18.

19.

21.
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23.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.
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41.

42.

43.

45.

46.

47.

48.

49.

50.

51.

52.

54.

55.

56.

57.

58.
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59.

60.

61.

X. PROBLEMS WHICH LEAD TO SIMPLE EQUA­
TIONS WITH ONE UNKNOWN QUANTITY.

167. We shall now apply the methods already given to the 
solution of some problems, and thus exhibit to the student speci­
mens of the use of Algebra. In a problem certain quantities are 
given, and certain others, which have some assigned relations to 
them, are to be found. The relations are usually expressed in 
ordinary language in the enunciation of the problem, and the 
method of solving the problem may be thus described in general 
terms:—denote the unknown quantity or quantities by letters, and 
express in Algebraical language the relations which hold between 
the unknown quantities and the given quantities; we shall thus 
obtain equations from which the values of the unknown quantities 
may be derived.

We shall now give some examples.

168. The sum of two numbers is 89 and their difference 
is 31; find the numbers.

Let X denote the less number, then the greater number is 
31 + ic; thus since their sum is 89, we have 

that is,
by transposition, 

by division.

Thus the less number is 29, and the greater is 29 + 31, that 
is, 60.
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169. A bankrupt owes B twice as much as he owes A, and 
G as much as he owes A and B together; out of <£300 which is to 
be divided among them, what should each receive ?

Let X denote the number of pounds which A should receive; 
then '2x is what B should receive; and x + 2ic, that is 3x, is what 
(7 should receive. The whole sum they receive is £300; thus, 

that is,

and 

therefore A should receive <£50, B £100, and C £150.

170. Divide a line 21 inches long into two parts, such that 
one may be three-fourths of the other.

3a;Let X denote the length of one part in inches, then -.- denotes4 
the length of the other part; thus.

clear of fractions; thus.

that is,

therefore.

Thus one part is 12 inches long and the other 9 inches.

171. If A can perform a piece of work in 8 days, and B in
10 days, in what time will they perform it together 1

Let X denote the number of days required. In one day A can
1 icperform th of the work, therefore in x days he can perform — ths

of the work. In one day B can perform th of the work, there-
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fore in x days he can perform -∣θ ths of the work. Hence since 

Λ and B together perform the whole work in x days, we have 

clear of fractions by multiplying by 40 ; thus, 

that is,

therefore.

172. A workman was employed for 60 days, on condition 
that for every day he worked he should receive 15 pence, and for 
every day he was absent he should forfeit 5 pence; at the end of 
the time he had 20 shillings to receive; required the number of 
days he worked.

Let X denote the number of days he worked, then he was 
absent 60 —a: days; thus 15x denotes his pay in pence, and 
5 (60 — X) denotes the sum he forfeited. Thus, 

that is,
therefore,

therefore.

Thus he worked 27 days and was absent 60 — 27 days, that is, 
33 days.

173. How much rye at four shillings and sixpence a bushel 
must be mixed with fifty bushels of wheat at six shillings a bushel, 
that the mixture may be worth five shillings a bushel 1

Let X denote the number of bushels required; then Qx is the 
value of the rye in sixpences, and 600 is the value of the wheat. 
The value of the mixture is 10 (50 + x). Thus, 

that is, 
and
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174. A smuggler had a quantity of brandy which he expected 
would produce £9. 18⅛'.; after he had .sold 10 gallons a revenue 
officer seized one-third of the remainder, in consequence of which 
he makes only .£8. 2s.; required the number of gallons he had 
and the price per gallon.

Let X denote the number of gallons; then is the value

of a gallon in shillings. The quantity seized is and the

value of this is thus,

Multiply by 3x; thus.

therefore,
that is,

and

Thus 22 is the number of gallons, and the price of each is 
198— shillings, that is, 9 shillings.

175. The student may now exercise himself in the solution 
of the following problems. We may remark that in these cases 
the only difficulty consists in translating ordinary verbal state­
ments into Algebraical language, and the student should not be 
discouraged if at first he is sometimes a little perplexed, since 
nothing but practice can give him readiness and certainty in 
this process.
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EXAMPLES OP PROBLEMS.

1. The property of two persons amounts to £3870, and one 
of them is twice as rich as the other; what is the property of 
each ?

2. Divide £420 among two persons so that for every shilling 
one receives the other may receive half-a-crown.

3. How much money is there in a purse when the fourth 
part and the fifth part together amount to £2. 5s. 'i

4. After paying the seventh part of a bill and the fifth part, 
£92 is still due; what was the amount of the bill ?

5. Divide 46 into two parts, such that if one part be di­
vided by 7 and the other by 3, the sum of the quotients shall 
be 10.

6. A company of 266 persons consists of men, women and 
children; there are four times as many men as children, and 
twice as many women as children. How many of each are 
there ?

7. A person expends one-third of his income in board and 
lodging, one-eighth in clothing, and one-tenth in charity, and 
saves £318. What is his income?

8. Three towns, A, Ji, C, raise a sum of £594; for every pound 
which Ji contributes, Λ contributes twelve shillings, and C seven­
teen shillings and sixpence. What does each contribute ?

9. Divide £1520 among A, Ji, and C, so that β shall have 
£100 more than A, and C £270 more than £.

10. A certain sum is to be divided among A, Ji, and C. 
A is to have £30 less than the half, B is to have £10 less than 
the third part, and C is to have £8 more than the fourth part. 
Wliat does each receive ?

11. The sum of two numbers is 5760, and their difierence is 
equal to one-third of the greatest; find them.
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12. Two casks contain equal quantities of beer; from the 
first 34 quarts are drawn, and from the second 80; the quantity 
remaining in one vessel is now twice that in the other. How 
much did each cask originally contain ?

13. A person bought a print at a certain price, and paid the 
same price for a frame; if the frame had cost XI less and the 
print 15s. more, the price of the frame would have been only 
half that of the print. Find the cost of the print.

14. Two shepherds owning a flock of sheep agree to divide 
its value; A takes 72 sheep, and A takes 92 sheep and pays A 
X35. Required the value of a sheep.

15. A house and garden cost X850, and five times the price 
of the house was equal to twelve times the price of the garden; 
find the price of each.

16. One-tenth of a rod is coloured red, one-twentieth orange, 
one-thirtieth yellow, one-fortieth green, one-fiftieth blue, one- 
sixtieth indigo, and the remainder which is 302 inches long, violet. 
What is its length ?

17. Two-thirds of a certain number of persons received 
eighteenpence each, and one-third received half-a-crown each. 
The whole sum spent was X2. 15λ How many persons were 
there Ϊ

18. A and B play at a game, agreeing that the loser .shall 
always pay to the winner one shilling more than half the money 
the loser has; they commence with equal quantities of money, but 
after B has lost the first game and won the second, he has tΛvice 
as much as A ; how much had each at the commencement 1

19. A crew which can pull at the rate of nine miles an 
hour, finds that it takes twice as long to come up a river as to go 
down; at what rate does the river flow ?

20. Of a certain dynasty one-third of the kings were, of the 
same name, one-fourth of another, one-eighth of another, one- 
twelfth of a fourth, and there were five besides. How many were 
there of each name 1

T. A. 6
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21. Find that number the third part of which added to its 
seventh part makes 20.

22. A person who possesses £12000 employs a portion of the 
money in building a house. One-third of the money which re­
mains he invests at 4 per cent., and the other two-thirds at 5 per 
cent., and from these investments he obtains an income of £392. 
What was the cost of the house ?

23. The difference of the squares of two consecutive numbers 
is 15. What are the numbers ?

24. A farmer has oxen worth £12. 10s. each, and sheep 
worth £2. 5s. each; the number of oxen and sheep being 35, and 
their value £191. lOs. Find the number he had of each.

25. Λ and B find a purse with shillings in it. Λ takes out 
two shillings and one-sixth of what remains; then B takes out 
three shillings and one-sixth of what remains; and then they find 
that they have taken out equal shares. How many shillings 
were in the purse, and how many did each take ?

26. A hare is eighty of her own leaps before a greyhound; 
she takes three leaps for every two that he takes, but he covers 
as much ground in one leap as she does in two. How many leaps 
will the hare have taken before she is caught i

27. The length of a field is twice its breadth; another field 
which is 50 yards longer and 10 yards broader, contains 6800 
square yards more than the former; find the size of each.

28. A vessel can be emptied by three taps; by the first alone 
it could be emptied in 80 minutes, by the second in 200 minutes, 
and by the third in 5 hours. In what time will it be emptied if 
all the taps are opened ?

29. If an income tax of 7c?. in the pound on all incomes 
below £100 a year, and of Is. in the pound on all incomes above 
£100 a year realize £18750 on £500000, how much is raised 
on incomes below £100 a year?

www.rcin.org.pl



EXAMPLES OF PROBLEMS. CHAPTER X. 83

30. Two horses run over a mile course, the winner complet­
ing the distance in 2 minutes 54 seconds, and winning by 2 
seconds. How many yaι∙ds start might have been allowed to the 
other without risk of losing, supposing the same rates be kept ?

31. A fruiterer sold for 19s. Gd. a certain number of oranges 
and apples, of which the latter exceeded the former by 180. He 
sells the apples at the rate of 5 for 3<∕., and 15 oranges bring 
him in l^d. more than 35 apples. How many are there of each 
sort?

32. A cask Λ contains 12 gallons of wine and 18 gallons of 
water; and another cask jS contains 9 gallons of wine and 3 gal­
lons of water; how many gallons must be drawn from each cask 
so as to produce by their mixture 7 gallons of wine and 7 gallons 
of water?

33. Λ can dig a trench in one-half the time that A can; £ 
can dig it in two-thirds of the time that C can; all together they 
can dig it in 6 days; find the time it would take each of them 
alone.

34. A person after paying sevenpence in the pound for In­
come Tax has £408. 4a 8^<Z. left. What had he at first ?

35. At what times between one o’clock and two o’clock is 
there exactly one minute division between the two hands of a 
clock ?

36. A person has just a hours at his disposal; how far may 
he ride in a coach which travels b miles an hour, so as to return 
home in time, walking back at the rate of c miles an hour?

37. A certain article of consumption is subject to a duty 
of 6 shillings per cwt,; in consequence of a reduction in the 
duty the consumption increases one-half, but the revenue falls 
one-third. Find the duty per cwt. after the reduction.

38. A ship sails with a supply of biscuit for 60 days, at a 
daily allowance of 1 lb. a head; after being at sea 20 days she

6—2
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encounteι∙s a storm in which 5 men are washed overboard, and 
damage sustained that will cause a delay of 24 days, and it is 
found that each man’s allowance must be reduced to five-sevenths 
of a pound. Find the original number of the crew.

XL SIMULTANEOUS EQUATIONS OF THE FIRST 
DEGREE WITH TWO UNKNOWN QUANTITIES.

17 G. Suppose we have an equation containing two unknown 
quantities x and y, for example 5x~2^ = 4. For every value 
which we please to ascribe to one of the unknown quantities we 
can determine the corresponding value of the other, and thus 
find as many pairs of values as we please which satisfy the given 

β 
equation. Thus, for example, if 2/=1 we find = 2/ = 2

we find ic = ι ; and so on.5

Also, suppose that there is another equation of the same kind, 
as for ejcample, 4x + Zy = 17. We can also find as many pairs of 
values as we please which satisfy this equation.

But suppose we ask for values of x and y which satisfy both 
equations; we shall find then that there is only one value of x 
and one value of y. For multiply the first equation by 3; thus,

15x — 6y= 12;

multiply the second equation by 2; thus,

. 80:+62/ = 34.

Therefore, by addition,
15x — 6y + 8x + 6y = 12 + 3-i;

that is, 23ic = 46,
• and, X = 2.
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Thus if both equations are to be satisfied x inust equal 2; put 
this value of x in either of the two given equations; for example, 
in the second equation; thus we obtain

8 + 3y= 17;

therefore, 83/ = 17 — 8,

and, y = ^∙

Ύ11. Two or more equations which are to be satisfied by the 
same values of the unknown quantities are called simultaneous 
equations. ^Wq are now about to treat of simultaneous equations 
involving two unknown quantities where each unknown quantity 
occurs only in the first degree.

178. There are three methods which are usually given for 
solving these equations. The object of all these methods is the 
same—namely, to obtain from the two given equations which 
contain two unknown quantities a single equation containing only 
one of the unknown quantities. By this process we are said to 
eliminate the unknown quantity which does not appear in the 
single equation.

179. First method. The first method is that which we 
adopted in the example of Art. 176; it may be thus described— 
multiply the equations by such numbers as will make the coefficient 
of one of the unknown quantities the same in the two resulting 
equations; then by addition or subtraction u)e can form an equa­
tion containing only the other unknown quantity.

Example. 4x + 3y = 22; 5x-1y=- 6.

If we wish to eliminate y we multiply the first equation by 7, 
which is the coefiicient of y in the second, and the second by 3, 
which is the coefficient of y in the first. Thus we obtain

28χ + 212ζ = 154; 15a;-21y=18.
*
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Then by addition.

that is,
I

and.

Then put this value of a; in either of the given equations, in 
the first for example; thus, 

therefore, 
and.

If we wish to solve this example by eliminating x we multiply 
the first of the given equations by 5, and the second by 4: thus,

Then by sιibtracticm, 

thus, 
and.

180. Second method. Express one o∕ the unknown quantities 
in terms of the other from either equation, and substitute this value 
in the other equation.

Thus, taking the same example, we have from the fiι∙st 
equation 

divide by 4, 

substitute this value of a? in the second equation and we obtain 

multiply by 4, 
that is, 
by transposition, 
and.
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' Then substitute this value of y in either of the given equations 
and we shall obtain aj = 4.

Or thus; from the first equation we have 

divide by 3, 

substitute this value of y in the second equation and we obtain 

multiply by 3,

that is,

that is,

and,

Then substitute this value of x in either of the given equa­
tions and we shall obtain 2/=2.

181. Third method. Express the same unknown quantity in 
terms of the other from each equation and equate the expressions 
thus obtained.

Thus, taking the same example, from the first equation 
a; = , and from the second equation x = θ ;

thus.

elear of fractions, 

that is,
by transposition, 
and.

Hence, as before, we deduce x = 4.
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Or thus; from, the first equation we obtain

and from the second equation thus,

Hence as before we shall obtain x=4 and then deduce y = 2.

EXAMPLES OF SIMULTANEOUS SIMPLE EQUATIONS WITH TWO

UNKNOWN QUANTITIES.

1.

2.
3.

4.

5.

6.

7.
8.

9.

10.

11.

12.
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
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XII. SIMULTANEOUS EQUATIONS OF THE FIRST 
DEGREE WITH MORE THAN TWO UNKNOWN 
QUANTITIES.

182. If there be three simple equations and three unknown 
quantities, deduce from two of the equations an equation con­
taining only two of the unknown quantities by the rules of the 
preceding chapter; then deduce from the third equation and 
either of the former two, another equation containing the same two 
unknown quantities; and from the two equations thus obtained 
the unknown quantities which they involve may be found. The 
third quantity may be found by substituting the above values in 
any of the proposed equations.

Example, suppose,
....(1).
....(2),
....(3).

For convenience of reference the equations are numbered (1), 
(2), and (3), and this numbering is continued as we proceed with 
the solution.

Multiply (1) by 3 and (2) by 2; thus.

by subtraction.
....(4)∙

Multiply (1) by 5 and (3) by 2; thus.

by subtraction.
.............. (5)∙
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Multiply (4) by 27 and (5) by 5; thus,
135y + 594;^= 864,
135y+ 7θ2J=34θ5

by subtraction, 524s=524,
therefore, z=l.

Substitute the value of z in (4); thus,
52/ + 22 = 32;

therefore, 2/ = 2.
Substitute the values of ι∕ and «in (1); thus,

2ic+ 6+ 4 = 16;

therefore, a: = 3.
The same method may be applied to any number of simple 

equations.

EXAMPLES OF SIMULTANEOUS EQUATIONS OF THE FIRST DEGREE

WITH MORE THAN TWO UNKNOWN QUANTITIES.

1.

2,

3.

4.

5.

6.
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7.

8.

9.

10.

11.

12.

13.

14.

15.

16.
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17.

18.

19.

20.

21.

22.

23.

24.

XIII. PROBLEMS WHICH LEAD TO SIMPLE EQUA­
TIONS WITH MORE THAN ONE UNKNOWN 
QUANTITY.

183. We shall now give some examples of problems which 
lead to simple equations with more than one unknown quantity.

A and engage in play; in the first game A wins as much 
as he had and four shillings more, and finds he has twice as much 
as R; in the second game B wins half as much as he had at first
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and one shilling more, and then it appears he has three times 
as much as A; what sum had each at first?

Let X he the number of shillings which A had, and y the 
number of shillings which J5 had; then after the first game A 
has 2x + 4 and £ has y — x — i. Thus by the question,

therefore,
therefore.

Also after the second game A has and -δ has

Thus by the question.

therefore,
therefore,

and.

And from the former equation.

hence by subtraction,' 

therefore.

184. A sum of money was divided equally among a certain 
number of persons; had there been three more, each would have 
received one shilling less, and had there been two fewer, each 
would have received one shilling more than he did; required the 
number of persons, and what each received.

Let X denote the number of persons, the number of shillings 
which each received. Then x^ is the sum divided; thus by the 
question,

and also,
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The first equation gives 

thus,

The second equation gives 

thus,

By addition,

that is.

Hence,

185. What fraction is that which becomes equal to when 
its numerator is increased by 6, and equal to ∣ when its denom­
inator is diminished by 2 ?

Let X denote the numerator and y the denominator of the 
fraction; then by the question.

and,

Clear the first equation of fractions by multiplying by 
thus.

therefore.

Clear the second equation of fractions by multiplying by 
2(y-2); thus.

tlierefore, 

and,
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By subtraction, 

that is,
and.
Hence,

Thus the required fraction is

EXAMPLES OF PROBLEMS.

1. A certain fraction becomes 1 when 3 is added to its nu­
merator, and I when 2 is added to its denominator. What fraction 
is it?

2. Λ and A together possess £570. If A’s money were three 
times what it really is, and five times what it really is, the 
sum would be £2350. What is the money of each?

3. If the numerator of a certain fraction is increased by one 
its value becomes one-third; if the denominator is increased by 
one its value becomes one-fourth. What is the fraction?

4. Find two numbers such that if the first be added to four 
times the second, the sum is 29; and if the second be added to 
six times the first the sum is 36.

5. If Ji’s money were increased by 3Gs. he would have three 
times as much as A, but if £'s money were diminished by 5s. he 
would have half as much as Λ. Find the sum possessed by each.

6. Λ and B lay a wager of 10s.; if Ji loses he will have twenty- 
five shillings less than twice as much as B will then have; but 
if B loses he will have five-seventeenths of what Ji will then have; 
how much money does each of them have?

7. Find two numbers, such that twice the first plus the 
second is equal to 17, and twice the second plus the first is 
equal to 19.
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8. Find two numbers, such that one-half the first and three- 
fourths of the second together equal the difference of three times 
the first and the second, and this difierence equals 11.

9. A certain number of persons were divided into three 
classes, such that the majority of the first and second together 
over the third was 10 less than four times the majority of the 
second and third together over the first; but if the first liad 30 
more, and the second and third together 29 less, the first would 
have outnumbered the last two by one. Find the number in each 
class when the whole number was 34 more than eight times the 
majority of the third over the second.

10. Determine three numbers such that their sum is 9; the 
sum of the first, twice the second, and three times the third, 22; 
and the sum of the first, four times the second, and nine times the 
third, 58.

11. A pound of tea and three pounds of sugar cost six shib 
lings, but if sugar were to rise 50 per cent, and tea 10 per cent, 
they would cost seven shillings. Find the price of tea and 
sugar.

12. A peι∙son has £2550 to invest. The three per cent, con­
sols are at 81, and certain guaranteed railway shares which pay 
a half-yearly dividend of 10s. on each original share of £25 are at 
£24. Find how many shares he must buy that he may obtain 
the same income from the railway shares as from the rest of his 
money invested in the consols.

13. A person possesses a certain capital which is invested at 
a certain rate per cent. A second person has £1000 more capital 
than the first person and invests it at one per cent, more; thus 
his income exceeds that of the first person by £80. A third 
person has £1500 more capital than the first and invests it at tιoo 
per cent, more; thus his income exceeds that of the first person 
by £150. Find the capital of each person and the rate at which it 
is invested.

T. A. 7
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14. A railway train after travelling for one hour meets with 
an accident which delays it one hour, after which it proceeds at 
three-fifths of its former rate, and arrives at the terminus three 
hours behind time; had the accident occurred 50 miles further on, 
the train would have arrived 1 hour 20 minutes sooner. Required 
the length of the line.

15. Two plugs are opened in the bottom of a cistern con­
taining'192 gallons of water; after three hours one of them 
becomes stopped, and the cistern is emptied by the other in 
eleven hours; had six hours occurred before the stoppage, it would 
have required only six hours more to empty it. How many gal­
lons will each plug hole discharge in an hour, supposing the 
discharge uniform?

16. A person after paying a poor-rate and also the income- 
tax of Id. in the pound, has £486 remaining; the poor-rate 
amounts to £22. 10s. more than the income-tax; find the 
original income and the number of pence per pound in the 
poor-rate.

17. A farmer would spend all his money by buying 4 oxen 
and 32 lambs; instead of doing this he bought the same number 
of oxen and half as many lambs, and had a suι∙plus of £9 after 
paying for them and for their conveyance by ι∙ailway at an average 
cost of six shillings per heath Each ox cost as many pounds as 
its carriage by railway was shillings, and the lambs altogether cost 
three times as many pounds as the carriage of each was shil­
lings. How much money had he to begin with ?

18. A, Ji, and C sit down to play, every one with a certain 
number of shillings. A loses to B and C as many shillings as 
each of them has. Next B loses to A and C as many as each of 
tliem now has. Lastly C loses to A and B as many as each of 
them now has. After all every one of them has sixteen shillings. 
How much had each originally?

19. A and B play at bowls, and A bets B three shillings to 
two upon every game; after a certain number of games it appears
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that A has won three shillings; but if A had bet five shillings 
to two and lost one game more out of the same number, he 
would have lost thirty shillings. How many games did they 
play ?

20. Five persons, A, £, C, I), £ play at cards; after j4 has 
won half of £’s money, £ one-third of C’s, C one-fourth of D'^, 
D one-sixth of E’s, they have each <£1. lOs. Find ∙how much 
each had to begin with.

21. If there were no accidents it would take half as long to 
travel the distance from A to £ by railroad as by coach; but 
three hours being allowed for accidental stoppages by the former, 
the coach will travel the distance all but fifteen miles in the 
same time; if the distance were two-thirds as great as it is, and 
the same time allowed for railway stoppages, the coach would 
take exactly the same time; required the distance.

22. A and £ are set to a piece of work which they can 
finish in thirty days working together, and for which they are 
to receive £7. 10s. When the work is half finished A intermits 
working eight days and £ four days, in consequence of which the 
work occupies five and a half days more than it would otherwise 
have done. How much ought A and £ respectively to receive ?

23. A and £ run a mile. First A gives £ a start of 44 
yards and beats him by 51 seconds; at the second heat A gives 
£ a start of 1 minute 15 seconds, and is beaten by 88 yards. 
Find the times in which A and £ can run a mile separately.

24. A and £ start together from the foot of a mountain to 
go to the summit. A would reach the summit half an hour 
before £, but missing his way goes a mile and back again need­
lessly, during which he walks at twice his former pace, and reaches 
the top six minutes before £, C starts twenty minutes after 
A and £ and walking at the rate of two and one-seventh miles per 
hour, arrives at the summit ten minutes after £. Find the rates 
of walking of A and £, and the distance from the foot to the 
summit of the mountain.

7—2
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25. A offers to run three times round a course while -δ runs 
twice round, but he only gets 150 yards of his third round 
finished when B wins. He then offers to run four times round 
foi' □δ*s thrice, and now quickens his pace in the ratio of t : 3. 
B also quickens his in the ratio of 9 : 8, but in the second round 
falls off to his original pace in the first race, and in the third 
round only goes 9 yards for 10 he went in the first race, and 
accordingly this time A wdns by 180 yards. Determine the length 
of the couι∙se.

26. A pedestrian starts p hours before a coach; the latter 
(both travelling uniformly) passes the former after a certain 
number of hours. From this point the coach increases its speed 
in the ratio of 6 to 5, while the man increases his in the ratio of 
5 to 4, and they continue at these increased rates for q hours 
longer than it took the coach to overtake the man. They are then 
92 miles apart; but had they continued for the same length 
of time at their original rates they would have been only 80 
miles apart. Shew that the original rates are as 2 to 1. Also if 
p + q = 16, shew that the original rate of the coach was 10, of the 
man 5 miles per hour.

27. Two persons A and B could finish a work in m days; 
they worked together n days when A was called off and B finished 
it in p days. In Λvhat time could each do it 1

28. A railway train running from London to Cambridge 
meets on the way with an accident, which causes it to diminish 

its speed to - th of what it was before, and it is in consequence 

a hours late. If the accident had happened b miles nearer Cam­
bridge, the train would have been c hours late. Find the rate of 
the train before the accident occurred.

29. The fore-wheel of a carriage makes six revolutions more 
than the hind-wheel in going 120 yards; if the circumference of 
the fore-wheel be increased by one-fourth of its present size, and 
the circumference of the hind-wheel by one-fi⅜t⅛ι of its i)resent
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size, the six will be changed to four. Required the circumference 
of each wheel,

30. There is a number consisting of two digits; the number 
is equal to three times the sum of its digits, and if it be multiplied 
by three, the result will be equal to the square of the sum of its 
digits. Find the number.

31. A. certain number of two digits contains the sum of its 
digits four times and their product twice. What is the number t

∖

32. A person proposes to travel from A to £, either direct 
by coach, or by rail to C, and thence by another train to £. The 
trains travel three times as fast as the coach, and should there be 
no delay, the person starting at the same hour could get to £ 
20 minutes earlier by coach than by train. But should the train 
be late at C, he would have to wait there for a train as long as it 
would take to travel from C to £, and his journey would in that 
case take twice as long as by coach. Should the coach howevei' 
be delayed an hour on the way, and the train be in time at C, he 
would get by rail to £ and half way back to G, while he would be 
going by coach to £. The length of the whole circuit A£CA is 
76∣ miles. Required the rate at which the coach travels.

XIV. DISCUSSION OF SOME PROBLEMS WHICH
LEAD TO SIMPLE EQUATIONS.

186. , We propose now to solve some problems which lead to 
Simple Equations, and to examine certain peculiarities which 
present themselves in the solutions. We begin with the following 
problem: What number must be added to a number a in order 
that the sum may be δ ? Let x denote this number; then, 

therefore.
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This formula gives the value of x corresponding to any as­
signed values of a and b. Thus, for example, if a = 12 and 
b — 25, we have α = 25 — 12 = 13. But suppose that α = 30 and 
δ = 24; then a; = 24 — 30 = — 6, and we naturally ask what is 
the meaning of this negative result 1 If we recur to the enun­
ciation of the problem we see that it now reads thus:—What 
number must be added to 30 in order that the sum may be 24 ? 
It is thus obvious, that if the word added and the word sum are 
to retain their arithmetical meanings, the proposed problem is 
impossible. But we see at the same time that the following 
problem can be solved:—What number must be taken from 30 
in order that the difference may be 24 1 and 6 is the answer to 
this question. And the second enunciation differs from the first 
in these respects; the words added to are replaced by taken from·, 
and the word sum by difference.

187. Thus we may say that, in this example, the negative 
result indicates that the problem in a strictly Arithmetical sense 
is impossible; but that a new problem can be formed by appro­
priate changes in the original enunciation to which the absolute 
value of the negative result will be the correct answer.

188. This indicates the convenience of using the word add­
ixi Algebra in a more extensive sense than it has in Arithmetic. 
Let X denote a quantity which is to be added algebraically to a; 
then the Algebraical sum is a + x, whether x itself be positive or 
negative. Thus the equation a + x = b will be possible algebrai­
cally whether a be greater or less than b. We proceed to another 
problem.

189. j4’s age is a years, and age is b years; when will Λ 
be twice as old as B 1 Supposed the required epoch to be x years 
from the present time; then by the question,

a + X = 2 (b + a:); 
hence, x = a — 2b.

Thus, for example, if α = 40 and b = 15, then a; =10. But 
suppose α = 35 and δ = 20, then x = — 5; here, as in the pre-
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, ceding problem, we are led to inquire into the meaning of the 
negative result. Now with the assigned values of a and b the 
equation which we have to solve becomes

and it is obvious that if a strictly arithmetical meaning is to be 
given to the symbols x and +, this equation is impossible, for 40 is 
greater than 35, and 2« is greater than x, so that the two members 
cannot be equal. But let us change the enunciation to the fol­
lowing :—jI’s age is 35 years, and B's, age is 20 years, when was Λ 
twice as old as B ι Let the required epoch be x years from the 
present time, then by the question.

thus.
Here again we may say the negative result indicates that the 

problem in a strictly Arithmetical sense is impossible, but that a 
new problem can be formed by appropriate changes in the original 
enunciation, to which the absolute value of the negative result 
will be the correct answer.

We may observe that the equation corresponding to the new 
enunciation may be obtained from the original equation by chang­
ing X into — X.

190. Suppose that the problem had been originally enun­
ciated thus:—√Γs age is a years, and B's, age is b years; find the 
epoch at which √l's age is twice that of B. These words do not 
intimate whether the required epoch is before or after the present 
date. If we suppose it after we obtain, as in Art. 189, for the 
required number of years x = a — 2b. If we suppose the required 
epoch to be x yeaι∙s before the present date we obtain x = 2b-a. 
If 25 is less than α, the first supposition is correct, and leads to 
an arithmetical value for x∖ the second supposition is incorrect, 
and leads to a negative value for x. If 25 is greater than a, the 
second supposition is correct, and leads to an arithmetical value 
for x; the first supposition is incoιτcct and leads to a negative 
value for x. Here we may say then that a negative result indi­
cates that we made the wrong choice out of two possible supposi­
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tions wliich the problem allowed. But it is important to notice, 
that when we discover that we have made the wrong choice, it is 
not necessary to go through the whole investigation again, for we 
can make use of the result obtained on the wrong supposition. 
We have only to take the absolute value of the negative result 
and place the epoch before the present date if we had supposed 
it after, and aft&r the present date if we had supposed it before.

191. One other case may be noticed. Suppose the enuncia­
tion to be like that in the latter part of Art. 189; -I’s age is a 
years, and B∖ age is ό years, when was A twice as old as .SI 
Let X denote the required number of years; then

a — x = 2(b — x),

hence, x = 2b — a.
Now let us verify this solution. Put this value for x; then 

a — X becomes a—(2b —a), that is, 2a —2b; and 2(b-x) becomes 
2(b-2b + a), that is, 2a- 2b. If b is less than a, these results 
are positive, and there is no Arithmetical difficulty. But if b is 
greater than α, although the two members are algebraically equal, 
yet since they are both negative quantities, we cannot say that we 
have arithmetically verified the solution. And when we recur 
to the problem we see that it is impossible if a is less than b; 
because if at a given date A’s age is less than A’s, then Λ's age 
never was twice jδ's and never will be. Or without proceeding to 
verify the result, we may observe that if b is greater than α, then x 
is also greater than a, which is inadmissible. Thus it appears that 
a problem may be really absurd, and yet the result may not im­
mediately present any difficulty, though when we proceed to ex­
amine or verify this result we may discover an intimation of the 
absurdity.

192. The equation a + x = 2(b+x} maybe considered as the 
symbolical expression of the following verbal enunciation. Suj> 
[)ose a and ό to be two quantities, what quantity must be added 
to each so that the first sum may be twice the second ? Here the 
words quantity, sum, and added may all be understood in Alge-
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braical senses, so that x, a, and δ may be positive or negative. 
This Algebraical statement includes among its admissible senses 
the Arithmetical question about the ages of A and B. It appears 
then that when we translate a problem into an equation, the same 
equation may be the symbolical expression of a more comprehen­
sive problem than that from which it was obtained. We will now 
examine another problem.

193. A and B travel in the same direction at the rate of a 
and δ miles respectively per hour. A arrives at a certain place B 
at a certain time, and at the end of n hours from that time B 
arrives at a certain place Q. Find when A and B meet.

__________P________________ Q_____________ R

Let c denote the distance PQ', suppose A and B to travel in 
the direction from P towards Q, and to meet at B at the end of a? 
hours from the time when A was at P ∙, then since √1 travels at the 
rate of a miles per hour, the distance PR is αa3 miles. Also B 
goes over the distance QR in x — n hours, so that is δ(aj-w) 
miles. And PR is equal to the sum of PQ and QR∖ thus.

therefore.

We shall now examine this result on different suppositions as 
to the values of the given quantities.

I. Suppose a greater than δ, and c gi’eater than bn ∙, then the 
value of a; is positive, and the travellers will meet, as we have 
supposed, after A arrives at P. For when A is at P, the space 
which B has to travel before he reaches Q is bn miles, and since δn 
is less than c, it follows that when A is at P he is behind B∙, 
and d travels more rapidly than B, since a is greater than δ. 
Hence d must at the end of some time overtake B.

The distance PR = ax = Thus,
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Now if c be greater than an, this expression is a positive quantity, 
so that R falls, as we have supposed, beyond Q∙, we see that this 
must be the case, for since c is greater than an, it will take Λ 
more than n hours to go from R to Q, so that he cannot overtake 
B until after passing Q. If, however, c be less than an, the ex­
pression for QR is a negative quantity, and this leads us to sup­
pose that some modification is required in our view of the problem. 
In fact Λ now takes less than n hours to go from P to Q, so that 
he will overtake B before arriving at Q. Hence the figure should 
now stand thus :

And now, since PR = PQ — RQ, the equation for determining 
X would naturally be written

This, however, we see is really the same equation as before.
Again, if c be equal to an the value of RQ is zero. Thus 

R now coincides with Q∙, and

Hence A and B meet at Q at the end of n hours after Λ was 
at P. ' -

II. Next suppose that a is greater than b, and c less than 
bn. The value of x is now negative, and we may conjecture 
from what we have hitherto observed respecting negative quanti­

ties that A and B instead of meeting hours α∕ier Λ was

at P, will now really have met hours before A was at P.

And in fact, since c is less than όη it follows that B was behind A 
when A was at P, so that A must have passed .2 before arriving 
at P. Hence the correct solution of the problem would now be 
as follows.

R ____________p_____________q_____
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Suppose that A and £ meet x hours l>efore Λ arrives at P; let 
-β be the point where they meet. Then PP=ax, and RQ=h{x+nj, 
Also RP = RQ — PQ∙, thus, 

therefore,

III. Next suppose that a is less than δ, and c gr&iter than
bn. In this case also the expression originally obtained for x is 
negative, and we shall accordingly find that Λ and B met before 
Λ was at P. Tor B uont travels more rapidly than A, and is 
δ¾∕bi∙e A when A is at P; so that B must have passed A before ∠1 
was at P. The result now is, as in the second case, that A and B 

met hours before A at P.b-a ''

IV. Lastly, suppose a less than δ, and c less than bn. Here 
the expression originally obtained for x is a, positive quantity, for 

it may be written thus, —-. Now .5 travels more rapidly
b — a

than A and is behind A when A is at P; thus B must at some 
time overtake A. If we suppose A and B to meet after A is at Q, 
the figure will stand thus:

P________________⅜

Here we should naturally write the equation thus,
ax = c+ b (x — n) = c + bx — bn.

If we suppose A and B to meet before A is at Q, the figure 
will stand thus:

P Λ Q

Here ^we should naturally write the equation thus,
ax = c — b {n- x) = c — bn + bx.

In the two cases we have, however, really the same equation, 

and we obtain x = ~ .b — a,
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194. The preceding problem, may be variously modified; for
instance, instead of supposing that A and £ travel in the same 
direction, we may suppose that A travels as before, but that B 
travels in the opposite direction. In this case, if wo suppose, as 
before, that A and β meet x hours after A arrived at P, we shall 

find that x = . Thus the time of meeting will necessarily

be after A leaves P, and the travellers meet at some point to the 
right of P. The student should notice that the value of x in the 
present case coincides with the result obtained by writing — b for 
b in the original value of x in Art. 193.

195. Or instead of supposing that the arrival of B at Q
occurs n hours afier the arrival of A at P, 'Vfe may suppose it to 
occur n hours befcrt'e; and we suppose A and B to travel in the 
same direction. In this case if x have the same meaning as 

before, we shall find that x =------ . This is a positive quantity

if a is greater than b, and the travellers then really meet after the 
arrival of A at P. If, however, α is less than b, the value of x is 
a negative quantity; this suggests that the travellers now meet

hours before the arrival of A at P, and on examination this ό-α ∙' ’
will be found correct. The student should notice that the value of 
X in the present case coincides with the result obtained by writing 
— n for n in the original value of x in Art. 193.

196. Again, let us suppose that A and B travel in opposite
directions, and that the arrival of A at P occurs w hours before 
that of B at Q∙ and suppose the positions of P and Q in'the 
former figures to be interchanged, so that now A reaches Q before 
he reaches P, and B reaches P before he reaches Q. If a; have 

the same meaning as before, we shall now find that x = ∙

If then bn is greater than c, the value of a; is a positive quantity, 
and the travellers meet, as we have supposed, after the arrival of 
A at P. If however bn is less than c, the value of a; is a negative 
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quantity, and it will be found that the travellers meet -—— 
a+ b 

hours before the arrival of Λ at P. The student should notice 
that the value of x in the present case coincides with the result 
obtained by writing — c for c in the value of x in Art. 194; 
it also coincides with the result obtained by writing — b for b, and 
— c for c in the original value of x in Art. 193.

197. From a consideration of the problems discussed in the 
present chapter, and of similar problems, the student will acquire 
confidence and accuracy in dealing with negative quantities. We 
will lay down some general principles which have been illustrated 
in the preceding articles, and the truth of which the student will 
find confirmed as he advances in the subject.

(1) A negative result may arise from the fact that the 
enunciation of a problem involves a condition which cannot be 
satisfied; in this case we may attribute to the unknown quantity 
a quality directly opposite to that which had been attributed to it, 
and may thus form a possible problem analogous to that which 
involved the impossibility.

(2) A negative result may arise from the fact that a wrong 
supposition respecting the quality of some quantity was made 
when the problem was translated from words into Algebraical 
symbols ; in this case we may correct our supposition by attri­
buting the opposite quality to such quantity, and thus obtain a 
positive result.

(3) When we wish to alter the suppositions we have made 
resptecting the quality of the known or unknown quantities of a 
problem, and to attribute an opposite quality to them, it is not 
necessary to form a Ιiew equation; it is sufficient to change in the 
old equation the sign of the symbol representing each quantity 
which is to have its quality changed.

198. We do not assert that the above general principles have 
been demonstrated; they have been suggested by observation of 
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particular examples, and are left to the student to he verified in 
the same manner. Thus when a negative result occurs in the 
solution of a problem the student should endeavour to interpret 
that result, and these general principles will serve to guide him. 
When a problem leads to a negative result, and he wishes to form 
an analogous problem that shall lead to the corresponding positive 
result, he may proceed thus:—change x into —a; in the equation 
that has been obtained, and then, if possible, modify the verbal 
statement of the problem, so as to make it coincident with the 
new equation. We say, if possible, because in some cases no such 
verbal modification seems attainable, and the problem may then 
be regarded as altogether impossible.

199. We will now leave the consideration of negative quan­
tities, and examine two other singularities that may occuι∙ in 
results.

In Art. 193 we found this result, x = -—. Suppose that a — b
a = b, then the denominator in the value of x is zero; thus, denot- 

Wing the numerator by A, we have x = , and we may ask what is

the meaning of this result 1 Since Λ and B now travel with 
equal speed, they must always preserve the same distance; so that 
they never meet. But instead of supposing that a is exactly 
equal to b, let us suppose that a is very nearly equal to b; then 
A---- - may be a very large quantity, since ii a — b is very small 

compared with A, it will be contained a large number of times in 
AA; and the smaller a — b is, the larger will -— be. This is a — b

Aabbreviated into the phrase “ is infinite,” and it is written

Athιis, — = ∞ . But the student must remember that the phrase 

is only an abbreviation, and no absolute meaning can be attached 
to it.
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200. The student should examine every problem, the result
Λ^ ■of which appears under the form — , and endeavour to interpret 

that result. He may expect to find in such a case that the pro­
blem is impossible, but that by suitable modifications a new 
problem can be formed which has a very great number for its 
result, and that this result becomes greater the more closely the 
new problem approaches to the old problem.

201. Again, let us suppose that in Art. 193 we haλ'c a = b, 

and also c = bn~, then the value of x takes the form θ . On 

examining the problem we see that, in consequence of the sup­
positions just made, A and B are together at P, and are travelling 
with equal speed, so that they are always together. The question, 
when are A and B together, is in this case said to be indeterminate, 
since it does not admit of a single answer, or of a finite number of 
answers.

202. The student should also examine every problem in 

which the result appears under the form , and endeavour to 

interpret that result. In some cases he will find, as in the ex­
ample considered above, that the problem is not restricted to a 
finite number of solutions, but admits of as many a.s he pleases. 
We do not asseι∙t here, or in Art. 200, that the intei’pretation of

A 0 .the singularities y and θ will always coincide with those given 

in the simple cases we have considered; the student must there­
fore consider separately each distinct class of examples that may 
occur.
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MISCELLANEOUS EXAMPLES. CHAPTER XIV.

1. Simplify the expression

2. Reduce to its lowest terms the expression

3. Find the value of

4. Simplify

5. Shew that

when m = l, or 2.

6. Reduce to its simplest form

7. If xy -∖-yzΛ- zx = ∖, shew that

8. Solve the simultaneous equations

9. Find the least common multiple of
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XV. ANOMALOUS FORMS WHICH OCCUR IN THE
SOLUTION OF SIMPLE EQUATIONS.

203. We have in the preceding chapter referred to the forms 
VO-θ and θ which may occur in the solution of an equation of the 

first degree. We shall now examine the meaning of these forms 
when they occur in the solution of simultaneous equations of the 
first degree. We will first recall the results already obtained.

204. Every equation of the first degree with one unknown 
quantity may be reduced to the form ax = b. Now from this we 

obtain a: = -. If α = 0 the value of x takes the form ; in thisa 0
case no finite value of x can satisfy the equation, for whatever 
finite value be assigned to x, since aa: = 0, we have 0 = ό, which is 

impossible. If a = 0 and δ = 0, the value of x takes the form j 

in this case every finite value of x may be said to satisfy the 
equation, since whatever finite value be given to x we have 0 = 0. 
If ό = 0 and a is not = 0, then of course x = 0; this case calls 
for no remark.

205. Suppose now we have two equations with two unknown 
quantities; let them be

ax + by = c and a'x + δ'y = c'.

We will first make a remark on the notation we have here 
adopted. We use certain letters to denote the known quantities 
in the first equation, and then we use corresponding letters with 
accents to denote corresponding quantities in the second equation ; 
here a and a have no necessary connexion as to value, although 
they have this common point, namely, that each is a coefficient 
of a?, one in the first equation and the other in the second equa­
tion. Experience will establish the advantage of this notation.

Instead of accents subscript numbers are sometimes used; 
thus a^ and a^ might be used instead of a and a' respectively.

T. A. 8
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By solving the given equations we obtain

I. Suppose that b'a — ba' = 0; then the values of x and y take 

the forms — and — ; we should therefore recur to the given equa­

tions to discover the meaning of these results. From the relation 
α' δ'b'a -ba'= 0 we obtain — = — = A: suppose : thus a' = ka and a b

b' = kb. By substituting these values of a' and b' we find that the 
second of the given equations may be written thus : 

whence,

c' .Now if γ be difierent from c, the last equation is inconsistent 

with the first of the given equations, because ax + by cannot be 
qqual to two difierent quantities. We may therefore conclude 

√1 Ζ» that the appearance of the results under the forms — and 

indicates that the given equations are inconsistent, and therefore 
cannot be solved.

II. Next suppose that b'a — ba' = 0, so that — = j, and alsd Ci u
c d' h'that - = —, and therefore of course = -y ∙ In this case the nu- r c a b

merators in the values of x and y become zero as well as the 
denominators, so that the values of x and y take the form θ .

0 
Now by what we have shewn above, the second of the given 
equations may be written

0
But now = c, so that the second given equation is only a
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ι∙epetition of the first; we have thus really only one equation 
involving two unknown quantities. We cannot then determine 
X and y, because we can find as many values as we please which 
will satisfy one equation involving two unknown quantities. In 
this case we say that the given equations are not independent^ and 
that the values of x and y are indeterminate.

206. We have hitherto supposed that none of the quantities 
α, b, c, a', b', c can be zero; and thus if the value of one of the 

0 Λunknown quantities takes the form - or — the value of the other 

takes the same form. Eut if some of the above quantities are 
zero, the values of the two unknown quantities do not necessarily 
take the same form. For example, suppose a and a' to be zero; 

then the value of x takes the form —, and the value of y takes

the form -. Now in this case the given equations reduce to 

these lead to

c cThus we have two cases. First, if γ is not equal to y> the f u 0
c ctwo equations are inconsistent. Secondly, if is equal to the 

two equations are equivalent to one only. In the second case, 
c csince the relation y = 7-, makes the numerator of x also vanish, b b

the values of both x and y take the form ; in this case x is in­

determinate but y is not, for it is really equal to .

207. Before we consider the peculiarities which may occur in 
the solution of three simultaneous simple equations involving 
three unknown quantities, we will indicate another method of 
solving such equations. '

8—2
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Let the equations be

Let I and m denote two quantities, the values of which are at 
present undetermined; multiply the second of the given equations 
by I, and the third by then, by addition, we have 
ax + by + cz +1 (a'x + b'y + c'z) + m, {a"x + b"y + c'z} = d + Id' + md", 
that is,
a: (α + la' + 7na"') + y (δ + Zδ' + mb") Λ-z{c + lc + me) =d + ld' -∖- md".

Now let such values be given to I and τn as will make the 
coefficients of y and z in the last equation to be zero; that is, let 

b + lb' + mb" = 0, c + Zc' + me" = 0.
Thus the equation reduces to 

therefore,

We must now find the values of I and m, and substitute them 
in this expression for x, and then the value of x will be known. 
We have 

from these we shall obtain 

substitute these values in the expression for x, and after simplifi­
cation we obtain

By a similar method the values of y and z may also be obtained.

208. The above method of solution is called the method of 
indeterminate multipliers, because we make use of multipliers 
which we do not determine beforehand, but to which a convenient 
value is assigned in the course of the investigation. The multi­
pliers are not finally indeterminate; they are merely at first un­
determined, and if it were possible to alter established language, 
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the word undetermined might here with propriety be substituted 
for indeterminate.

209. We now proceed to our observations on the values of 
X, y, and z which are obtained from the equations

The value of x has been given in Art. 207; if the student 
investigates the value of y he will find that the denominator of it 
is the sσ∕me as that which occurs in the value of x, or can be made 
to be the same by changing the sign of every term in the nume­
rator and denominator. The same remark holds with respect to 
the denominator in the value of z.

210. We may however obtain the values of y and z from the 
expression found for the value of x. For the original equations 
might have been written thus:

we may say then that the equations in this form differ from those 
in the original form only in the following particulars; x and y are 
interchanged, a and δ are interchanged, a' and h' are interchanged, 
and a" and b" are interchanged. We may therefore deduce the 
value of y from that of x by the following rule; for a, a', and a" 
write b, b', and b" respectively, and conversely. Thus, from

we may deduce that

It will be found on comparison that the denominator of the 
value of y is the same as that of the value of x with the sign of 
every term changed.

Similarly by interchanging a, a', and a" with c, c', and c" 
respectively, we may deduce the value of z from that of χ∙, or by 

» interchanging b, b', and δ" with c, c', and c' respectively, we may 
deduce the value of z from that of y.
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211. There is another system of interchanges by which the 
values of y and z be deduced from that of x. The given 

.equations are 

they may also be written thus,

We may say then that the second form differs from the first 
only in the following particulars; x is changed into y, y into z, 
z into X, a into δ, δ into c, c into α, a' into ό', and so on. We 
may therefore deduce the value of y from that of x by this rule; 
change a into δ, b into c, c into and make similar changes in the 
letters with one accent, and in those with two accents. The 
value of z be deduced from that of y by again using the 
same rule.

212. These methods of deducing the values of y and z from 
that of x by interchanging the letters may perhaps appear difficult 
to the student at first, but they deserve careful consideration, 
especially that which is given in Art. 211.

We shall now proceed to examine the peculiarities which 
may occur in the values of the unknown quantities deduced from 
the equations

213. The most important case is that in which d, d', and d" 
are all zero. The given equations then become

It is obvious that x = 0, y = 0, 2: = 0 satisfy these equations; 
and from the values found in Art. 210 it follows that these are 
the only values which will satisfy the equations unless the deno­
minator there given vanishes, that is, unless

If this relation holds among the coefficients, the values found 
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for X, y, and z take the form , and we must recur to the given 

equations for further information.
We observe that when this relation holds the equations are 

not independent; from any two of them the third can be deduced. 
For multiply the first of the given equations by δ"c'-Vc', the 
second by be'-b''c, and the third by b'c — bc, and then add the 
results. It will be found that by virtue of the given relation we 
arrive at the identity 0 = 0; thus, in fact, if the first equation be 
multiplied by b"c' — b'c", and the second by be" — b"c, and the two 
added, the result is equivalent to the third equation, for it may be 
obtained by multiplying that equation by be — b'c.

Suppose then that this relation holds; we may confine our­
selves to the first two of the given equations, for values of x, 
and z which satisfy these will necessarily satisfy the third equa­
tion. Divide these equations by a:; thus 

hence

We may therefore ascribe any value xve please to x, and deduce 
corresponding values of y and z. Or we may put our result more 
symmetrically thus; let p denote any quantity whatever, then 
the given equations will be satisfied by

We might in the same way have used the second and third of 
the given equations, and have omitted the first; we should thus 
have deduced solutions of the form 

where q is any quantity. These values however are substantially 
equivalent to the former; for it will be found that by virtue of 
the supposed relation among the coefficients.
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214. We shall now consider the peculiarities which may occur 
when d, d∖ and d" are not all zero.

We shall first shew that if the value of any one of the un- 
N . .known quantities takes the form the given equations are 

inconsistent. Suppose, for instance, that the value of x takes this 
form, that is, suppose that 

is zero. Of course if the given equations were consistent, any 
equation legitimately deduced from them would also be true. 
Now multiply the first of the given equations by δ"c' — b'c", the 
second by be"— b"c, and the third by b'c — be' and add. It will be 
found that the coefficients of y and z in the resulting equation 
vanish; and the coefficient of x is zero by supposition. Thus the 
first member of the resulting equation vanishes, but the second 
member does not; hence the resulting equation is impossible, and 
therefore those from which it was obtained cannot have been con­
sistent.

215. We cannot however affirm certainly, that if the value of 

one of the unknown quantities takes the form , the equations are 

consistent, but not independent. For it is possible that the value 
of one of the unknown quantities should take this form, while 

Nthat of another takes the form — ; and, as we have shewn in the 
N .preceding article, the occurrence of the form -θ is an indication 

that the given equations are inconsistent. For example, suppose 
the equations to be

ax + by-y cz = d, a'x+by+ cz = d'f a''x + by + cz = d''.

Here it will be found that the values of y and z take the form 
V 0—, and that of x takes the form 7-.0 0
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Moreover, if the values of all the unknown quantities take 

the form we cannot affirm certainly that the given equations 

are consistent, hut not independent. For example, suppose the 
equations to be 

here it will be found that the values of all the unknown quan­

tities take the form , hut the equations themselves are obviously 

inconsistent, unless d, d', and d" are all equal.

216. We may shew that if the numerators in the values of 
X, y, and a, all vanish, the denominator will also vanish, assuming 
that d, d' and d" are not all zero.

For supposing these numerators to vanish we have

Let us denote these relations for shortness thus.

By Art. 213, since cζ d' and d" are not all zero the following 
relation must also hold.

It will be found that 

and B'G — BG" and BG' — B'G xaxj be similarly expressed, so that 
finally the relation becomes

This establishes the required result.
217. If we adopt the method of vndel&rminale, multipliers 

given in Ai-t. 207, it may happen that the equations for finding 
I and m are inconsistent; we will examine this case. Suppose 
then b"c'- b'c' = 0, so that these equations are inconsistent (Art. 
205). In this case the value of x may be obtained from the
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.second and third of the given equations, without using the first. 
For multiply the second of the given equations by c", and the 
third by c', and subtract; thus the coefficients of y and z vanish, 
and we have an equation for determining x. For example, sup­
pose the equations to be

Here the value of x may be found from the second and third 
equations; we shall obtain ic = 3; substitute this value of x in 
the three given equations; from the first we have 2y + 3z-7, and 
from the second or third y + ⅞ = 6; hence y=2 and z = l.

Again, the values of I and m may take the form θ , so that 
the equations for finding them are not independent; we will 
examine this case. Here we have b"c' — b'c" — 0, bc' — b"c = 0, and 
b'c — be Q∙, these suppositions are equivalent to the two relations 
0' c' b" c""ζ = ~ and -~∙ Suppose then that b' = pb, and therefore 

c* = pc, and that b"=qb, and therefore c"=qc. Thus the given 
eα nations are 

and they may be written thus.

Here x may be found from any two of the equations; if we do 
not obtain the same value from each pair, the given equations are 
of course inconsistent; if we do obtain the same value for x, then 
the given equations are not independent; and in fact we shall in 
the latter case have only one equation for finding by + cz, so that 
the values of y and z are indeterminate. For example, suppose 
the given equations to be

From any two of these equations we can find a: = 3; then 
substituting this value of x in any one of the three equations we 
obtain 2y + 3z = 7, and thus y and z are indeterminate. If, how­
ever, the right-hand member of one of the given equations be
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altered, we shall not obtain the same value of x from each pair of 
the equations, and thus the given equations will be inconsistent.

218. In the preceding articles we have supposed the given 
equations to be solved, and from the peculiar forms of the solu­
tions have drawn inferences as to the nature of the given equa­
tions. We will now take one example of investigating a relation 
between the equations without solving them. Suppose, as before, 
that the equations are 

and let us find the relations which must exist among the known 
quantities, in order that the third equation may be deducible from 
the other two by multiplication by suitable quantities and addition. 
Suppose then that by multiplying the first equation by λ, and the 
second by μ, and adding, we obtain a result which is coincident 
with the third equation. Thus, 

is equivalent to 
that is, we suppose that

From the last three equations we deduce

Hence in order that the third equation may be deducible from 
the other two in the manner proposed, we must have the follow­
ing relations among the known quantities.

It is easy to shew that if these relations hold, the values of 

X, y, and z take the form . For by multiplying up we obtain 

results which shew that the numerators in the values of x, y, 
and z vanish; and then by Art. 216 the denominator will also 
vanish. . ;
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MISCELLANEOUS EXAMPLES. CHAPTER XV.

1. Reduce to its simplest form.

2. Shew that

3. find the

relation between t and x.

4. Solve the simultaneous equations

5. shew that

6. A person leaves <£12670 to be divided among his five 
children and three brothers, so that after the legacy duty has been 
paid, each child’s share shall be twice as great-as each brother’s. 
The legacy duty on a child’s share being one per cent, and on a 
brother’s share three per cent., find what amounts they respectively 
receive.

7. Solve the equation

8. If a; be a quantity such that

shew that the sum of the products of every two of the quantities 
a: — α, x-δ, x — c,.......  will be equal to the sum of the products
of every two of the quantities α, &, c, .......
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XVI. INVOLUTION.

219. If a quantity be continually multiplied by itself, it is 
said to be involved or raised, and the power to which it is raised 
is expressed by the number of times the quantity has been em­
ployed in the multiplication. The operation is called Involution.

Thus as we have stated (Art. 16), a × a or is called the 
second power of a; a × a × α or a® is called the third power 
of a; and so on.

220. If the quantity to be involved have a negative sign 
prefixed, the signs of the even powers will be positive, and the 
signs of the odd powers negative.

For, 

and so on.

221. A simple quantity is raised to any power by multiply­
ing the index of every factor in the quantity by the exponent of 
that power, and prefixing the proper sign determined by the pre­
ceding article.

Thus aΓ raised to the n^^ power is a"”; for if we form the 
product of n factors, each of which is a”, the result by the rule of 
multiplication is a””'. Also (αδ)" — ob × ab x ab... to n factors, 
that is, αxαxα... to n factors xδxδxδ... to n factors, that 
is, a” X h". Similarly, raised to the fifth power is
Also — oΓ raised to the w*** power is ± a”"', where the positive or 
negative sign is to be prefixed according as n is an even or odd 
number. Or as — a” = — 1 x a”*, the n'^ power of — oΓ τα,Άγ be 
written thus (— 1)" x a””* or (— I)"»””.

222. If the quantity which is to be involved be a fraction, 
both its numerator and denominator must be raised to the pro­
posed power. (Art. 142.)
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223. If the quantity which is to be involved be compound, 
the involution may either be represented by the proper index, or 
may actually be performed.

Let α + δ be the quantity which is to be raised to any 
power,

Thus the square or second power of α + δ is α^ + 2αδ + δ^, the 
cube or third power of a + h is a” + 3α¾ + 3αό“ + the fourth 
power of a + b is α* + + + + b*, and so on.

Similarly, the second, third, and fourth powers of a — b will 
be found to be respectively a^ — 2ab + δ®, — Za^b + 3ab^ — b^, and
α* — 4α¾ + 6α¾'* — 4αδθ + 0^; that is, wherever an odd power of b 
occurs, the negative sign is prefixed.

We shall hereafter give a theorem, called the Binomial Theo­
rem, which will enable us to obtain any power of a binomial ex­
pression without the labour of actual multiplication.

224. It is obvious that the w*** power of α" is the same as the 
in**' power of a”, for each is a”"‘; and thus we may arrive at the 
same result by different processes of involution. We may, for 
example, find the sixth power of a + b by repeated multiplication 
by a + b; or we may first find the cube of a + b, and then the 
square of this result, since the square of (a +∙ δ)’ is (a + δ)θ; or we 
may first find the square of α + δ and then the cube of this result, 
since the cube of (a + δ)® is (a + b'f.

225. It may be shewn by actual multiplication that
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The following rule may be observed to hold good in the above 
and similar examples; the square of any multinomial consists of 
tlbe square of each term, together with twice the product of every pair 
of terms.

Another form may also be given to these results,

The following rule may be observed to hold good in the above 
and similar examples; the square of a multinomial consists of the 
square of each term, together with twice the product of each term by 
the sum of all the terms which follow it.

These rules may be strictly demonstrated by the process of 
mathematical induction, which will be explained hereafter.

226. The following are additional examples in which wo 
employ the first of the two rules given in the preceding article.

227. The following results should be noticed:

EXAMPLES OF INVOLUTION.

1. Find (1 + 2a; + 3√)*.
2. Find (1 — £c + a;’ — a;’)*.
3. Find (α + b — c)∖
4. Find (a + b + c + d'f.
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5. Find

6. Shew that

7. Shew that

8. Shew that 

and also

XVII. EVOLUTION.

228. Evolution, or the extraction of roots, is the method of 
determining a quantity, which when raised to a proposed power 
will produce a given quantity.

229. Since the power of a” is a””, an root of a’"" must 
be a”; that is, to extract any root of a simple quantity, we 
divide the index of that quantity by the index of the root re­
quired.

230. If the root to be extracted be expressed by an odd num­
ber, the sign of the root will be the same as the sign of the 
proposed quantity, as appears by Art. 220. Thus,

231. If the root to be extracted be expressed by an even 
number, and the quantity proposed be positive, the root may be 
either positive or negative; because either a positive or negative 
quantity raised to an even power is positive by Art. 220. Thus,

232. If the root proposed to be extracted be expressed by an 
even number and the sign of the proposed quantity be negative, 
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the root cannot be extracted; because no quantity raised to an 
even power can produce a negative result. Such roots are called 
impossible.

233. A root of a fraction may be found by taking that root 
of both the numerator and denominator. Thus,

234. We will now investigate the method of extracting the 
square root of a compound quantity.

Since the square root of a® + 2αδ + b^ is α + b, we may be led 
to a general rule for the extraction of the square root of an alge­
braical expression by observing in what manner a and b may be 
derived from + 2αό + b^.

Arrange the terms according to the dimensions of one letter a, 
then the first term is a®, and its square root is α, which is the first 
term of the required root. Subtract its square, that is from 
the whole expression, and bring down the remainder 2o0 + b^. 
Divide 2ab by 2α and the quotient is b, which is the other term 
of the required root. Multiply the sum of twice the first term 
and the second term, that is 2tι + b, by the second term, that is 
δ, and subtract the product, that is 2αδ + ό’, from the remainder. 
This finishes the operation in the present case. If there were 
more terms we should proceed with a + b as we did formerly 
Λvith a ∙, its square, that is a® + 2αδ + δ*, has already been sub- 
ti’acted from the proposed expression, so we should divide the 
remainder by the double of α + δ for a new term in the root, and 
then for a new subtrahend we should multiply this term by the 
sum of twice the former terms and this term. The process must 
be continued until the required root is found.

T. A. 9
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235. For example, required the square root of the expres-

Here the square root of 4√ is 2«’, which is the first term of 
the required root. Subtract its square, that is 4x∖ from the 
whole expression, and the remainder is. — 12ic® + 5«’ + 6x + 1. 
Divide — 12xθ by twice 2x^, that is by 4ic^, the quotient is — 3x, f 
which will be the next term of the required root; then mul­
tiply 4x* — 3x by — 3x and subtract, so that the remainder is 
— 4a;* + 6a:+ 1. Divide by twice the portion of the root already 
found, that is by 4x^ — 6x; this leads to — 1; the product of 
4a;* — 6aj — 1 and — 1 is — 4a;* + 6a: + 1, and when this is subtracted 
there is no remainder, and thus the required root is 2a:* — 3a: — 1.

236. Again, extract the square root of

The operation may be arranged as before.
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237. It has been already remarked, that all even roots admit 
of a double sign. (Art. 231.) Thus in the example of Art. 235, 
the expression 2x^-3x-l is found to be a square root of the 
expression there given, and — 2x‘ + 3ic + 1 will also be a square 
root, as may be verified. In fact, the process commenced by the 
extraction of the square root of 4rc*, and this might be taken as 
2x^ or as — 2x'‘; if we adopt the latter and continue the opera­
tion in the same manner as before, we shall aιτive at the result 
— 2x^ + 3x + 1.

238. The fourth root of an expression may be found by ex­
tracting the square root of the square root. Similarly the eighth 
root may be found, or the sixteenth root, and so on.

239. The preceding investigation of the square root of an 
Algebraical expression will enable us to prove the rule for the 
extraction of the square root of a number, which is given in 
Arithmetic.

The square root of 100 is 10, of 10000 is 100, of 1000000 is 
1000, and so on; hence it will follow that the square root of a 
number less than 100 must consist of only one figure, of a number 
between 100 and 10000 of two places of figures, of a number be­
tween 10000 and 1000000 of three places of figures, and so on. 
If then a point be placed over every second figure in any number 
beginning with the units, the number of points will shew the 
number of figures in the square root. Thus the square root of 
4356 consists of two figures, the square root of 611524 of three 
figures, and so on.

240. Suppose the square root of 4356 required.

Point the number according to 
the rule; thus it appears that the 
root consists of two places of figures. 
Let a + b denote the root, where a is 
the value of the figure in the tens’ 
place, and b of that in the units’ 

9—2
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jtlace. Then a must be the greatest multiple of ten which has 
its square less than 4300; this is found to be 60. Subtract a^, 
that is the square of 60, from the given number, and the remain­
der is 756. Divide this remainder by 2α, that is by 120, and the 
quotient is 6, which is the value of b. Then (2α + &) b, that is 
126 X 6 or 756, is the quantity to be subtracted; and as there is 
now no remainder, we conclude that 60 + 6 or 66 is the required 
square root.

It is stated above that a is the greatest multiple of ten which 
has its square less than 4300. For a evidently cannot be a 
greater multiple of ten. If possible suppose it to be some multi­
ple of ten less than this, say a:; then since x is in the tens’ place, 
iind b in the units’ place, x + b is less than a; therefore the square 
of £c + δ is less than a^, and consequently x+b is less than the 
true root.

If the root consist of three places of figures, let α represent 
the hundreds and b the tens; then having obtained a and b as 
before, let the hundreds and tens together be considered as a new 
value of α, and find a new value of b ioτ the units.

241. The cyphers may be omitted for the sake of brevity, 
and the following rule may be obtained from the process.

Point every second figure beginning with 
the units’ place, and thus divide the whole 
number into several periods. Find the great­
est number whose square is contained in the 
fii’st period; this is the first figure in the 
root; subtract its square from the first period.
and to the remainder bring down the next period. Divide this 
quantity, omitting the last figure, by twice the part of the root 
already found, and annex the result to .the root and also to the 
divisor, then multiply the divisor as it now stands by the part of 
the root last obtained for the subtrahend. If there be more 
periods to be brought down the operation must be repeated.
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242. Extract the square root of 611524; also of 10246101.

611524(782 10246401(3201
4 9 9

148J1215 62>124
1184 124

1562>3124 6401>6401
3124 6401

In the second example the student should observe the occur­
rence of the cypher in the root.

243. The rule for extracting the square root of a decimal 
follows from the preceding rule. We must observe, however, that 
if any decimal be squared there will be an even number of decimal 
places in the result, and therefore there cannot be an exact square 
root of any decimal which in its simplest state has an odd number 
of decimal places.

The square root of 21 ∙76 is one-tenth of the square root of 
100 X 21 '76, that is of 2176. So also the square root of Ό361 is 
one-hundredth of that of 10000 x Ό361, that is of 361. Thus we 
may deduce this rule for extracting the square root of a decimal; 
put a point over every second figure beginning at the units’ place, 
and continuing both to the right and left of it; then proceed as 
in the extraction of the square root of integers, and mark off as 
many decimal places in the result as the number of periods in the 
decimal part of the proposed number.

244. In the extraction of the square root of an integer, if 
there is still a remainder after we have arrived at the figure in 
the units’ place of the root, it indicates that the proposed number 
lias not an exact square root. We may if we please proceed with 
the approximation to any desired extent by supposing a decimal 
point at the end of the proposed number, and annexing any even 
number of cyphers and continuing the operation. ΛVe thus obtain 
a decimal part to be added to the integral part already found.
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Similarly, if a decimal number has no exact square root, we 
may annex cyphers and proceed with the approximation to any 
desired extent.

245. The following is the extraction of the square root of 
twelve to seven decimal places.

1 2∙0 0 0 0 . . . ( 3∙4 6 4 1 0 1 6
9

6 4> 3 0 0
25 6

686>4400
4 116

6924>28400
2 7 6 9 6

69281 J 7 0 4 0 0
6 9 2 8 1

6928201 J11190000
6928201

69282026J426179900
415692156

10487744

246. TΓAeJi n + 1 figures of a square root have been obtained 
by the ordinary method, n more may be obtained by division only, 
supposing 2n + 1 to be the whole number.

Let N represent the number whose square root is required, 
a the part of the root already obtained, x the part which remains 
to be found; then 

so that 
therefore,

and
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Thus W — a’ divided by 2α -will give the rest of the square 

root required, or x, increased by ; and we shall shew that —
J(Z 2,cb

is a proper fraction, so that by neglecting the remainder arising 
from the division we obtain the part required. For x by sup­
position contains τ⅛ digits, so that a? cannot contain more than 

iZ∕≡2n digits; but a contains 2n + 1 digits, and thus a— is a proper ΔCh
fraction.

247. We will now investigate the method of extracting the 
cube root of a compound quantity.

The cube root of a® + 3α®δ + + δ® is α + δ, and to obtain
this we proceed as follows; arrange
the terms according to the dimen- ® + 3α δ + 3ab + δ Qα + δ 
sions of one letter a, then the first _ _______________
term is a®, and its cube root is a, 
which is the first term of the re­
quired root. Subtract its cube, that
is a®, from the whole expression, and bring down the remainder 
3α®δ + 3αδ® + b^. Divide the first term of the remainder by 3a®, 
and the quotient is δ, which is the other term of the required 
root; then subtract 3α®δ + 3αδ® + δ® from the remainder, and the 
whole cube of α + δ has been subtracted. This finishes the opera­
tion in the present case. If there were more terms we should 
proceed with α + δ as we formerly did with a; its cube, that is 
a® + 3α®δ + 3αδ® + δ® has already been subtracted from the pro­
posed expression, so we should divide the remainder by 3 (α + δ)* 
for a new term in the root; and so on.

248. It will be convenient in extracting the cube root 
of more complex Algebraical expressions, and of numbers, to 
arrange the process of the preceding article in three columns, 
as follows:
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Find the first term of the root, that is a; put a? under the 
given expression in the third column and subtract it. Put 3α 
in the first column, and 3α* in the second column; divide 3α^6 
by 3a®, and thus obtain the quotient δ; add b to the quantity 
in the first column; multiply the expression now in the first 
column by b, and place the product in the second column and add 
it to the quantity already there; thus we obtain 3α^+3αδ + &’; 
multiply this by b and we obtain 3α^δ + 3«δ® + δ®, which is to be 
placed in the third column and subtracted. We have thus com­
pleted the process of subtracting (α + δ)θ from the original ex­
pression. If there were more terms the process would have to 
be continued.

249. In continuing the operation we must add such a quan- 
titv to the first column as to obtain there three times the part of
the root already found. This is conveniently effected 
thus; we have already in the first column 3α + δ; 
place 2δ under the δ and add; thus we obtain 3α + 3δ, 
which is three times α + δ, that is, three times the
part of the root already found. Moreover, we must add such a 
quantity to the second column as to obtain there three times the
square of the part of the root already found. 
This is conveniently effected thus; we have 
already in the second column (3α + δ) δ, and 
below that 3α®+3αδ + δ^; place V below and 
add the expressions in the three lines; thus we 
obtain 2>a^ + Gab + 3δ^, which is three times
(α + δ), that is, three times the square of the part of the root 
already found.
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250. Example; extract the cube root of

The cube root of 8a® is 2a® which will be the first term of the 
root; put 8a® under the given expression in the third column and 
subtract it. Put three times 2a’ in the first column, and three 
times the square of 2a’ in the second column; that is, put 6a’ in 
the first column, and 12x^ in the second column. Divide — 36cα* 
by 12α'*, and thus obtain the quotient — 3cα, which will be the 
second term of the root; place this term in the first column, 
and multiply the expression now in the fiι∙st column, that is, 
6a’ — 3cα by — 3cα; place the product under the quantity in the 
second column and add it to that quantity; thus we obtain 
12α'*- 18ca’ + 9c*a’; multiply this by — 3cα, and place the product 
in the third column and subtract. Thus we have a remainder in 
the third column, and the part of the root already found is 
2α* — 3cα.
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We must now adjust the first and second columns in the 
manner explained in Art. 249. We put twice — 3cx, that is, 
— Gcx, under the quantity in the first column, and add the two 
lines; thus we obtain 6x" — 9cx, which is three times the part of 
the root already found. We put the square of — 3cx, that is, 9c⅛*, 
under the quantity in the second column, and add the last three 
lines in this column; thus we obtain 12x^ — 36cx^ + 27c^x^, which 
is three times the square of the part of the root already found.

Now divide the remainder in the third column by the ex­
pression just obtained, and we arrive at c® for the last term of 
the root; proceed as before and the operation closes.

251. The preceding investigation of the cube root of an 
Algebraical expressioa will enable us to deduce a rule for the 
extraction of the cube root of any number.

The cube root of 1000 is 10, of 1000000 is 100, and so on; 
hence it will follow that the cube root of a number less than 
1000 must consist of only one figure, of a number between 1000 
and 1000000 of two places of figures, and so on. If then a point 
be placed over every third figure in any number beginning with 
the units, the number of points will shew the number of figures in 
the cube root.

252. Suppose the cube root of 405224 required.

2 10 + 4

By pointing the number according to the direction, it appears 
that the root consists of two places; let a be the value of the 
figure in the tens’ place, and b of that in the units’ place. Then 
a must be the greatest multiple of ten which has its cube less
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than 405000; that is, a must be 70. Place the cube of 70, 
that is 343000, in the third column under the given number and 
subtract. Place three times 70, that is 210, in the first column, 
and three times the square of 70, that is 14700, in the second 
column. Divide the remainder in the third column by the number 
in the second column, that is, divide 62224 by 14700; we thus 
obtain 4, which is the value of δ. Add 4 to the first column; 
multiply the sum thus formed by 4, that is, multiply 214 by 4; 
we thus obtain 856; place this in the second column and add it 
to the number already there. Thus we obtain 15556; multiply 
this by 4, place the product in the third column and subtract. 
The remainder is zero, and therefore 74 is the required root. 
The cyphers may be omitted for brevity, and the process will 
stand thus:

214 147 405224(74
856 343

15556 62224
6 2 2 2 4

253. Example; extract the cube root of 12812904.

6 31 12 12812904(234
6∫ 1891 8

694 138 9f 4812
9^ 4 16 7

1587 645904
2776 645904

161476

After obtaining the first two figures of the root 23, we adjust 
the first and second columns in the manner explained in Art. 249, 
We place twice 3 under the firet column and add the two lines 
giving 69, and we place the square of 3 under the second column
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and add the last three lines giving 1587. Then the operation is 
continued as before. The cube root is 234.

254. Example; extract the cube root of 144182818617453.

1521 75 144182818617453^52437
41 3041 125

1 5 641 7804j 19182
8∫ 4 15 608

1572 31 8112 3574818
6j 625 61 3269824

157297 817456j 304994617
1 61 247259907

823728 57734710453
471691 57734710453

82419969f
9l

82467147
1101079

8247815779

The cube root is 52437.

255. If the root have any number of decimal places the cube 
will have thrice as many; and therefore the number of decimal 
places in a decimal number, which is a perfect cube, and in its 
simplest state, will necessarily be a multiple of three, and the 
number of decimal places in the root will be a third of that 
number. Hence if the given cube number be a decimal, we 
place a point over the units’ figure, and over every third figure to 
the right and left of it; then the number of points in the decimal 
part of the proposed number will indicate the number of decimal 
places in the cube root.

www.rcin.org.pl



evolution. 141

256. Required the cube root of 1481’544.

The cube root is 11’4.

257. When n + 2 figures of a cube root have been obtained 
by the ordinary method, n more may be obtained by division 
only, supposing 2n + 2 to be the wlu)le number.

Let N represent the number whose cube root is required, 
a the part of the root already obtained, x the part which remains 
to be found; then 

so that
therefore,

and

Thus N — αθ divided by 3a® will give the rest of the cube 
£c® a;®root required, or x, increased by —h and we shall shewa oa

that the latter expression is a proper fraction, so that by neglect­
ing the remainder arising from the division, we obtain the part 
required. For by supposition, x is less than 10", and a is not 

x® . 10®"less than ΙΟ®"·*"'; thus — is less than -γ7j⅛7i, that is, less than 
Ci 1U

la:® 10®" 1. And —is less than tl^at is, less than ∙

1 1Hence — + is less than + 75—, and is thus less than a ύα 10 3 × 10
unity..
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EXAMPLES OF EVOLUTION.

Extract the square roots of the expressions contained in the 
following examples from 1 to 15 inclusive.

1.

2.
3.

4.
5.
G.

/.

8.

9.
10.

11.

12.

13.

14.
15.

16. Find the square root of the sum of the squares of ’2, ∙4, 
•6, ’86.

Extract the cube root of the expressions and numbers in the 
following examples from 17 to 24 inclusive.

17.

18.
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19.

20.

21.

22.

23.

24. Extract the fourth root of

25. If a number contain n digits^ its square root contains 
⅛ {2n + 1 - (- 1)"} digits.

26. Shew that the following expression is an exact square :

XV III. THEORY OF INDICES.

258. We have defined a”*, where m is a positive integer, as 
the product of m factors each equal to a, and we have shewn that 
α" × α" = a’"·*·", and that —- = or - „ — according as m is greatera a °
or less than n. Hitherto then an exponent has always been a 
positive integer; it is however found convenient to use exponents 
which are not positive integers, and we shall now explain the 
meaning of such exponents.

m
259. Positive Fractional Exponent, a" is used to denote 

the n^'^ root of α"*, that is iij(p,"'').

Negative Exponent, a~^ is used to denote whether p be

whole or fractional.
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260. Thus, for example, according to the first definition.

and so on.

According to the second definition.

and so on,

261. Thus it will appear that it is not absolutely necessary 
to introduce fractional and negative exponents into Algebra, since 
they merely supply us with a new notation for quantities which 
we had already the means of representing. It is, as we have said, 
a convenient notation, which the student will learn to appreciate 
as he proceeds. We may, however, shew at once that the new 
notation is not arbitrary, but founded on an important principle ; 
to this we proceed.

262. The relation a™ x α" = α"'*'", which holds when m and n 
are positive integers, occurs perpetually in Algebraical operations; 
if we wish to give a meaning to fractional and negative exponents, 
it is reasonable that the meanings should be such as will allow this 
important relation still to subsist. ΛVe shall shew hereafter that 
the meanings we have given do satisfy this condition, and we will 
here briefly indicate how these meanings might have been sug­
gested by the condition. Take the given relation, and suppose, 
for example, that m and n are each so that the relation be­
comes a^ × α⅜ = a’ = a. Thus ah must denote a quantity such 
that if it be multiplied by itself the product is a; now the square 
root of a is, by definition, such a quantity. Thus ah must be the 
square root of a, that is, must denote the same thing as Ja.

263. Similarly we can indicate the way in which the meaning 
of negative exponents might have been suggested by the condition
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of making the relation a” × α" = α"*" universally true. For write 
— n for n in this relation, then it becomes

But we know if τzι be greater than n that

hence we see that a " and ∖ must denote the same thing,

264. We have shewn in Arts. 62 and 63 that

according as m is greater or less than n∖ in consequence of the 
meaning which we attach to negative exponents, it will no longer 
be necessary to distinguish between these two cases. For

so that we may for the future use —and a™ " indifferently.

a”265. In the relation — = α"*^" suppose that wι = nj the left­

hand member is then obviously unity, and the right-hand member 
takes the form a®; the last symbol has not hitherto received a 
meaning, so that there is nothing to prevent our giving it the 
meaning which naturally presents itself. Hence we may put 
αθ=l.

266. The notation which we have explained will now be 
used in establishing some propositions relating to roots and 
powers.

267. To shew that

Let therefore

10T. A.
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Thus x” = ab, therefore x = {(Λ}", which was to be proved.

In the same manner we can prove that

268. Hence

And by proceeding in this way we can prove that

Suppose now that there are m of these quantities a, b, c, ...k, 
and that each of them is equal to a} then we obtain

But
m

is, by definition, a”; thus

269. To shew that

therefore therefore there-

Thus which was to be proved.

270. To shew that

Let ic = a"; therefore χ" = α”'; therefore x”’’ = a”^; therefore

ic = a”'^’. Thus a" = a"’’, which was to be proved.

271. The student may infer from what we have said in 
Art. 261, that the propositions just established may also be 
established without using fractional cxponcnis. Take for example 
that in Art. 267; here we have to shew that

^a×2jb= iij{ab').
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Proceed as before; let = × ^δ; therefore
a;" = (;/« × <∕δ)" = (^α)" × {^∣b')'', (by Art. 41), = a χ b.

Thus a;" = ab, therefore x = (ah'), which was to be proved.

272. We shall now proceed to shew that the relations 
α" × α" = and (a”*)* = a”"' are universally true, whatever m 
and n may be.

P r

273. To shew that a'^×a*=^a'^
p r p9 qr

× a’ = a^’ × by Art. 270,
¾ 1

= (a^Y’ × by definition,

= (a^ × by Art. 267,
1 P∙Λ-<tr p r

= = a =a^

274. In the same way we can prove that
p ι∙ _z.

a"'÷a∙ = a^

275. Thus the relation α"*×α" = α"^^" is shewn to be true 
when m and w are positive fractions, so that it is true when m 
and n are any positive quantities. It remains to shew that it is 
also true when either of them is a negative quantity, and when 
both are negative quantities.

(1) Suppose one to be a negative quantity, say w; let
n--v.

Then α" × α" = a” × α^*' = a” × ∑= = a"'~'', (by Art. 274),

= a”·*·".

(2) Suppose both to be negative quantities; let
m = -p, and n = -v.

10—2
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Then

(by Art. 273),

276. Similarly a” × α" × a’’ = × = and so on.
Thus if we suppose there to be r quantities τn, n, y>, ..., and 

that each of the others is equal to m, we obtain

whatever τz⅛ may be.

2> r
2T7. To shew that («’)’=«’'.

Let 33 = («’)’; therefore ic*= (αy= a’, by Art. 276; there- 

fore a;’’= ∙, therefore 33= a'*'’, which was to be proved.

278. To shew that (α'")" = α""" universally.

By the preceding article this is true when m and n are any 
jκ)sitive quantities; it remains to shew that it is true when either 
of them is a negative quantity, and when both are negative 
quantities.

(1) Suppose i⅛ to be a negative quantity, and let it = — v.

Then (α"*)" = (aT}~'' =■ = -⅛, = α^'""' = οΤ'"·

(2) Suppose 7zi to he a negative quantity, and let it = — μ,

Then (α-)∙ = (a.-'∙γ =(λ)'=±= a'''∙ = O·'.

(3) Suppose both m and n to be negative quantities; let
7Zi = — μ, and 7i = — V.

Then (α-)∙ = (<,--)-=^,= i = α"=α--.
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EXAMPLES OF INDICES.

1. Simplify

2. Find the product of

3. .........

4. Simplify the product of

5. Simplify

6. Multiply

7. .......

8.................

9.................

10.................

11. Divide a

12 ...............X

13 ............ a

14 ...............2

15 ............ a

16. Simplify
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17. Extract the square root of

18. Extract the square root of

19. Extract the square root of

20.

XIX. SURDS.

279. When a root of an Algebraical quantity which is re­
quired, cannot be exactly obtained, it is called an irrational or 
sard quantity. Thus ,ζja^ or is called a surd. But ξ∕a^ or a^, 
though apparently in a surd form, can be expressed by and so 
Ls not called a surd.

The rules for operations with surds follow from the proposi­
tions established in the preceding chapter, as will now be seen.

280. A rational gztantity may be expressed in the form of a 
given surd, by raising it to the power wJiose root tJie surd expresses, 
amd affixing the radical sign.

Tlιus a = fja^ = ^a^, &c.; and α + a; = (α + x}". In the same 
manner the form of any surd may be altered; thus

(α + xf = (α + xf = (α + xff, &c.

The quantities are here raised to certain powers, and the roots of 
those poλvers are again taken, so that the values of the quantities 
are not changed.
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■ 281. The coefficient of a surd may be introduced under the 
radical sign, by first reducing it to the form of the surd and then 
multiplying according to Art. 271.

For example,

282. Conversely, any quantity may be made the coefficient of 
a surd, if every part under the sign be divided by the quantity 
raised to the power whose root the sign expresses.

Thus

283. When surds have the same irrational part, their sum or 
difference is found by affixing to that irrational part, the sum or 
difference of their coefficients.

Thus

284. If two surds have the same index, their product is found 
by taking the product of the quantities under the signs and retain­
ing the common index.

Thus
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285. 7/ the surds have coefficients, the product oj these coeffi­
cients must be prefixed.

Thus

286. If the indices of two surds have a common denominator, 
let the quantities be raised to the powers expressed by their respective 
numerators, and their product may be found as before.

Thus

287. If the indices leave not a common denominator, they may 
be transformed to others of the same value with a common deno­
minator, and tlieir product found as in Art. 286.

Thus

288. If two surds have the same rational quantity under the 
radical signs, their product is found by making the sum of the 
indices the index of that quantity.

Thus

289. If the indices of two surds have a common denominator, 
tlee quotient of one divided by the other is obtained by raising them 
respectively to the powers expressed by the numerators of their 
indices, and extracting that root of the quotient which is expressed 
by the common denominator.

Thus,
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290. If the indices have not a common denominator, reduce 
them to others of the same value with a common denominator, and 
proceed as before.

Thus

291. If tlbe surds have the same rational quantity under the 
radical signs, their quotient is obtained by making the difference of 
the indices the index of that quantity.

Thus,

292. It is sometimes useful to put a fraction which has a 
simple surd in its denominator into another form, by multiplying 
both numerator and denominator by a factor which will render the 
denominator rational. Thus, for example,

If we wish to calculate numerically the approximate value of 
2

—p: it will be found less laborious to use the equivalent form √O
2√3 a ajb. Similarly, -J-.

293. It is also easy to rationalise the denominator of a frac­
tion when that denominator consists of two quadratic surds.

For

So also

www.rcin.org.pl



154 SUEDS.

294. By two operations we may rationalise the denominator 
of a fraction when that denominator consists of three quadratic 
surds. For suppose the denominator to be Ja + Jb + Jc∙, first 
multiply both numerator and denominator by J a + Jb ~ Jc, thus 
the denominator becomes α + δ — c + 2 J{ab}; then multiply both 
numerator and denominator by a + b — c ~ 2 J{ab∖ and we obtain 
a rational denominator, namely (a + b — cf— i^ab, that is,

295. Λ factor may be found which will rationalise any bino­
mial.

J. L 12.
(1) Suppose the binomial α^ + δ’. Put ic = α'', y = δ^; let 

n be the least common multiple of p and q∙, then x" and y" are 
both rational. Now 

where the upper or lower sign must be taken according as n is odd 
or even. Thus 

is a factor which will rationalise x + y.
£ £

(f) Suppose the binomial a^ -b'^. Take x, y, and n as be­
fore. Now

Thus 
is a factor which will rationalise x — y.

Take, for example, α’^ + δ^; here n = 6. Thus we have as a 
rationalising factor 

that is,

that is.

The rational product is a® — y®, that is, a’ — b^^, that is, a’ — δ*.
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296. The square root of a rational quantity cannot be partly 
rational and partly a quadratic surd.

If possible let Jn = α + ; then by squaring these equal
quantities Λve have n = a^ + 2a + τn', thus 2α = n — a!‘ — 'm,

and = a rational quantity, which is contrary to

the supposition.

297. If two quadratic surds cannot be reduced to others which 
have the saιrw irrational part, their product is irrational.

Let fx and ∣Jy be the two quadratic surds, and if possible 
let f(xy} — rx, where r is a whole number or a fraction. Then 
xy = r"^x^, and y = r*x, therefore Jy = r Jx, that is, Jy and ,Jx 
τasiy be so reduced as to have the same irrational part, which is 
contrary to the supposition.

298. One qx^adratic surd cannot be made up of two others 
which have not the same irrational part.

If possible let fx = Jm + ,fn; then, by squaring, we have 
a; = τn + w + 2 J(pfin'), and J(nιn} = ^(x-m-n'j, a rational quan­
tity, which is absurd.

299. In any equation -s. + = a + f∖) which involves rational
quantities and quadratic surds, the rational parts on each side are 
equal, and also the irrational parts.

For if ic be not equal to a, suppose aj = α + wj then
α + w + Jy = a + Jb,

so that m + Jy = Jb; thus is partly rational and partly a 
quadratic surd, which is impossible by Art. 296. Therefore x = a, 
and consequently ,fy = Jb.

3QQ. then

For since we have by squaring
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therefore

Hence

and

Similarly we may shew that if 

then

301. The square root of a binomial, one of whose terms is a 
quadratic surd and the other rational, may sometimes be expressed 
by a binomial, one or each of whose terms is a quadratic surd.

Let a + Jb be the given binomial, and suppose

By Art. 300,
By multiplication,

By squai’ing both sides of the first equation.

therefore

Hence, by addition and subtraction.

therefore

Thus X and y are known, and therefore f(a + Jb∖ which is

Also is known, for it is

302. For example, find the square root of 3 + 2 J2.

Here 
therefore

Thus
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303. Again; find the square root of 7 —2 /10.

Instead of using the result of Art. 301 we may go through the 
whole operation as follows :

Suppose
tlιen, by squaring, 
hence
and

therefore 
that is, 
and

...(1),

••(2);
therefore, from (1) and (2), x = 5, and y = 2.

Thus

304. It appears from Art. 301 that

hence, unless - δ be a perfect square, the values of and Jy 
will be complex surds, and the expression ,fx + Jy will not be so 
simple as (a + ,Jb') itself.

305. A binomial surd of the form J{u^c) + Jb may be written
tlιus,j^c^α + ∙ then a® — be a perfect square, the square

root of α + ∕yj∖ expressed in the form Jx + Jy.

Hence the square root of ⅛∕(α^c) + Jb is ↑Jc (^fx + Jy),

306. For example, find the square root of ,^32 + ,/30.

Here √32+√30 = √2 (4 + √15);

thus √(√32 + √30) = X √(4 + √15);
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and it may be shewn that

Hence .

307. Sometimes we may extract the square root of a quantity 
of the form a + Jb + Jc + Jd by assuming 

then 

we may then put

2,

and if the values of x, and z, found from these, also satisfy 
ic + y + z= a, 'VfQ shall have the required root.

308. For example, find the square root of

Assume
then

Put 
hence, by multiplication.
and 
therefore, by division, 
hence

These values satisfy the equation

Thus the required square root is 

that is,

www.rcin.org.pl



SURDS. 159

309.

For suppose
then, by cubing.

therefore (Art. 299);
hence
and

310. The cube root of a binomial α± Jb may be sometimes 
found.

Assume
then

By multiplication,

Suppose now that a® — b is a perfect cube, and denote it by c®.
thus

and, as in Art. 309,

Substitute the value ofy;
thus
therefore

From this equation x must be found by trial, and then y is 
known from the equation y = x^ — c.

Thus it appears that the method is inapplicable unless a® — b 
be a perfect cube; and then it is imperfect since it leads to an 
equation which we have not at present any method of solving 
except by trial. The proposition, however, is of no practical 
importance.

311. For example, find the cube root of 10 + ^108.

Assume

then

www.rcin.org.pl



160 EXAMPLES OF SURDS. CHAPTER XIX.

By multiplication,
tliat is,
Also

therefore

We see that this is satisfied by ic=l5 hence y = 3 and the 
Inquired cube root is 1 +

EXAMPLES OF SURDS.

1. Find a factor which will rationalise

2. Find a factor which will rationalise

3. Find a factor which will rationalise

4. Shew that

5. Given find the value of

G. Shew that

7. Shew that

8. Extract the square root of

9. Extract the square root of

10. Extract the square root of

11. Extract the square root of 7
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12. Extract the square root of

13, Extract the square root of

14. Extract the square root of

15. Extract the square root of

16. Extract the square root of

17. Extract the square root of

18. Extract the square root of

19. Γiud the value of

when ic

20. Find the value of

21, Extract the square root of

22. Extract the square root of 5

23. Extract the square root of

24. Extract the cube root of

25. Find the cube root of 16

26. Find the cube root of 9

27. Find the cube root of 2]

28. Shew that + 2)-

T. A. 11
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XX. QUADRATIC EQUATIONS.

312. When an equation contains only the square of the 
unknown quantity the value of this square can be found by the 
rules for solving a simple equation; then by extracting the square 
root the values of the unknown quantity are foτmd. For example, 
suppose 

by transposition, 
by division, 
therefore

The double sign is used because the square root of a quantity 
may be either positive or negative. (Art. 231.)

313. It might at first appear that from = 4 we ought to 
infer, not that χ=d=2, but that ± a; = =t 2. It will however be 
found that the second form is really coincident with the first. For 
÷ X = ± 2 gives either + x = + 2, or +x = -2, or — a: = + 2, or 
— X = — 2 ; that is, on the whole, either ic = 2, or a; = — 2. Hence 
it follows, that when we extract the square root of the two mem­
bers of an equation it is sτιfficient to put the double sign before the 
square root of one of the members.

314. Quadratic equations which contain only the square of 
the unknown quantity are called pure quadratics. Quadratic 
equations which contain the first power of the unknown quantity 
as well as the square are called adfected quadratics. We proceed 
now to the solution of the latter.

315. We shall first shew that every quadratic equation may 
be reduced to the form x? + px = g, where p and q are positive or 
negative. For we can reduce any quadratic equation to this form by 
the following steps; bring the terms which contain the unknown 
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quantity to the left-hand side of the equation, and the known 
quantities to the right-hand side ; if the coefficient of a;’ he nega­
tive, change the sign of every term of the equation; then divide 
every term by the coefficient of x∖ Thus we may represent any 
quadratic equation by

To solve this we add to both sides; thus

The left-hand member is now a complete square; extract the square 
root of each member : thus

77
transpose the term , and we obtainJ

316. For example, suppose 

transpose, 
change the signs, 
divide by 3, 

add to both sides that is, 36; thus

extract the square root of both members; thus

Therefore a; = 6 ± 1; that is, x = 7, or 5. If either of these 
values be substituted for x in the expression - 3a:’ + 36a:- 105, the 
result is zero.

11—2
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317. Hence the following rule may be given for the solution 
of a quadratic equation :

By transposition and reduction arrange the equation so that 
the terms involving the unknown quantity are alone on one side, 
and the coefficient of is + 1 ; add to both sides of the equation 
the square of half the coefficient of x, and extract the square root of 
both sides.

318. As another example we will take

transpose,

divide by a,

add

extract the square root, x

transpose,

319. When an example is proposed for solution we may, 
instead of going through the process indicated in Art. 317, make 
use of the formula in Art. 318. Thus, take the example in Art. 
316, namely, - 3χ’ + 3 6χ — 105 = 0, and by comparing it with the 
formula in Art. 318∙we see that we may suppose α = -3, 5=36, 
c = —105. Hence if we put these values for α, 5, and c in the 
result of Art. 318, we shall obtain the value of x. Here

V - 4αc = (36)’ -12 × 105 = 36 ;

therefore

320. For another example take the equation

add
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extract the square root,' 
transpose,

Here ^7 cannot be found exactly; but we can find an ap­
proximate value of it to any assigned degree of accuracy, and thus 
obtain the value of x to any assigned degree of accuracy.

321. In the examples hitherto considered we have found troo 
different roots of a quadratic equation; in some cases however we 
sliall find really only one root. Take for example the equation 
£c’ — 12ic + 36 = 0; by extracting the square root we have ic — 6 = 0, 
and therefore a; = 6. It is however convenient in this case to say 
that the quadratic equation has two equal roots.

322. If the quadratic equation be represented by 

we know from Art. 318 that the two roots are respectively

Now these will be different unless δ*- 4αc≈0, and then each of 

them is . This relation δ*-4αc = 0 is then the condition that 2a
must hold in order that the two roots of the quadratic equation 
may be equal.

323. Consider next the example a;* — 10a; + 32 = 0.

By transposition, as’—10a;;= — 32;
by addition, a;’ — 10a; + 25 = 25 — 32 = — 7.
If we proceed to extract'the square root we have 

a;-5 = ±7-7.
But —7 has no square root either exact or approximate (Art. 
232); thus no real value of x can be found to satisfy the proposed 
equation. In such a case the quadratic equation has no real roots;
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this is sometimes expressed by saying that the roots are imaginary 
or impossible. We shall return to this point in a subsequent 
chapter. See Chapter xxv.

324. If the quadratic equation be represented by

cwj® + bx + c = 0,

we see from Art. 318 that the roots are real if b^ — 4αc is positive, 
that is, if b^ is algebraically greater than 4αc, and that the roots 
are impossible if — 4αc is negative, that is, if b^ is algebraically 
less than 4αc.

EXAMPLES OF QUADRATICS.

1. x^-5x + 4 = 0. 2. 6x<13ic + 6 = 0.
3. a:’’- 4aj + 3 = 0. 4. 3x^-7a3=20.

5. 2α≡-7aj+3 = 0. 6. 3ic≡-53a; +34 = 0.
7. a?· + 10a;+24 = 0. 8. 7a;’-3a;= 160.

9. 14a:-a;’=33. 10. 2a;≡ - 2a; -1 = 0.

11. af-3 = ^(x-3). 12. 4 (a:’-1) = 4a;-1.

13. 110a:’-21a; + l = O. 14. 780a;®-73a; + 1 = 0.

15. (a;-l)(a:-2) = 6. 16. (3«-2)(«-1) = 14.
17. (3a; - 5) (2a;-5) = (a;+ 3) (a;-1).
18. (2a;+l)(a: + 2) = 3a;’-4.
19. (a; + l)(2a;+3) = 4a:®-22.

20. {x- 1)(®- 2) + (a;- 2) (a;- 4) = 6 (2a;- 5).
21. {2x-3γ=3x, 22. (5a;-3)’-7 = 44a;+5.
23. (a;-7) (a;-4) +(2a;-3) (a;-5) = 103.

7^÷r÷∏δ=θ∙
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25. (∞-⅜) - j) + (≈=-∣)(≈≈-∣) = (≈≈-l) (≈= -∣)∙

a; 2 a; 3
26. θ -4— — κ — ∙2 ic 3 X

1 4∙

nr, n 21 + 65aj -- 6 £c 5(x-l)
X 1 a: o 4

30. ^+-^=3⅝. 31. ^-^ = 3⅜.
7 x+ 5 5-x 7

on θ 1-1 QQ 1,31
2(ic≡-l) 4(λ + 1)~8∙ ■ 2(a:-l) ^^a!≡-l 4'

2a; 3x + 50 _ 12a;-70
Ϊ5 3 (10 - a;) “ 190 ’
2x 3a;-50 _ 12a;+ 70
15 3(10 + a;)~ 190 ’

∙i7 ~= X — 3 +1
'aj-l 2a; 3' ’a;+3 x'

®-θ ςq + a;-4 10
X—12 x—Q 6 a;—4 x + 4 3
a;+2 a;-2_13 ... x a; + l_13
a; —2^33 + 2 6 * ’ α+l"^ x 6

IQ _Z_____ 2 _ 3
»-2 a; + 2“5'

14 _£_ + _A_ = 21_ 45 , 3^ 11-
a; + l a; + 2~a; + 3* ’ a; + 2 x a; + 4'
2a;-3 3a;-5 5 3aj-2 2x-5 10
^3^5^^‰≡^~2∙ 2a;-5 ^*^3x-2 ~y

a;+3 a;-3 2a;-3 a;-2 , a: +2 _ 2 (x +3)
^^∞'^~ic-l' a; + 2 + x-2 ic-3 ’

50. 10 (2a; + 3) (a;- 3) + (7aι+ 3/ = 20 (a; + 3) {x-~ 1).
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51. (7-4√3)√+(2-√3)aj = 2.

52. — 2ax + — δ® = 0.
53. (3α≡+δ≡)(ic≡-ic + l) = (3δ≡ + α≡)(ic≡ + ic+l).

54. 33® — 2αaj + δ≡ = 0.
κ- 1 1 1 Λ
00. h —~ +  -------  = 0.

a: —α x — b x~c

+ 1 1 ___ J____
(33-b)(x-c) (a + c){a + b) (a + c){x- c) {a + b'){x-bγ

57. ---- -γ-----  —---- k J- -I----.
α + o+33 a b X

58. («33 — δ) (δ33 — α) = c®.

59. -iL.+ *=JL.
x — a x — b x — c '

∕>∣∖ 12 θ®’ + ab — 2b^ b^x
c c c

x + a x + b x + c „61. ------+-----j-+----- = 3.x — a x — b x — c

α + c(α + x) α + 33 a 
--------7------- V +------- =--------r-· a + c{a-x) X a — 2cx

XXI. EQUATIONS WHICH MAY BE SOLVED
LIKE QUADRATICS.

325. There are many equations which, though not really 
quadratics, may be solved by processes similar to those given in 
the preceding chapter. For example, suppose

√- 933®+20 = 0.

Transpose, x"* — 933® = — 20;

by addition, 33* - 933® + ≈ — 20 = ∣;
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9 1extract the square root, ~ o = =*= o J2 2ι
9 1therefore = ± θ = 5, or 4;Δ 2ι 

therefore x= =>= J5, qy =t 2.

326. Similarly we may solve any equation of the form
ax^" + bx" + c = 0.

Transpose, ax®" + bx" = -c',

divide by α, x^^ + = --:

V αj∙i∙ f 6®-4acby addition, ≈ + —+ = (⅛J - α ' ≡

X 4. 4.K X fl ~ 4αc)
extract the square root, x + = —------- ' ;

2i(Jb 2iCh

2α
Hence by extracting the w*** root the value of x is known.

327. Suppose, for example,
x + 4 Jx = 21; 

therefore x + 4 Jx + 4 = 25 ;
therefore Jx + 2 = ± 5;
therefore Jx = —2±5 = 3, or — 7
therefore x=9, or 49.

328. . Again, suppose
x~^ + x~⅛ = 6 ;

, j> 1 -Atherefore x +x * + -; = =-:4 4 ∙

1 f> -Atherefore x ’ + = ;
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1 5therefore x~^ = = 2, or —3;

therefore aj^* = 4, or 9,

and » = τ > θr γr.4 9

329. Suppose we require the solutions of the equation

ic + √(5aj+10) = 8.

By transposition, + 10) = 8 — a;;

square both sides; thus

5α + 10 = 64 — 16iκ + a:’;
therefore — 21x = — 54 ;

therefore a;* - 21a: + = (γ)'~ >

therefore a: — = ± ;Δ J

therefore a: = ± = 18, or 3.J Δ

Substitute these values of x in the left-hand side of the given 
equation; it will be found that 3 satisfies the equation but that 18 
does not; we shall find however that 18 does satisfy the equation

X — J(5x + 10) = 8.

In fact the equation 5x + 10 = 64 — 16a: + x^ which we obtained 
from the given equation by transposing and squaring might have 
arisen also from x — J{5x + 10) = 8. Hence we are not sure that 
the values of x which are finally obtained will satisfy the proposed 
equation; they may satisfy the other form.

330. Again, consider the example
a; — 2 J{x^ + a: + 5) — 14 = 0.

By transposition, a: — 14 = 2 J{x* + a: + 5);
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by squaring, — 28x + 196 = la?* + ix + 20;

therefore 3®’ + 32® = 17 6.
-44From the last equation we shall obtain ® = 4, or ——. It will, ό

however, be found on trial that neither of these values satisfies the 
proposed equation; each of them however satisfies the equation

® + 2 + ® + 5) —14 = 0.

From this and the preceding example we see that when an 
equation has been reduced to a rational form by squaring, it will 
be necessary to examine whether the roots which are finally 
obtained satisfy the equation in the form originally given.

331. Suppose that all the terms of an equation are brought to 
one side and the expression thus obtained can be represented as 
the product of simple or quadratic factors, then the equation can 
be solved by methods already given. For example, suppose

(® — c)(®’ — 3a® + 2α*) = 0.
The left-hand member is zero either when ® —c = 0, or when 
®’ — 3a® + 2a’ = 0. But if ® — c = 0, we have ® = c j and if

®* — 3a® + 2a’ == 0,
we shall find that ® = α, or 2α. Hence the proposed equation is 
satisfied by ® = c, or α, or 2α.

332. Facility in separating expressions into factors will be 
acquired by experience ; some assistance however will be furnished 
by a principle which we will here exemplify. Consider the 
example

® (® — c)’ = α(α — c)’.

Here it is obvious that ® = α satisfies the equation; and we shall 
find that if we bring all the terms to one side ® — α will be a factor 
of the whole expression. For the equation may be written

of - a’ - 2c ζ®* - α*) + c’ (® - α) = 0 ;
that is, (® - α) {®’ + a® + α* — 2c(® + α) + c’} = 0.
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Hence the other roots besides a will be found by solving 
the quadratic

a;’ + ακc + α* — 2c (a: + σ) + c’ = 0.

In this manner when one root is obvious on inspection, we 
may succeed in arranging the equation in the manner named in 
Art. 331.

333. We will now add some miscellaneous examples of equa­
tions reducible to quadratics.

(1) Suppose
aj'-7aj + √(x≡-7aj+18) = 24.

Add 18 to both sides ; thus
≈*- 7a: + 18 + 18) = 42 ;

complete the square; thus
x≡-7x+18 + √(aj≡-7a! + 18) + ∣=42i = ^5

1 13
therefore — 7a:+18) + 2= =^-2“i

therefore J{x^ — 7a: + 18) = 6, or — 7 ;

therefore a:* — 7a: + 18 = 36, or 49.

Hence we have now two ordinary quadratic equations to 
solve. We shall obtain from the first a;= 9. or — 2, and from the 
second a: = ⅜ (7 =∙= ^173). It will be found on trial that the first 
two only are solutions of the proposed equation; the others apply 
to the equation

x≡.7aj-^(x*-7a^÷18) = 24,

(2) Suppose
a:* + a;® — 4a:’ + a: + 1 = 0.

Divide by a:*; thus

a; + a: — 4 d--- 1--s = θjX X
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2 1 1 A nor α+-5 + iCd----- 4 = 0:X X

therefore ^a; + + ^a; + — 6 = 0;

therefore + “ θ’

, . 1 1 5therefore a:d---- ∣^h = ='=o5a: 2 2

therefore ic + - = 2, or — 3.

First suppose x + = 2

therefore a;* — 2a; + 1 = 0;

therefore a: = l.
1

Next suppose a; + - = — 3;

therefore a:® + 3a: = — 1;

therefore a;®+3a; + y = y — l = yi4 4 4
' , p . 3 √5 1 - 3 ÷ √5therefore a: + - = ÷ -2^, ∞ =----- 2---- '

(3} Suppose
x^ + 3a; + 1 = 3x’ + ⅛ x^.

Transpose, a;* — 3a:® + 3x + 1 = ; ∙

therefore (a: ~ J —+ 3a: + 1 = ;

therefore _2 (√-⅛)_+ 1 =
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, - /- 3a;\’ o / , 3x∖ x’‘ 4£c® 25x'therefore “ γ} ÷ = T ^9^ " *

Extract the square root,
, 3ic - 5x

≈--2-' = *T∙

τ ∙ g 3x 5χWe have now ordinary quadratics, namely, a

3∙Z√ 5icand —ττ— 1= —x-. From the former we shall obtain2 0
x = l(7 =i= J85}, and from the latter α = ⅜(l÷^10).

(4) Suppose
6x Jx — 1 la; + 6 Jx - 1 = 0.

We may write the equation in the form

(a; - 3 Jx^ + 2 (a; - 3 ,Jx} + 1 = √.

Hence x— 3 Jx-l· 1 =d=x.

Take the upper sign; thus
a; — 3 Jx+ 1 =a;;

, 1 ∏ 1therefore — and ≈ = g∙

Take the lower sign; thus
x~3 fJx-∖-1 = —a:;

therefore 2a;—3^a; + l=0.

From this we obtain Jx≈ 1, or and therefore a;= 1, or .

(5) Suppose
x + c + J{x^ _ 9 (a; + c)
x + c — J(x^ — <i‘) 8c ...................

In solving this equation we shall employ a principle which 
often abbreviates algebraical work.
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Suppose that = -,

then will
α + δ a—b p — q aΛ-^b p + q

b q ' b q ' a — b p-q'

For the first of these three results is obtained by adding unity 
to each of the given equal quantities, the second is obtained by 
subtracting unity from each of the given equal quantities, and the 
third result is obtained by dividing the first by the second. Each 
result is sometimes serviceable. For the present example we 
employ the last. Thus from (1) we deduce

2 (x + c) _ 9a; + 17c
2 -c~) Qx + c '

Square both sides, and simplify the left-hand member; thus
¾ + c _ (9a; + 17c)®
x — c (9a;+ c)® ....................' ''

Again, by employing the third of the above results we deduce 
from (2)

X _ (9a;+ 17c)® + (9a;+ c)® (9a; + 17c)® + (9a;+ c)®
c ~ (9a;+17c)®-(9a; + c)® "" 16c (l«a:+18c) *

By reducing, we obtain

63aj*- 18xc~ 145c® = 0,

J XL xκ∙ 29cand from this, a; = —, or x = — ■— .o 21
(6) Suppose

∖∕(τ ~ .

Transpose; thus

γ √(1 - 4a;) - -a;) = ^(3aa;- x}.

www.rcin.org.pl



176 EQUATIONS WHICH MAY BE

By squaring, (1 — 4x) — 3α J(l ~ 4x) = 3αiC —

=-⅜(i-i4

Divide by √^(1 — 4ic); thus

⅛⅛⅛√(l-4.) = 3αy(⅜-.), 

By squaring, (1 + 3α)^ (1 - 4ic) = ] 6 - £c^ ;

therefore 4« {(1 + Zaf y 4} = (1 + 3α)^ — 12α = (1 — 2>af^, 

therefore 4ic + 3) (3α-1) = (3α — I)’’;

therefore x = ∙12 (α+ 1)
Also corresponding to the factor ^/(1 — 4ic), which was removed, 

we have the root x = τ.4

This example is introduced in order to draw the attention of 
the student to the circumstance that when both sides of an equa­
tion are to be squared, an advantageous arrangement of the terms 
on opposite sides of the equation should be made before squaring. 
If in this example as it originally stands we square both sides, no 
terms will disappear; but by transposing before squaring we ob­
tain a result in which — x occurs on both sides, and may therefore 
be cancelled.'

(7) Suppose 
√(x*+9)+√(≈≡-9) = √(34) + 4,

We have identically
»’+9-(®'-9) = 18 = 34-16.

Hence, dividing the members of this identity by the cor­
responding members of the proposed equation, we obtain

■ √(≈* + 9)-√(x'-9) = √(34)-4.
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Therefore, by addition, ^(x* + 9) =^(34);
therefore χ“= 25, and x = ÷ 5.

This equation is introduced for the sake of illustrating the 
artifice employed in the solution. This artifice may often be em­
ployed with advantage; for instance, example (6) may be solved 
in this way.

(8)

We may write this equation thus,

√(2,÷ 4)-2√(2-.)≈ ^ ■

The factor +4)-2 J(2 — x') can now be removed from 
both sides; thus we obtain

√(9a3≡ + 16) = 2 {√(2x + 4) + 2 √(2 - a:)}.
By squaring, 9ic^" + 16 = 4 {12 - 2x + 4 J(8 - 2x^)};
therefore ic^ + 8ic = 4 (8 — 2x^') + 16 8 — 2x^};

therefore ic’ + 8ic + 16 = 4 (8 — 2x^~) + 16 ^(8 — 2x^) + 16.
Extract the square root; thus

±(χ + 4) = 2√(8-2x≡) + 4.
The solution can now be completed; we shall obtain

4√2

and also a pair of imaginary values.

Also, by equating to zero the factor J(2x + 4)-2 — x∖
2 which was removed, we shall obtain x = .o

It will be seen that very artificial methods are adopted in some 
of these examples; the student can acquire dexterity in using 
such transformations only by practice. More examples will be 
found in Chapter uv.

T. A. 12
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EXAMPLES OF EQUATIONS REDUCIBLE TO QUADRATICS.

1. 3aJ + 2√ic-l = 0. 2. a;” + 31as*= 32.
i J-

3. 3«’ + 42«>=3321. 4. a:”-13x≡" = 14.
1 ®

5. x^-35x^ + 216 = 0. 6. aι"-√"+2 = 0.

7. x + 2 J{ax} + c = 0. 8. 3√-7x^ = 43076.

9. 3x" l/x” + = 16. 10. + —τ = 3∣.

11. √(2x)-7ic=-52. 12. a:*-14a:*+ 40 = 0.
13. 2aj + √(4aj + 8) = . 14. 2 7a; + ^ = 5.

15. a:^ + 5x^ —22 = 0. 16. 3a:^ — 4as^ = 7.
i

17. a: + 5 - ^(aj + 5) = 6. 18. 2(a:’‘ + a: ") = δ.
19. ^(2a: + 7^ + ∣J∖3x —18) = ∣J(^x + 1).

.. √(a≈'-lθ) „ ox
∞∙

21. J{a + x} + J{a-x} = Jb.

22. √(aj+ 9) = 2√aj-3.
23. ic + √(5x + 10) = 8. 24. 2'÷* + 4*=80.

25. (α^ + a:^^ = (α^ + x^)^.

9fi = .
JCf> + >J∣J(^-

C4ι)*÷(iπ)'="('*-^>∙

28. (a + &)7(a’ + 6’ + a:*)-(a-&)7(a*+0‘-a;’) = a*+6·.

29. a; + √a; + √(a; + 2) + √(a;*+2a;) = a.
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EXAMPLES OF EQUATIONS, &C. CHAPTER XXI. 179 

30. 2x + √(2 + 2x) = c(l-aj).

a — x a + x

32 ÷ _ Ji
√(aj-2α} + ^(« +2α) ~ 2α *

33. 7(x+ 8)-√(a3+ 3) = 7∞∙
34. J{x + 3)+ J{x + 8) = 5 Jx.

„ x^~a^ x^ + a* 34
a:® + x^ — 15 ‘

3 β∙ J{a + bx'''} -Ja = c J(bx''}.

Z1. J{χ + '^}-Jx=^(^ + ^.

38. a:^ + i_a^-i = 0. 39.
a:' a" 931 x^-a'^ '

J{x^ +1)- √(a≈≡- 1) ÷ J{χ^+ 1) + J(x^-Y) - 4 √(a≈ - 1).

41 ≈'-4aJ a;"-l θ. . a^+x^ - χ<>
03-.4 03+i a + x a — x

43. ^(1 - χ∙ + χ'^') - ^(1 + 33 + X≡) = 7Zi.

44. ~^} sc-J{χ^- 1) _

^5. J{x^ - 3α33 + α≡) + J{χ^ + 3ax + a^} = + 2b^).

“■ √e-)-⅛'

47. ∙¾'(ai'÷>)-i(^χ + ⅛∕a,) = 0.

48. √O3 + √{33-^(l-33)} = l.

49. (ic + α)*-(a3-α)* = 242α∖

50. -5--  =33+ /-.a:’-! ∖J. X

12—2
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180 EXAMPLES OF EQUATIONS, &C. CHAPTER XXI.

51. J(^x^ + ax + δ^) + J{x^ + δic + α*) = α + δ.
25⅞^-16 _ 3 (x^ - 4)
10x + 8 2ic- 4

53. √(2ic+9)+√(3x-15) = √(7a! + 8).

δ5. J{x^+2x-Y) + J{x'' + x+l) = J2 + j3.

5Q. J{x^ + ax-V) + ,J{x^ + bx-l} = JaΛ-Jb.

I÷^w⅞=⅛∙ ∞∙ (-'÷υ(≈÷3)=2∙

59. (a; — d) {x-b')(x-c) + abc = 0.

1θθ∙ η--------τ------“ ΤΊ—2 ∙1 —as 1 +x 1 +a;

θl∙ ---- ' A" "
θ! + α + o x — a + b x + a—b x — a — b

(^a _ a;) (aj + m} _(a + x') {x-m}
x+n x—n

≡≡∙
64. 2a: + 1 + a; J{x^ + 2) + (a: + 1) √(x≡ + 2x + 3) = 0.

65. a:^+3 = 2 √(x≡-2a3 + 2) + 2a.∙.

66. a:®+5x + 4 = 5√(x≡+5x + 28).
x^67. √(a:’-2® + 9)-- = 3-a;.

68. 3a3* + 15x-2√(a3^ + 5x+l) = 2.

69. (a: + 5)(x-2) + 37{x(x+3)} = 0.

70. a:’+3-7(2x^-3x + 2) = |(a:+l).

71. a:(a;+l) + 3 7(2x’+6a: + 5) = 25-2a:.
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EXAMPLES OF EQUATIONS, &C. CHAPTER XXI. 181

72. a;’ - 2 √(3aj≡ - 2αx + 4) + 4 = ⅞ (χ + → 1). 
o I⅛

x^-x + ZJ(2x^-2,x + 2} = ^ + 7.

H. τ---- ----- .^ = 5-x-x∖i + α + £C
75. (aj + a) (^x + 2α) (x + 3α) (a: + 4α) = c*.

76. 16ic (a3+1) (a; + 2) (ic + 3) = 9.
α≡ + αaj + iκ≡

∙∙- ⅛ = -2∙ ‘δ∙ α = aJ +(l -X).a — ax + ιc V?
79. x*-2x^+x = a. 80. £c*—2xθ +a; = 132.

81. Jx + J(x + 7) + 2J{x^+↑x) = ^5-2x.

82. a:®— 8 (a;+ 1) Jx+ 18x + 1 = 0.

83. 2 (x^ + ax')- + Jx + J{a + x) = b- 2x.

84. a;* +2a;’—lla:®+4ic +4 =0.

85. x^ + ia^x = a^.

86. x^ + ax^ + bx^ + cx+ =a^

·’■ >-√(∙'3√('∙3∙

1 z 1∖ 14288. a:’' + —2 + 2 (ic + -) = .X ∖ a:/ 9

■’· √(-3-√(>-3-⅛-

91. x’+l = 0. 92. iix’ + a; + n+1 =0.

93. (a;—2) (ic —3) (a; —4) = 1.2.3.
94. (a:-l)(x-2)(a:-3)-(6-1)(6-2)(6-3) = 0.

95. <x-l')lx-2){x-S) = 2i.
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182 EXAMPLES OF EQUATIONS, &C. CHAPTER XXI.

96. 6«®- 5ic* + £c = 0, 97. + a;®- 4x- 4= 0.

98. -+- + -=1+-+-.a X α a a
99. 8ic’+16a;-9. 100. √-Λ=l⅜.

3a;
101. x{x^ —2') = m {x^ + 2-zna; + 2).

102. (a;® — {x + a) b + (α + b) a; + {b^ — x^) ψ -∖- x) a = 0.

103. x^ + px^ + — 1 + a; + 1 = 0.

104. (j9 — 1)®®’+2>x∙*+— 1+^-^^ a; + 1 = 0.

105. 3x-’+8a;^-8x®=3.

XXII. THEORY OF QUADRATIC EQUATIONS AND 
QUADRATIC EXPRESSIONS.

334. Λ quadratic equation cannot have more than two roots.

If possible let three different quantities α, β, y be roots of 
the quadratic equation ax~ + δa! + c = 0; then, by supposition,

αα® + δα + c = 0, aβ^ + bβ + c = 0, αγ® + δγ + c = 0.

By subtraction,
α(α*-j8≡) + δ(α-^) = 0j

divide by α - /3 which is, by supposition, not zero; thus
α (α + /3) + δ = 0.

Similarly we have α (α + γ) + δ = 0.
By subtraction, a(β — y) = Q;

this however is impossible, since by supposition a is not zero, and 
β-y 13 not zero. Hence there cannot be three different roots 
to a quadratic equation.

www.rcin.org.pl



THEORY OP QUADRATIC EQUATIONS, &C. 183335. In a quadratic equation where the coefficient of the first 
term is unity, the sum of the roots is equal to the coefficient of the 
second term with its sign changed, and the product of the roots is 
equal to the last term.For the roots of ax^ + δaj + c = 0 are
hence the sum of the roots is --, and the product of the roots is ά---- 2.. And by dividing by a the equation
may be written x^ + — + = 0; and thus the proposition is esta­blished.336. Let a and β denote the roots of the equation

ά cthen a + β =---- and aβ = -. These relations are useful ina afinding the values of expressions in which a and β occur in a symmetrical manner. For example,

337. We have
δ c ,now put for - and - their values in terms of α and β : thus 
a a

Thus the expression ax^ -^bx + c is identical with the expres­
sion a{x-d}{x-βy, that is, the tw’o expressions are equal for all values of a;.
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184 THEORY OF QUADRATIC EQUATIONSHence we can prove the statement of Art. 334 in another manner. For no other value of x besides α and β can make (a; — a) (x — β) vanish; since the product of two quantities cannot vanish if neither of the quantities vanishes.The student may naturally ask if the identity
holds in those cases alluded to in Art. 323, where the roots of 
ax‘ + bx + c = Q are impossible; we shall return to this point in another chapter.338. The student must be careful to distinguish between a 
quadratic equation and a quadratic expression. In the quadratic 
equation ax^ + bx + c = 0 we must suppose x to have one of two definite values, but when we speak of the quadratic expression α,τ* + bx + c, without saying that it is to be equal to zero, we may suppose X to have any value we please,339. We have

Now first suppose that 6’ — 4αc is negative; then isalso negative; hence + necessarily positivefor all real values of x. In this case, ax^ Λ∙bx + c being equal to the product of a into some positive quantity must have the same sign as a. Thus if δ* — 4αc be negative, ax^ +bx + c has the same sign as a for all real values of x.Next suppose that b*- 4ac is zero; then
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AND QUADRATIC EXPRESSIONS. 185Here, as before, arc® -∖-bx + c has the same sign as a; in this case the expression cw;’ + bx + c is a perfect square with respect to X. and its square root is
Lastly, suppose that b^ — 4αc is positive; then 

where α and are both real quantities, namely.
The expression α(x — α) (a? —/3) must have the same sign as 

a except when one of the factors x — a and x-β is positive, and the other is negative; and we shall now shew that this can only be the case when x lies in value between α and β. Of the two quan­tities a — β and β-a one must be positive; suppose the former, so that α is algebi'aically greater than /3. Now if x is algeb^'aically 
greater than α, then a? — α is positive, and therefore also x — β is positive, and if x is algebraically less than jS, then x — β is negative, and therefore also a? —α is negative. But if x lies be­tween a and then cc — α is negative, and x — β is positive. For such a value of x the sign of the expression ax^ + bx + c is the contrary to the sign of a.The conclusion of the investigation of the three cases is this; 
ax^ -i-bx + c and α never differ in sign, except when the roots of aa? + δic + c = 0 are possible and different, and x is taken so as to lie between them.340. The roots of 
and the roots of
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186 THEORY OF QUADRATIC EQUATIONSIt is obvious that the latter roots are the same as the former with their signs changed. Hence if two quadratic equations differ only in the sign of the second term, the roots of one may be obtained by changing the signs of the roots of the other.341. Suppose we divide ax* + bx + c by χ — Ίι. The first term of the quotient is ax, and the next term ah + Z>, and there is a remainder ah^ Λ-bh + c. If this remainder vanish, so that αA* + bh + c = 0, then h is a root oi the equation ax^ + bx + c=0. Thus the expression ax^ + bx+ c is divisible by x — h only when A is a root of the equation a,x^ + δic + c = 0.342. Some particular cases of the equation ax^ + bx + c 0 may now be investigated. The roots of the equation are 
we will first examine the results of supposing α = 0.The numerator of the first root becomes —b+b, that is, 0; thus this root takes the form . The numerator of the second- 2Aroot becomes — 2b; thus this root takes the form . If in the original equation we put α = 0, it becomes bx + c = Q, so that x = — ; and we may arrive at this result from the expression which takes the form 2 by a suitable transformation. For mu Ι­Ο• 1 1 1 11 ∙ X r -b + J{b^—A:ac\.tιply both numerator and denominator oi------ ' ---------- by_+ ~ obtain , and if wo now. 1 1. ∙ ~ 2c , . — c - —b—Jib*—A^ac)put α = 0, we obtain , that is, -γ- . If the root ------- --------------2b b 2abe transformed by multiplying its numerator and denominator by-2c
b - ,J(b* - 4αc) it becomes -—, and the smaller a i.s
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AND QUADRATIC EXPRESSIONS. 187the smaller is the denominator of this fraction, and the greater the fraction itself. Thus we may enunciate our results as follows; in the equation aa? + bx + c = 0, if α be very small compared with 
b and c, one of the roots is very large and the other is nearly equal to — , and the smaller a is, the larger one root becomes, and the nearer the other approaches to — .

343. Next suppose both a and b to be zero; then the ordi­nary expressions for both roots take the form By trans­forming the roots as in the preceding article, we shall see that when a and b are both small compared with c, both roots are very large, and become greater the smaller a and b are.344. Lastly, suppose a, b and c to be zero; then the roots take the form . In this case, if we transform the roots as in Art. 342, we shall still obtain the form ; we may say here that the value of x is really indeterminate.345. We will give an example of the application of the results of Art. 339. _ 2⅛c I 21.Let it be required to ascertain if the fraction —7:-----r:— canox —14 assume any value we please by suitably choosing the value of x.

PutthereforethereforeBy solving the quadratic we obtain
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188 EXAMPLES. CHAPTER XXII.Hence if x is to be real the quantity 9y’—8y—20 must be positive; that is, 9 (y — 2) + must be positive. Therefore 7/ cannot lie between 2 and — ~ , but may have any other value. We conclude then that by suitably choosing the value of x, the.ic* - 2aj+21 fraction ———— may have any value we please, except values between 2 and — .
EXAMPLES ON THE THEORY OF QUADRATIC EQUATIONS AND 

QUADRATIC EXPRESSIONS.Resolve the following four quadratic expressions into the pro­duct of simple factors :1.2.3.4.5.6.
7.8.9.

Form the quadratic equation whose roots are 6 and 8. Form the quadratic equation whose roots are 4 and 5.Form the quadratic equation whose roots are 1 and — 2. Form the quadratic equation whose roots are 1 ± J5.Find the sum, difference, and product of the roots of
10. For what value of m will the equation 2a:’ + Sx + m = 0have equal roots Ί11. If α and /3 be the roots oix*-px + q = 0, find the valueof + - and of a’ +

P
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EXAMPLES. CHAPTER XXΠ. 18912. If α and β be the roots of ax^ + bx + c = Q, construct theequation whose roots are - and .13. Shew that the roots of x^+j)X + q=0 will be rational if
p = k + where p, q, k are any rational quantities.14. Shew that if αaj^+δic + c = θ and α'χ∙* + δ'χ + c'= 0 havea common root, then (α'c — αc')^ = {a'h — ab'} (b'c — cb').

2x-715. If a: be real, prove that ----- — can have no realvalue between and 1.16. If/) be greater than unity, then for all real values of xiC** “ 2k%∕ 99 ~ 1the expression lies between ------∑ anda; + 2a;+/) ∕> + 1/)+1/9-1*
XXIII. SIMULTANEOUS EQUATIONS INVOLVING QUADRATICS.

346. We will now give some examples of simultaneous equa­tions where one oi' more of the equations may be of a degree higher than the first; various artifices are employed, the proper application of which must be learned by experience.(1) SupposeFrom the second equation y=20-a;; substitute in the first, thus 
therefore therefore
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190 SIMULTANEOUS EQUATIONS INVOLVING QUADRATICS.From this quadratic we shall obtain a? = 13 or 67 ; then from the equation y = 20 — x we obtain the corresponding values of y, namely, y=l or — 47.(2) SupposeHere ' 
therefore, by addition.
that is, thereforeSimilarly, by subtraction.
thereforeWe have now four cases to consider; namely.

Ey solving these simple equations we obtain finally
(3) SupposeLet y = vx, and substitute in both equations; thus 

from the former,
firom the latter.
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SIMULTANEOUS EQUATIONS INVOLVING QUADRATICS. 191

hence therefore therefore
' 5 13From this quadratic we shall obtain v = or —. Take the 

ά 01 θ former value of v : then x* = -=—7 = 9 ; therefore £c = ± 3 ; and
y = vx = ^^. Again, taking the second value of v we have 2 25 . „ 5 , 13a: =-θ ; thereiore, a; = ÷ — ; and y = ±-,The artifice here used may be adopted conveniently λvhen the equations are homogeneous and of the same degree.(4) SupposeBy division, 
that is,orNow since 
therefore thereforeBy substituting the values of x* + y* and x^ + y^ obtain 
that is,From this quadratic we can find two values of xy, let c denote one of these values, then we have

x + y≈a, xy = c∖
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192 EXAMPLES. CHAPTER XX1Π.thus that is, thereforeThus since £c + 2/ and x — y are known, we can find immedhcely the values of x and y.Or we may proceed thus. Assume x — y = z, then snce 
X + y = a, obtain

Substitute in the second of the given equations; thus 
thereforeFrom this quadratic we may find z^, and hence z, that is, 
X — y; and hence finally x and y.ΔIore examples will be found in Chapter liv.

EXAMPLES OF SIMULTANEOUS EQUATIONS INVOLVING QUADKATI(S.1.2.3.4.5.6.
7.9.10.11.
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EXAMPLES. CHAPTER XXIΠ. 19312.13.14.15.16.17.18.19.20.
21.22.23.24.
25.26.
27.28.29.30.31.32.33.

τ. A. 13
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194 EXAMPLES. CHAPTER XXIII.34.35.36.
37.38.
39.40.41.
42.
43.44.45.46.47.48.49.50.51.52.
53.
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EXAMPLES. CHAPTER XXIII. J 9554.55.
56.

57.

58.

59.60.61.62.63.
64.
65.66.
67.

68.
69.
70.
71.

13—2
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196 EXAMPLES. CHAPTER XXIII.72.73.
74.
75.76.
77.78.
79.

XXIV. PROBLEMS PRODUCING QUADRATIC EQUATIONS.347. We shall now solve and discuss some problems which lead to quadratic equations.A man buys a horse which he sells again for £24; he finds that he thus loses as much per cent. a.s the horse cost; required the price of the horse.Let £c denote the price in pounds; then he loses sc per cent.and thus his total loss is × x, that is, ; but this loss is100 ’ iυθalso 33 — 24; thus
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PROBLEMS PRODUCING QUADRATIC EQUATIONS. 197therefore an<l hence andThus all we can infer is, that the price was either ^60 or ,£40, for each of these values satisfies all the conditions of the problem,
348. Eivide the number 10 into two parts, such that their product shall be 24.Let X denote one part, and therefore 10 —x the other part; then 

therefore and hence andHere although x may have either of two values, yet there is only one mode of dividing 10, so that the product of the two parts shall be 2 4; one part must be 4 and the other G.
349. A person bought a certain number of oxen for ^£80; if he had bought 4 more for the same sum each ox would have cost £l less; find the number of oxen and the price of each.80Let X denote the number, then — is the price of each; if he a; 80 had bought 4 more, the price of each would have been - ; thus, by supposition.

therefore 
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198 PROBLEMS PRODUCINGtherefore and hence and Only the positive value of x is admissible, and thus the number of oxen is 16, and the price of each ox is £5.In solving problems, as in the proposed example, results will sometimes be obtained which do not a∣>ply to the question actually proposed. The reason appears to be that the algebraical mode of expression is more general than ordinary language, and thus the equation, which is a proper representation of the conditions of the problem, will also apply to other conditions. Experience will convince the student that he will always be able to select the result which belongs to the problem he is solving, and that it will be sometimes possible, by suitable changes in the enunciation of the original problem, to form a new problem, coιτesponding to any result Λvhich was inapplicable to the original problem. Thus in the present case we may propose the following modification of the oι∙iginal problem; a person sold a certain number of oxen for £80; if he had sold 4 fewer for the same sum, the price of each ox would have been £1 more; find the number of oxen and the price of each.Let X represent the number; then by the question we shall have
The roots of this quadι∙atic will be found to be 20 and — 16; thus the number 20 which appeared with a negative sign as a result in the former case, and was then inapplicable, is here the admissible result.350. Find a number such that twice its square increased by three times the number itself may amount to 65.
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QUADRATIC EQUATIONS. 199Let X denote the number; then, by the question, 13The roots of this quadratic will be found to be 5 and —; the former value satisfies the conditions of the question. In order to interpret the second, we observe, that if we write — x for x in the equation, it becomes 
and the roots of the latter equation are -θ- and — 5, as will be13 found on trial, or may be known from Art. 340. Hence is the answer to a new question, namely: find a number such that twice its square diminiahed by three times the number itself may amount to 65.351. Divide a given line into two parts, such that twice the square on one part may be equal to the rectangle contained by the whole line and the other part.Let a denote the length of the line, and x the length of one part, then a — xi& the length of the other part; thus, by the question.
therefore and
and
hence
andHere is the required length. The negative answer sug- gests the following problem: produce a given line, so that twice the square on the part produced may be equal to the rectangle
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200 PROBLEMS PRODUCINGcontained by the given line, and the line made up of the given line and the part produced; the result is, that the part produced must be equal to the given line.352. In the examples hitherto given, both roots of the quad­ratic equation have applied to the actual problem, or to an allied problem which was easily formed. Frequently, however, it will be found that only one root applies to the problem proposed, and that no obvious interpretation occurs for the other.353. Problems may be proposed which involve more than one unknown quantity, and thus lead to simultaneous equations; we will give an example.Two men A and B sell a quantity of wheat for <£28. 8⅛. 
B sells four quarters more than A, and if he had sold the quan­tity A sold, would have received <£10 for it; while A would have received 16 guineas for what B sold. Find the quantity sold by each, and the rates at which they sold it.Let X denote the number of quarters which A sold, and there­fore x + 4: the number which B sold; and suppose that A sold his wheat at y shillings per quarter, and that B sold his at z shillings. Then since the value of the wheat sold is 568 shillings, we have..........(1).If B had sold the quantity A sold, he would have received 200 shillings; thus

xz = 2QQ ...............................................................(2).Similarly, (a? + 4) y = 3 36 ............................................................ (3).From (3) we have ary = 336 — 4y; by substitution in (1) wβ have 336-4y + 200 + 4s = 568;therefore 4 (« — y) = 32,and rg —- ....∙y..................... (4).
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QUADRATIC EQUATIONS. 201From (2) we have
and from (3) we have
thus
and ....(5).We may now find y and z from (4) and (5). Substitute in (5) the value of z from (4); thus
thereforehenceFrom this quadratic we shall find y = 42 or — 16. The former i⅜ the only admissible result; thus « = 50; and x= 4.

EXAMPLES OF PROBLEMS.1. Find two numbers such that their sum may be 39, and the sum of their cubes 17199.2. A certain number is formed by the product of three con­secutive numbers, and if it be divided by each of them in turn, the sum of the quotients is 47. Find the number.3. The length of a rectangular field exceeds the breadth by one yard, and the area is three acres; find the length of the sides.4. A boat’s crew row 3∣ miles down a river and back again in 1 hour, 40 min.; supposing the river to have a current of 2 miles per hour, find the rate at which the crew would row in still water.
www.rcin.org.pl



202 EXAMPLES OF PROBLEMS. CHAPTER XXIV.

5. A farmer wishes to enclose a rectangular piece of land to contain 1 acre 32 perches with 176 hurdles, each two yards long; how many hurdles must he place in each side of the rectangle 16. A person rents a certain number of acres of land for £84; he cultivates 4 acres himself, and letting the rest for 10⅛'. an acre more than he pays for it, receives for this portion the whole rent, £84. Find the number of acres.<7. A person purchased a certain number of sheep for £35: after losing two of them he sold the rest at 10 shillings a head more than he gave for them, and by so doing gained £1 by the transaction. Find the number of sheep he purchased.8. A line of given length is bisected and produced; find the length of the produced part so that the rectangle contained by half the line and the line made up of the half and the produced part may be equal to the square on the produced part.9. The product of two numbers is 750, and the quotient when one is divided by the other is 3⅛; find the numbers.10. A gentleman sends a lad into the market to buy a shil­ling’s worth of oranges. The lad having eaten a couple, the gentleman pays at the ι∙ate of a penny for fifteen more than the market-price; how many did the gentleman get for his shilling?11. What are eggs a dozen when two more in a shilling’.s worth lowers the price one penny per dozen?12. A shilling’s worth of Bavarian kreuzers is more nume­rous by 6 than a shilling’s worth of Austrian kreuzers; and 15 Austrian kreuzers are worth 1<Z. more than 15 Bavarian kreuzers. How many Austrian and Bavarian kreuzers respectively make a shilling?13. Find two numbers whose sum is 9 times their difierence, and whose product is equal to twelve times their quotient together with the greater number.14. Two workmen were employed at different wages, and paid at the end of a certain time. The first received £4. 16s.,
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EXAMPLES OF PROBLEMS. CHAPTER XXIV. 203 and the second who had worked for 6 days less received <£2. 14⅛. If the second had worked all the time and the first had omitted 6 days they would have received the same sum. How many days did each work, and what were the wages of each ?15. A party at a tavern spent a certain sum of money. If there had been five more in the party, and each person had spent a shilling more, the bill would have amounted to £6. If there had been three less in the party, and each person had spent eight­pence less, the bill would have been £2. 12s. Of how many did the party consist, and what did each spend 116. A person bought a number of £20 railway shares when they were at a certain rate per cent, discount for £1500; and afterwards when they were at the same rate per cent, premium sold them all but 60 for £1000. How many did he buy, and what did he give for each of them 117. Find that number whose square added to its cube is nine times the next higher number.18. A person has £1300, which he divides into two portions and lends at different rates of interest, so that the two portions produce equal returns. If the first portion had been lent at the second rate of interest it would have produced £36, and if the second portion had been lent at the first rate of interest it would have produced £49. Find the rates of interest.19. A peι∙son having travelled 56 miles on a railroad and the rest of his journey by a coach, observed that in the train he had performed of his whole journey in the time the coach took to go 5 miles, and that at the instant he arrives at home the train must have reached a point 35 miles further than he was from the station at which it left him. Compare the rates of the coach and the train.20. A sets off from London to York, and at the same time from York to London, and they travel uniformly; A reaches York 16 hours, and £ reaches London 36 hours, after they have met on the road. Find in what time each has performed the journey.
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204 EXAMPLES OF PROBLEMS. CHAPTER XXIV.

21. A courier proceeds from one place P to another Q in 14 hours; a second courier starts at the same time as the first from a place 10 miles behind P, and arrives at Q at the same time as the first courier. The second courier fiuds that he takes half an hour less than the first to accomplish 20 miles. Find the distance of Q from P.22. Two travellers A and B set out at the same time from two places P and Q respectively, and travel so as to meet. When they meet it is found that A has travelled 30 miles more than B, that A will reach Q in 4 days, and B will reach in 9 days, after they meet. Find the distance between P and Q.23. A vessel can be filled with water by two pipes; by one of these pipes alone the vessel would be filled 2 hours sooner than by the other; also the vessel can be filled by both together in IJ hours. Find the time which each pipe alone would take to fill the vessel.24. A vessel is to be filled with water by two pipes. Tho first pipe is kept open during ~ of the time which the second Λvould take to fill the vessel; then the first pipe is closed and the second is opened. If the two pipes had both been kept open together the vessel would have been filled 6 hours sooner, and the first pipe would have brought in ∣ of the quantity of water which the second pipe really brought in. How long would each pipe take to fill the vessel?25. A certain number of workmen can move a heap of stones in 8 hours from one place to another. If there had been 8 more workmen, and each workman had carried 5lbs. less at a time, the whole work would have been completed in 7 hours. If however there had been 8 fewer workmen, and each had carried 11 lbs. more at a time, the work would have occupied 9 hours. Find the number of workmen and the weight which each carried at a time.
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IMAGINARY EXPRESSIONS. 205

XXV. IMAGINARY EXPRESSIONS.354. Although the square root of a negative quantity is the symbol of an impossible operation, yet these roots are frequently of use in Mathematical investigations in consequence of a feΛv conventions which we shall now explain.355. Let a denote any real quantity; then the square rootsof the negative quantity—a® are expressed in ordinary notation by a®). Now —a’ may be considered as the product ofa’ and — 1 ; so if we suppose that the square roots of this product can be formed, in the same manner as if both factors were posi­tive, by multiplying together the square roots of the factors, the square roots of —a* will be expressed by ÷α ,/(-1). We may therefore agree that the expressions ± V(~ 1)be considered equi\’alent. Thus we shall only introduce one imaginary expression into our investigations, namely, ,/(— 1).35G. Suppose we have such an expression as where α and β are real quantities. This expression may be said to consist of a real part α and an imaginary part β ^/(- 1); or on account of the presence of the latter term we may speak of the whole expression as imaginary. When β is zero, the term 
β∣J(- 1) is considered to vanish; this may be regarded then as another convention. If α and β are both zero, the whole expres­sion vanishes, and not otherwise.357. By means of the conventions already made, and the additional convention that such terms as β 1) shall be subject to the ordinary rules which hold in Algebraical transformations, we may establish some propositions, as will now be seen.358. In order that two imaginary expressions may be equal, it is necessary and sufficient that the real parts should be equa∖ and that the coefficients of v^(-l) should be equal.
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206 IMAGINARY EXPRESSIONS,For supposethen, by transposition,
thus, by Art. 356, andthat is.Thus the equation 
may be considered as a symbolical mode of asserting the two equalities α = γ and β = δ in one statement.359, Consider now two imaginary expressions α + ^√(-υ and γ + δ^(-1), and form their sum, difference, product, and quotient.Their sum is

If the second be taken from the first, the remainder is
Their product is

for , is by supposition — 1.The quotient obtained by dividing the firτst by the second is
This may be put in another form by multiplying both numerator and denominator by γ - δ √(- 1). The new numerator is thus 
and the new denominator is γ*+ δ®; therefore
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IMAGINARY EXPRESSIONS. 207360. We will now give an example of the way in which imaginary expressions occur in Algebra.· Suppose we have to solve the equation ic’= 1. We may write the equation thus, 
or in factors,Thus we satisfy the proposed equation either by putting 
X — 1 —■ 0, or by putting £c* + χ + 1 = 0. The first gives x=l; the second may be written 
therefore 
therefore 
andThus we conclude that if either of the imaginary expressions last written be cubed, the result will be unity. This we may verify; take the upper sign for example, then

Now

Thus the result is unity.
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208 IMAGINARY EXPRESSIONS.If £C®=1, we have ic = (l)⅛j it appears then that there arc three cube roots of unity, namely, 1 and
361. We have seen in Art. 337, that the quadratic expression 

ax* + bx-^c is always identical with a (pc -p}(x — q), where p and q are the roots of the equation ax* + δic + c = 0. If the roots are imaginary, p and q will be of the forms α±^^(-1); thus we have then
This will present no difficulty when we remember the conven­tion that the usual algebraical operations are to be applicable to the term β ,J{-1). For the second side of the asserted iden­tity is 

and from the values of α and β we have 
thus the second side coincides with the first.362. Two imaginary expressions are said to be conjugate when they only differ in the sign of the coefficient of ^/(- 1). Thus 
a + β J(^- 1) and α — β ^(- 1) are conjugate.Hence the sum of two conjugate im.αglnary expressions i.s real, and so also is their product. In the above examj)le the sum is 2α, and the product is a’ + β*.363. The positive value of the square root of a* + β* is called the modulus of each of the expressions

From this definition it follows that the modulus of a real quantity is the numerical value of that quar tity taken positively.
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IMAGINARY EXPRESSIONS. 209In order that the modulus + ∕3^) may he zero, it is neces­sary that α = 0 and β = 0; in this case the expressions 
become zero. And conversely, if these expressions vanish, then α = 0 and yS = 0, and thus the modulus becomes zero.

364. If two imaginary expressions are equal, their τnodvH are equal. It is not however necessarily true, that the expressions are equal if the moduli are equal.365. The modulus of the product of α + ^(-1) andγ + δ√(-l) is
But thus the modulus is

Hence the modulus of the product of two imaginary expres­sions is equal to product of their moduli.Therefore the product of two imaginary expressions cannot vanish if neither factor vanishes.It will follow from this that the modulus of the quotient of two imaginary expressions is the quotient of their moduli. This can also be shewn by forming the modulus of the expression for the quotient given in Art. 359.366. It is often necessary to consider the powers of ^(- 1). ΛVe may form them by successive multiplication: thus.
If we proceed to obtain higher poweι∙s we shall have a recur­rence of the results ^(-1), —1, — ^(-1), 1. We may then express all the powers by four formula). Fur every whole number τ. A. 14
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210 IMAGINARY EXPRESSIONS.must be of one of the four forms 4n, 4?i + 1, 4n + 2, 4n + 3, accord­ing as it is exactly divisible by 4, or leaves when divided by 4 a remainder 1, 2, 3, respectively. And
367. The square root of an imaginary expression of the form 

a + β 1) may be expressed in a similar form.For letthenHence, by Art. 358,
thereforethus

....(1),....(2);

....(3).From (1) and (3) we obtain
henceSince the values of x and ι∕ are supposed real, £c® + y® is posi­tive, and thus the positive sign must be ascribed to the quantity 
J(ff + )8®). And since the values of x and y must satisfy the equation 2xy = β, they must have the same sign if β be positive, and different signs if β be negative. On account of the double signs in the values of x and y, we see that α + ^ ^(- 1) has two square roots which differ only in sign.368. We may obtain the square roots of ÷ J(- 1) by sup­posing that α = 0 and /3 = ÷ 1 in the results of the preceding article. Thus we shall obtain
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MISCELLANEOUS EXAMPLES. CHAPTER XXV. 211If we suppose that z* = -l, we deduce ;2:®ξ=± 1); thus
z = d= ^{± 1)}. And since z* = -l, we have z = {-1)^. Thusthere are four fourth roots of — 1, namely, the four expressions contained in ± ——. There are also four fourth roots of 1,since if we put z*=l, we find «“ = ±1, and z = ∙^Jl c>r 
z=^ J(ς- 1). Similarly there are eight eighth roots of 1 or — 1, and so on.

MISCELLANEOUS EXAMPLES.

1. Simplify2. shew that
3. Shew that

4. Shew that if α + δ + c is zero the following expression is also zero,
14—2
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212 MISCELLANEOUS EXAMPLES. CHAPTER XXV.5. If the square root of the product of two quantities is rational, shew that the square root of the quotient obtained by dividing one by the other is also rational.6. Extract the square root of
7. Express in the form, of the sum of two simple surds the roots of the equation
8. Express in the form of the sum of two simple surds the roots of the equation
9. By performing the operation for extracting the square root, find a value of x which will make 

a perfect square.10. Shew that if 
be a perfect square, the coefficients satisfy the relations

11. If the values of ic, y, x', y' be all possible, and 
shew that12. Shew that the equation 
is equivalent to the two
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MISCELLANEOUS EXAMPLES. CHAPTER XXV. 21313. A man sells a horse for £24:. 12s., and loses 18 per cent on what the horse cost him; what was the original cost 114. Divide the number 16 into three such parts that the difference of the two less shall be the square root of the greatest, and the difference of the two greater shall be the square of the least.15. Shew that 
is equal to 2 if n be a multiple of 3, and equal to — 1 if n be any other integer.Solve the following equations:16.

17.
18.19.20.21.22.23.
24.
25.
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214 MISCELLANEOUS EXAMPLES. CHAPTER XXV.26.
27.
28.

XXVI. RATIO.369. Ratio is the relation which one quantity bears to another with respect to magnitude, the comparison being made by considering what multiple, part, or parts, the first is of the second.Thus in comparing 6 with 3, we observe that 6 has a certain magnitude wdth respect to 3, which it contains twice; again, in comparing 6 with 2, we see that 6 has now a different relative magnitude, for it contains 2 three times; or 6 is greater when ∞mpared with 2 than it is when compared with 3.370. The ratio of α to δ is usually expressed by two points placed between them, thus, a : δ; and the former is called the 
antecedent of the ratio, and the latter the consequent of the ratio.371. A ratio is measured by the fraction which has for its numerator the antecedent of the ratio, and for its denominator the consequent of the ratio. Thus the ratio of α to ό is measured by ; then for shortness we may say that tJie ratio of a to b is 
equal to , or is β.
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RATIO. 215372. Hence we may say that the ratio of α to ό is equal to
373. If the terms of a ratio be multiplied or divided by the same quantity the ratio is not altered.For
374. We may compare two or more ratios by reducing the fractions which measure these ratios to a common denominator. Thus suppose one ratio to be that of α to δ, and another ratio to be that of c to d; then the first ratio r=^. and the second

b bd
C l)G ∙ratio = . Hence the first ratio is greater than, equal to, orless than, the second ratio, according as ad is greater than, equal to, or less than be.375. A ratio is called a ratio of greater inequality, of less 

inequality, or of equality, according as the antecedent is greater than, less than, or equal to, the consequent.376. A ratio of greater inequality is diminished, and a ratio 
of less inequality is increased, by adding any quantity to both 
terms of the ratio.Let the ratio be , and let a new ratio be formed by adding
X to both terms of the original ratio; then is greater or less

b + Xthan , according as b (α + x} is greater or less than a (δ + x};that is, according as xb is greater or less than xa, that is, accord­ing as ό is greater or less than a.

ΖΊ1. A ratio of greater inequality is increased, and a ratio of 
less inequality is diminis1ied, by taking from both terms of the ratio 
any quantity which is less than each of those terms.
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216 RATIO.

Let the ratio be and let a new ratio be formed by taking 
X from both terms of the original ratio; then is greater orless than , according as b(a-x) is greater or less than σ(δ — x∖ that is, according as bx is less or greater than ax, that is, accord­ing as b is less or greater than a.

Z1S. If the antecedents of any ratios be multiplied together and also the consequents, a new ratio is obtained, which is said to be compounded of the former ratios. Thus the ratio ac : bd is said to be compounded of the two ratios a : b and c : d.

379. The ratio compounded of two ratios is sometimes called the sum of those two ratios. When the ratio α : δ is compounded wjth itself, the resulting ratio a^ : b^ is sometimes called the 
double of the ratio α : b. Also the ratio : b^ is called the triple of the ratio a : b. Similarly, the ratio a : b is sometimes saidi- ito be half oι the ratio a’ : b^, and the ratio α" ; b" is sometimes said to be — th of the ratio a : b.

nThis language, however, is now not much used, though the following terras in conformity with it are still retained. The ratio a® : δ’ is said to be the duplicate ratio of a : δ, and the ratio α≡ : δ® the triplicate ratio of α : δ. Similarly, the ratio 
Ja : Jb is called the subduplicate ratio of α : δ, and the ratio 
Ija : l/b the subtriplicate ratio of α : δ. And the ratio : δ^ is called the sesquiρlicate ratio of α : δ.380. If the consequent of tlte preceding ratio be the antecedent 
of the succeeding ratio, and any number of such ratios be taken, the 
ratio which arises from their composition is that of the first antece­
dent to t1ie last consequent.Let there be three ratios, namely α : δ, δ : c, c ; d', then the compound ratio, is α×δ×c :δχοχίΖ (Art. 378), that is, a : d.
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217Similarly, the proposition may be established whatever be the number of ratios.381. A rafio of greater iwiqwΛiiy compounded with another 
τrwreases and a ratw of less inegualily compounded wdh another 
diminishes it.Let the ratio x : y be compounded with the ratio a ∙ b' the compound ratio is ∞ : yb, and this is greater or less than the ratio a : b, according as ~ is greater or less than , that is, according as ic is greater or less than y,382. If the difference between the antecedent and the consequent 
of a ratio be small compared with eitJwr of them, the ratio of tlteir 
squares is nearly obtained by doubling this difference.Let the proposed ratio be a x : a, where x is small compared with a then a^ + 2ax + χ^ : a® is the ratio of the squares of the antecedent and consequent. But x is small compared with a, and therefore v? or x × x is small compared with 2α × x, and much smaller than α × α. Hence a’ + 2aa: : a^, that is, a + 2x ∙. a, will nearly express the ratio (a + xf : al.Thus the ratio of the square of 1001 to the square of 1000 is nearly 1002 : 1000. The real ratio is 1002Ό01 : 1000, in which the antecedent differs from its approximate value 1002 only by one-thousandth part of unity.383. Hence we may infer that the ratio of the square root of 
a + 2x to the square root of a is the ratio a + x : a nearly, when 
X is small compared with a. That is; if the difference of two 
quantities be small compared with either of them, the ratio of their 
square roots is nearly obtained by halving this difference.In the same manner as in Art. 382 it may be shewn when x is small compared with a, that a + 3x : a is nearly equal to the ratio 
(a + x^ : a®, and a + 4aj : a is nearly equal to the ratio (α + a?) ‘.a .These results may be generalised by the student when he is acquainted with the Binomial Theorem.
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218 EXAMPLES OF RATIO. CHAPTER XXVI.384. We will place here a theorem respecting ratios which is often of use.Suppose thatthen each of these ratios is equal to
where p, q, r, n are any quantities whatever.thenFor let
thereforetherefore
andThe same mode of demonstration may be applied, and a similar result obtained, when there are more than ihree ratios -3, —.b d J given equal. It may be observed that p, g, r, n are not neces­sarily positive quantities.As a particular example we may suppose n = 1, then we see , . „ α c e ,n, .. , pa -∖- qc + rethat if -=-=-- each of these ratios is equal to ------ z-----b d f pb+qd+rfand then as a special case we may suppose p = q = r, so that each Pl ∙ 1 ∙ ∙ , il + C + βof the given equal ratios is equal to

EXAMPLES OF RATIO.1. Write down the duplicate ratio of 2 : 3, and the sub­duplicate ratio of 100 : 144.2. Write down the ratio which is compounded of the ratios 3 : 5 and 7 : 9.
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EXAMPLES OF RATIO. CHAPTER XXVI. 2193. Two numbers are in the ratio of 2 to 3, and if 9 be added to each they are in the ratio of 3 : 4. Find the numbers.4. Shew that the ratio α : ό is the duplicate of the ratio 
a + c : δ + cifcbea mean proportional between α and δ.5. There are two roads from Λ to £, one of them 14 miles longer than the other, and two roads from £ to G, one of them 8 miles longer than the other. The distances from Λ to B and from B to G along the shorter roads are in the ratio of 1 to 2, and the distances along the longer roads are in the ratio of 2 to 3. Determine the distances.6. Solve the equations

7. Prove that if each of theseratios is equal to supposing not to be zero.
8. then each ofthese ratios supposing a + b + c not to be zero.
9. Shew that if

then
10. be equal, prove that

are equal,and equal to each of the former; and that each fraction
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220 PROPORTION.

XXVII. PROPORTION.385. Four quantities are said to be proportionals when thefirst is the same multiple, part, or parts, of the second, as the third is of the fourth; that is, when = > the four quantitiesα, b, c, d, are called proportionals. This is usually expressed by •saying, α is to ό as c to d, and is represented thus, α : ό :: c : cζ or thus, a : b = c : d.The terms a and d are called the esctreτM8y and b and c the 
means.386. IΓ7ten four quantities are proportionals, the product of 
the extremes is equal to the product of the means.Let a, b, c, d be the four quantities; then since they are pro­portionals V = τ (Art. 385); and by multiplying both sides of u CLthe equation by bd, yf)-Q have ad — be.387. Hence if the first be to the second as the second to the third, the product of the extremes is equal to the square of the mean.388. If any three terms in a proportion are given, the fourth may be determined from the equation ad = be.389. If the product of two quantitie∙s be equal to the product of two others, the four are proportionals; the terms of either product being taken for the means, and the terms of the other product for the extremes. ic δLet xy = ab; divide by ay, thus, - = - ;or 390. then
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PEOPOKTION. 221

Becauseor 391. If four quantifies be proportionals, they are proportionals 
when taken inversely.If thenFor = J divide unity by each of these equal quantities; thus -=^: or b : a :: d : c.

a c

322. If four qxiantilies be proportionals, they are proportionals 
when taken alternately.If a : b :: c : d, then α : c :: δ : c?.T1 lι∙tl
or α : c :: δ : <Z.Unless the four quantities are of the same kind the alter­nation cannot take place; because this operation supposes the first to be some multiple, part, or parts, of the third. One line may have to another line the same ratio as one weight has to another weight, but there is no relation, with respect to magni­tude, between a line and a weight. In such cases, however, if the four quantities be represented by numbers, or by other quantities which are all of the same kind, the alternation may take place.393. Wlwn four quantifies are proportionals, tJte first togetlcer 
with the second is to the second as tlw third together with the fourth 
is to tlw fourth.If a : b :: c : d, then α + δ ∖b :: c-^d : d.For = iwld unity to both sides; thus

rt - c , ,,,. a Λ-b c dy + 1 = -, + I; that IS, —, — = ——; 
b d b a
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222 PROPORTION.or a + δ : δ :: c + d : (ί.This operation is called componendo.394. Also the, excess of the first above tlbe second is to the 
second as tlm excess of the third above t1ie fox(,rth is to t1bβ fourth.For = - ’ subtract unity from both sides; thus 

δ d

or This operation is called dividendo.395. Also the first is to the excess of the first above the second 
as tJbC third is to the excess of the third above the fourth.By the last article, 
also 
therefore orand inversely,This operation is called convertendo.396. When four quantities are proportionals, the sum of the 

first and second is to their difference as the sum of tlve, third and 
fourth is to their difference.IfBy Art. 393, 
and by Art. 394,
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PROPORTION. 223

therefore 
that is, or 397. ∏7tm any number of quantities are proportionals, as one 
antecedent is to its consequent, so is the sum of all tJt,e, antecedents to 
the sum of all the consequents.Let a '.b '.∙. c '. d '.'. e '.f∙,then a :δ ∖∙. a + c + e : b + d +fFor ad = bc, and af=be, (Art. 386),also αδ = δα; hence ab + ad + of— ba + be + be;that is, a (δ + d +f} = b (a + c + e).Hence, by Art. 389, α : δ α + c + e ∙.b-∖-d+f.Similarly the proposition may be established when more quan­tities are taken,398. When four quantities are proportionals, if the first and 
second be multiplied, or divided, by any quantity, as also the third 
and fourth, the resulting quantities will be proportionals.Let a : b :: c : d, then ma : mb ∙.∖ nc ∙. nd.

„ a c „ ma nchor r = -5> thereiore —τ- = —,;0 d mo ndor wα : mb ∖∙. nc ∖ nd.399. If the first and third be multiplied, or divided, by any 
quantity, and also tlte second and fourth, the resulting quantities 
will be proportionals.Let a : b :: c : d, then ma : nb :: me : nd.

a c . ma me , ma mer or - = - ; thereiore -7— = —7-, and = —>;
b d bd ίΛ nd

or ma ∙. nb ∙.∙. me : nd.
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224 PEOPOKTION.400. In two ranks of proportionals, if the corresponding terms 
be ιnulliplied togetJber, the products will be proportionals.Let a : b :: c : d,and e ∙. f :: g '. h,then αe : 0/ :: : dh.For τ- = -, and :2. = y ; therefore yy. = -yf ;b d fh bjdh

oτ ∙ ae ". bf ∙.'. eg ∙. dh.This is called compounding the proportions. The proposition is true if applied to any number of proportions.
401. If four quantities be proportionals, the like powers, or 

roots, of these quantities will be proportionals.Let a : b :: c : d, then α" : b" :: c" : d”.
IFor r = -,> therefore r;: where π may be whole or frac-b d b dtional; thus α" : b” :: c" : d".402. If α : ό :: δ : c, then a '. c ∙.∙. al ∙. b^.Γor multiply by thus j × ×1 r ∙ α* αthat IS, ri = - 5b eor , a ∙. c ∙.∙. a^ '. b*.The three quantities a, b, c are in this case said to be in 

continued proportion.403. Similarly we may shew that if a : b :: b : c :: c : d, then 
a '. d ∙.∙. a^ ∙. b^. Here the four quantities α, b, c, d are said to bo in continued proportion.
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PEOPORTION. 225404. It is obvious from the preceding articles, that if four quantities are proportionals, we may derive from them many other proportions. We will give another example.If a : b :: c : d. then
For thereforeadd n to both sides; thus

Similarly
Hence
that is,or

405. In the definition of Proportion it is supposed that one quantity is some determinate multiple, part, or parts, of another; or that the fraction formed by taking one of the quantities as a numerator, and the other as a denominator, is a determinate fraction. This will be the case whenever the two quantities have any common measure whatever. For let a; be a common measure of a and b, and let a = mx and b = nx∖ then
where m and n are whole numbers.406. But it sometimes happens that quantities are ιncoτzι- menswrαWe, that is, admit of no common measure whatever. If, for example, one line is the side of a square, and another line is

T. A. 15
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226 .pκ0P0κτi0N.tlie diagonal of the same square, these lines are incomr)ien∙surable. In such cases the value of cannot be expressed by any fraction— where m and n are whole numbers; yet a fraction of this kind 
nmay be found which will express the value of to any required 
degree oj accuracy.For let δ = nx, where n is an integer; also let a be greater than mx but less than (τn + 1) a;; then is greaterthan —, but less than Thus the difference between γ

n n band — is less than -. ∙ And since rυx = b, when a: is diminished zi n

n is increased and - is diminished. Hence by taking x small X. aenough, - can be made less than any assigned magnitude, and tlierefore the difference between — and can be made less than 
n bany assigned magnitude.407. If c and tZ as well as a and δ are incommensurable, and if when lies between — and then also lies

0 n n dbetween — and however the numbers wi and n are increased, n nis equal to .For if and are not equal, they must have some assignable difference, and because each of them lies between — and - ,
• n nthis difference must be less than i. But since w may, by sup­

position, be increased without limit, may be diminished without
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PROPORTION. 227limit; that is, it may be made less than any assigned magnitude; therefore and have no assignable difference, so that we may say that Hence all the propositions respecting propor­tionals are true of the four magnitudes a, b, c, d.408. It will be useful to compare the definition of proportion which has been given in this chapter with that which is given in the fifth book of Euclid. The latter definition may be stated thus; four quantities are proportionals when if any equimultiples be taken of the first and third, and also any equimultiples of the second and fourth, the multiple of the third is greater than, equal to, or less than, the multiple of the fourth, according as the multiple of the first is greater than, equal to, or less than, the multiple of the second. We will first shew that the property involved in this definition follows from the algebraical defini­tion.For suppose a : δ c : c?; then therefore ~^~d'Hence pc is greater than, equal to, or less than qd, according as 
pa is greater than, equal to, or less than qb.409. Next we may deduce the algebraical definition of pro­portion from Euclid’s. Let a, b, c, d be four quantities, such that 
pc is greater than, equal to, or less than qd^ according as pa is greater than, equal to, or less than qb, then shall Firstsuppose c and d are commensurable; then we can take p and q such that pc = qd∙, hence, by hypothesis, pa = qb. Thus 
andNext suppose c and d are incommensurable; then we can not find whole numbers p and q such that pc = qd. In this case 15—2
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228 EXAMPLES OF PROPORTION, CHAPTER XXVII.take any multiple of c as pc then since this quantity must lie between some two consecutive multiples of d, suppose it to lie between qd and (g' + 1) d. Thus is greater than unity, and -—- -, is less than unity: therefore —, is greater than — and less 
{q + 1)(/ d pthan , And, by hypothesis, is also greater than unity, and 7—is less than unity, so that r is greater than —((/+1)0 b pand less than . Since these results are true however great p

p and g may be, it follows, by Art. 407, that = ^∙410. It is usually stated that the common algebraical defini­tion of proportion cannot be used in Geometry, because there is no method of representing geometrically the result of the operation of division. Lines can be represented geometrically, but not the abstract number which expresses how often one line is contained in another. But it should also be noticed that Euclid’s definition is rigorous and can be applied to incommensurable as well as to commensurable quantities, while the algebraical definition is, strictly speaking, confined to the latter quantities. Hence this consideration alone would furnish a sufficient reason for the de­finition adopted by Euclid
EXAMPLES OF PROPORTION.1. The last three terms of a proportion being 4, 6, 8, what is the first term 12. Find a third proportional to 25 and 400.3. If 3, fl3, 1083 are in continued proportion, find x.4. If 2 men working 8 hours a day can copy a manuscript in 32 days, in how many days can x men working y hours a day copy it?
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EXAMPLES OF PROPORTION. CHAPTER XXVII. 2295. If X and y be unequal and x have to y the duplicate ratio of X + z to yΛ-z^ prove that « is a mean proportional between x and y.6. If α : δ : σ, then : :: '..~—.
7. If four quantities are proportionals, and the second is a mean proportional between the third and fourth, the third will be a mean proportional between the first and second.8. If
(a + b + c + d} (α - b - c + d} = (a - b + c - d} {a + b - c - d∖ prove that α, b, c, d are proportionals.9. Shew that when four quantities of the same kind are pro­portional, the greatest and least of them together are greater than the other two together.10. Each of two vessels contains a mixture of wine and water; a mixture consisting of equal measures from the two vessels contains as much wine as water, and another mixture consisting of four measures from the first vessel and one from the second is composed of wine and water in the ratio of 2 : 3. Find the proportion of wine and water in each of the vessels.11. Λ and Έ have made a bet, each staking a sum of money proportional to all the money he has. If Λ wins he will have double what J? will have, but if he loses, £ will have three times what Λ will have. All the money between them being £168, determine the circumstances.12. If the increase in the number of male and female crimi­nals be 1∙8 per cent., while the decrease in the number of males alone is 4∙6 per cent., and the increase in the number of females is 9'8; compare the number of male and female criminals re­spectively.
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230 VARIATION.

XXVIII. VARIATION.411. The present chapter consists of a series of propositions connected λvith the definitions of ratio and proportion stated in a new phraseology, which is convenient for some purposes.412. One quantity is said to vary directly as another when the two quantities depend upon each other, and in such a man­ner that if one be changed the other is changed in the same proportion.Sometimes for shortness we omit the word directly^ and say simply that one quantity varies as another.413. Thus, for example, if the altitude of a triangle be in­variable, the area varies as the base; for if the base be increased or diminished, we know from Euclid that the area is increased or diminished in the same proportion. We may express this result by Algebraical symbols thus; let Λ and a be numbers which represent the areas of two triangles having a common altitude, and let £ and b be numbers which represent the bases of these tri-√4 .δangles respectively; then ~ = y ∙ And from this we deduce 
-p= (Art. 392). If there be a third triangle having the same altitude as the two already considered, then the ratio of the num­ber which represents its area to the number which represents its base will also be equal to γ. Put y = τn, then = m and Λ = m£.

0 0 jDHere Λ may represent the area of any one of a series of triangles which have a common altitude, and £ the corresponding base, and m remains constant. Hence the statement that the area varies as the base may also be expressed thus; the area has a constant ratio to the base; by which we mean, in accordance with Article 392, that the number which represents the area bears a constant ratio to the number which represents the base.
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VARIATION. 231We have made these remarks for the purpose of explaining the notation and language which will be used in the present chapter. When we say that A varies as B, we mean that A represents the numerical value of any one of a certain series of quantities, and B the numerical value of the coιτesponding quan­tity in a certain other series, and that A = mB, where m is some number which remains constant for every corresponding pair of quantities.We will give a formal proof of the equation A = niB deduced from the definition of Art. 412.414. If A. vary as B, then A is equal to B multiplied by some 
constant quantity.Let a and b denote one pair of corresponding values of two quantities, and let A and B denote any other pair; then —by .definition. Hence A = B = mB, where w is equal to the constant %.

o415. The symbol ∞ is used to express variation; thus A oc B stands for A varies as B.416. If a: denote any quantity, then - is called the reciprocal of X.One quantity is said to vary inversely as another when the first varies as the reciprocal of the second.Or if A = , where 7zι is constant, A is said to vary inverselyas B.417. One quantity is said to vary as two others jointly when, if the former is changed in any manner, the product of the other two is changed in the same proportion.Or if A = mBC, where m is constant, A is said to vary jointly as B and G. i
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232 VARIATION.418. One quantity is said to vary directly as a second and inversely as a third, when it varies jointly as the second and the reciprocal of the third.Or if A = , where m is constant, A is said to vary directlyGas B and inversely as C.419. 7/Ά cc B and B ∞ 0, then A oc C.For let A = τnB and B = nC, where m and n are constants; then A = mnC, and, as mn is constant, A oc C.420. If Al acG and B oc 0, iΛβw A ± B oc C, αn<∕ ∣^(AB) oc 0.For let A = mG and B = nG, where m and n are constants; then A^B = {m^n)G ', therefore A ± B <χG. Also
J<^AB} = f{mnG^) = G J{mn') ∙, therefore ,J{AB') OC (7.421. If Xoz3G, then 3 and G az .G Jt>14 4For let A = mBG, then □δ = — -7;; therefore B cc — . Simi- 971 C 6larly Coc^,

422. If A. aa-B and Goa ~D, then A.G oc BD.For let A≈'mB and G=nD^ then AG=mnBΩ∖ therefore 
AGazBD.423. If A. oc B, then A"ccB”.For let A = mB, then A^ = m!^B^ ; therefore A^ oc B^.

424. If A. cc'Q^ then AP oc BP, where P is any quantity 
variable or invariable.For let A = τnB, then AP = mBP', therefore APacBP.425. 7∕* A oc B when C is invariable, and A ∞ C when B is 
invariable, then will A oc BG when both B and C are variable.The variation of A depends upon the variations of the two quantities B and G', let the variations of the latter quantities
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EXAMPLES ON VARIATION. CHAPTER XXVIII. 233 take place separately, and when B is changed to δ, let Λ he changed to a; then, by supposition, ~∕ = y Now let C be changed to c, and in consequence let a' be changed to a; then, by supposition, ~ = ∙ Thus 
that is, therefore Λ ∞ BC.

A. very good example of this proposition is furnished in Geometry. It can be proved that the area of a triangle varies as the base when the height is invariable, and that the area varies as the height when the base is invariable. Hence when both the base and the height vary, the area varies as the product of the numbers which express the base and height.426. In the same manner if there be any number of quan­tities B, C, B, &c. each of which varies as another A when the rest are constant; when they are all changed, A varies as their product.
EXAMPLES ON VARIATION.1. Given that y varies as ic, and that y= 2 when as == 1, what will be the value of y when a; = 2 ?2. If a varies as h and α = 15 when δ = 3, find the equation between a and b.3. Given that z varies jointly as x and y^ and that z=l when £c = 1 and y = 1, find the value of z when a; = 2 and y=2.4. If « varies as mx + y, and if « = 3 when a; = 1 and y = 2^ and « = 5 when a; = 2 and y = 3, find m.
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234 EXAMPLES ON VARIATION. CHAPTER XXVIII.

5. If X varies directly as y when z is constant, and inversely • as 2 when y is constant, then if y and z both vary, x will vary
G. If 3, 2, 1, be simultaneous values of x, y, z in the pre­ceding example, determine the value of x when y = 2 and 2: = 4.7. The wages of 5 men for 6 weeks being £14. 5g., how many weeks will 4 men work for XI9 ? (Apply Example 5.)8. If the square of x vary as the cube of y, and a; = 2 when y ≈= 3, find the equation between x and y.9. Given that y varies as the sum of two quantities, one of which varies as x directly, the other as x inversely, and that y = 4 when aj = 1 and y = 5 when a; = 2, find the equation be­tween X and y.10. If one quantity vary directly as another, and the former be f when the latter is ⅜, what will the latter be when the former ' is 9?11. If one quantity vary as the sum of two others when their difference is constant, and also vaι∙y as their difference when their sum is constant, shew that when these two’ quantities vary independently, the fiι∙st quantity will vary as the difference of their squares.12. Given that the volume of a sphere varies as the cube of its radius, prove that the volume of a sphere whose radius is 6 inches is equal to the sum of the volumes of three spheres λvhose radii are 3, 4, 5 inches.13. Two circular gold plates, each an inch thick, the diame­ters of which are 6 inches and 8 inches respectively, are melted and formed into a single circular plate one inch thick. Find its diameter, having given that the area of a circle varies as the square of its diameter.14. There are two globes of gold whose radii are r and r'; they are melted and formed into a single globe. Find its radius.
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EXAMPLES OX VARIATION. CHAPTER XXVIII. 23515. If X, y, z be variable quantities such that yΛ-z- x is constant, and that {x Λ-y — z} (x + z-y} varies as yz, prove that∙ 
x->ry->rz varies as yz.16. A point moves with a speed which is different in different miles, but invariable in the same mile, and its speed in any mile varies inversely as the number of miles travelled before it com­mences this mile. If the second mile be described in 2 hours, find the time occupied in describing the mile.17. Suppose that y varies as a quantity which is the sum of three quantities, the first of which is constant, the second varies as £C, and the third as £c*. And suppose that when x = a, y = 0, when X = 2α, y = a, and when x = 3α, y = 4α. Shew that when 
x = na, y = (n-iγa.18. Assuming that the quantity of work done varies as the cube root of the number of agents when the time is the same, and varies as the square root of the time when the number of agents is the same; find how long 3 men would take to do one-fifth of the work which 24 men can do in 25 hour's. (See Art. 426.)

XXIX. SCALES OF NOTATION.427. The student will of course have learned from Arith­metic that in the ordinary method of expressing integer numbers by figures, the number represented by each particular figure is always some multiple of some power of ten. Thus in 347 the 3 represents 3 hundreds, that is, 3 times 10’; the 4 represents 4 tens, that is, 4 times 10'; and the 7 which represents 7 units, may be said to represent 7 times 10“This mode of representing numbeι∙s is called the common scale 
of notation, and 10 is said to be the base or radix of the common scale.428. We shall now prove that any positive integer greater than unity may be used instead of 10 for the radix, and shall shew how to express a number in any proposed scale. We shall then add some miscellaneous propositions connected with this subject.
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236 SCALES OF NOTATION.The figures by means of which a number is expressed are •called digits.When we speak in future of any radix we shall always mean that this radix is some positive integer greater than unity.429. To skew that any positive integer may be expressed in 
terms of any radix.Let N denote the number, r the radix. Suppose that r" is the highest power of r which is not greater than N ∖ divide N by z∙", and let p^ be the quotient and J∖ζ the remainder; thus 

N=pf* +Here, by supposition, is less than r∙, also is less than r". Next divide ∖y^ and let p^_^ be the quotient and the remainder; thusProceed in this way until the remainder is less than r; thus we find W expressed in the manner indicated by the equation
Each of the digits p^, p^_y, ..........Pv Po than r, and anyone or more of them after the first may be zero.430. To express a given integer number in any proposed scale.By a given integer number we mean a number expressed in words or else expressed by digits in some assigned scale. If no scale is mentioned, we understand the common scale to be in­tended.Let JV^ be the given number, r the radix of the scale in which it is to be expressed. Suppose joθ, ..........p„ to be the requireddigits by which N is expressed in the new scale, beginning with that on the right hand; then 

we have now to find the value of each digit.Divide N by r, and let <?, denote the quotient; then it is obvious that
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SCALES OF NOTATION. 237and that the remainder is joθ. Hence is found hy this rule; 
divide the given number by the proposed radix, and the remainder 
is the first of the required digits.Again, divide by r, and let denote the quotient; then it is obvious that
and that the remainder is p^. Hence the second of the required digits is ascertained.By proceeding in this way we shall determine in succession all the required digits.431. For example, transform 43751 into the scale of which 6 is the radix. The division may be performed and the remainders noted thus;

so that the number is expressed in the new scale thus, 534315.432. Again, transform 43751 into the scale of which 12 is the radix.
Thus

Thus 43751 = 2.12*+1.12≡+ 3.12≡+ 9.12 + 11.
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238 SCALES OF NOTATION.In expressing the number in the new scale we shall require a single symbol for eleven; let it be e; then the number is ex­pressed in the new scale thus, 2139e.We cannot of course use 11 to express eleven in the new scale, because 11 now represents 1.12 + 1, that is, thirteen.433. We will now consider an example in which a number is given, not in the common scale.A number is denoted by i347e in the scale of which twelve is the radix, it is required to express it in the scale of which eleven is the radix.Here t stands for ten, and e for eleven.

The process of division by eleven is performed thus. First 
e is not contained in t, for eleven is not contained in ten, so we ask how often is e contained in i31 here t stands for ten times twelve, that is one hundred and twenty, so that the question is, ' how often is eleven contained in one hundred and twenty-three 1 the answer is eleven times, with two over. Next we ask how often is e contained in 24; that is, how often is eleven contained in twenty-eight? the answer is twice, with six over. Then how often is e contained in 67; that is, how often is eleven contained in seventy-nine? the answer is seven times, with two over. Lastly, how often is e contained in 2e; that is, how often is eleven contained in thirty-five? the answer is three times, with two over.Hence 2 is the first of the required digits.The remainder of the process we will indicate; the student should carefully work it for himself, and then compare his result with that here given.
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SCALES OF NOTATION. 239Hence the given number is equal to
that is, it is expressed in the scale with radix eleven thus, 136212.434. It will be easy to form an unlimited number of self­verifying examples. Thus, take two numbers expressed in the common scale and obtain their product, then transform this pro­duct into any proposed scale; next transform the two numbers into the proposed scale, and obtain their product in this scale; the result should of course agree with that already obtained. Or, take any number, square it, transform this square into any pro­posed scale, and extract the square root in this scale; then trans­form the last result back to the original scale.435. Next let it be required to transform a given fraction from one scale to another. This may be effected by transforming separately the numerator and denominator of the given fraction by the method of Art.· 430. Thus we obtain a fraction identical with the proposed fraction, having its numerator and denominator expressed in the new scale.436. We stated in Art. 427, that in the common scale of notation, each digit which occurs in the expression of any integer by figures represents sortie multiple of some power of ten. This statement may be extended, and we may assert that if a number be expressed in the common scale, and the number be an integer, or a decimal fraction, or partly an integer and partly a decimal 
fraction, then each digit represents some multiple of some power 
of ten. Thus in 347∙958 the 3, the 4, and the 7, have the values9 assigned to them in Art. 427; the 9 represents ^θ, that is,

5
9 times 10“’; the 5 represents that is, 5 times 10“’; and gthe 8 represents pθ- ; that is, 8 times 10“’.It may therefore naturally occur to us to consider the follow­ing problem: required to express a given fraction by a series of 
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240 SCALES OF NOTATION.fractions in any proposed scale analogous to decimal fractions in the common scale. We will speak of such fractions as radix­
fractions.437. Required to express a given fraction ^by a series of radix­
fractions in any proposed scale.By a given fraction we mean a fraction expressed in words or expressed by figures in any given scale. Let F denote the pro­posed fraction, r the radix of the proposed scale. Suppose t^, ig,... the numerators of the required radix-fractions beginning from the left; thus
where t^, t^, t^,.......... are to be found.Multiply both members of the equation by r; thus

The right-hand member consists of an integer t^ and an additional fractional part. Let denote the integral part of Fr, and F^ the fractional remainder; then we must have
Thus, to obtain the first numerator, of the series of radix­fractions, we have this rule; multiply the given fraction hy the 

pro]josed radix; then the greatest integer in the product is the frst 
of the required numerators.Again, multiply F^ by r; let be the integral part of the product, and the fractional remainder; then

Hence t^, the second of the required numerators, is asceitained. By proceeding in this way we shall determine the required nu­merators in succession. If one of the products which occur on the left-hand side of the equations be an exact integer, the process 
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SCALES OF NOTATION. 241then terminates, and the proposed fraction is expressed by a finite series of radix-fractions. If no integral product occur, the process never terminates, and the proposed fraction can only be expressed by an infinite series of the required radix-fractions; the numera­tors of the radix-fractions will recur like a recurring decimal.438. We may remark that the radix ten is not only the base of the common mode of expressing numbers by figures, but is in fact assumed as the base of our langucLge for numbers. This will be seen by observing at what stage in counting upwards from unity new words are introduced. For example, all numbers between twenty-one and twenty-nine, both inclusive, are expressed by means of words that have already occurred in counting up to twenty; then a new word occurs, namely thirty, and we can count on without an additional new word as far as thirty-nine; and so on.439. The number ten has only two divisors difierent from itself and unity, namely 2 and 5; the number twelve has four divisors, namely 2, 3, 4, and 6. On this account twelve would have been more convenient than ten as a radix. This may be illustrated by reference to the case of a shilling; since a shilling is equivalent to twelve pence, the half, the third, the fourth, and the sixth of a shilling, each contains an exact number of pence; if the shilling were equivalent to ten pence, the half and fifth of a shilling would be the only submultiples of a shilling containing an exact number of pence. Similarly, the mode of measuring lengths by feet and inches may be noticed.440. We may observe that if two be adopted as the radix of a scale, the operations of Arithmetic are in some respects much simplified. In this scale the only figures which occuι∙ are 0 and 1, so that each separate step of a series of arithmetical operations would be an addition of 1, or a subtraction of 1, or a multiplica­tion by 1, or a division by 1. The simplicity of each operation is however counterbalanced by the disadvantage arising from the increased number of such operations.
T.A. 16
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242 SCALES OF NOTATION.We give in the following two articles bvo problems connected with the present subject.441. Determine which of the series of weights 1 lb., 2 lbs.,2^1bs., 2'∏bs., 2*lbs.,.......... must be used to balance a given weightof JVlbs., not more than one weight of each kind being used.It is obvious that this question is the same as the following; express the number Λ^ in the scale of which the ι∙adix is 2. Hence it follows from Art. 429 that the problem can always be solved.442. Suppose it required to determine which of the weights 1 lb., 31bs., 3^ lbs., 3'Ubs.,... must be selected to weigh Albs., not more than one of each kind being used, but in eitlιe,r scale that may be necessary.Divide N by 3, then the remainder must be zero, or one, or two. Let Aj denote the quotient; then in the first case we have A=3Aj, in the second case A=3Aj + l, and in the third case A = 3A, + 2. In the first or second case divide A^ by 3; in the third case we may write A= 3 (A^+ 1)-1, then we should divide A^ + 1 by 3. Proceed thus, and we shall finally have a result of the following form.
where each of the quantities g'θ, q^,.......... is either zero, or + 1,or — 1. Thus the problem is solved.443. In a scale of notation-of which the radix is r, the sum of 
the digits of any wlwle number divided by r — 1 will leave the same 
remainder as the whole nwnd)er divided by r—\.Let A denote the whole number, ∕9θ, ..........τ>,, the digits be­ginning from the right hand; then
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SCALES OF NOTATION. 243

therefore
r" -1But ----- -  is an integer whatever positive integer n may be;., -ΛΓ Po~^Pι +..........+Pnr-1 ® 7∙-lThis establishes the proposition.444. In a scale of notation of which tlbc radwc is r, any whole 

number when divided by r + 1 will leave the same remainder as the 
diference between the sum of the digits in the odd places and the 
sum of the digits in the even places leaves when divided by r + 1.With the same notation as in the preceding proposition we have

= some integei
445. To find what numbers are divisible by 3 without re­

mainder.Let W denote any number; let y>θ, p^,..........Τ’» digits ofit beginning with that in the unit’s place; then 
therefore

16—2
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244 EXAMPLES ON SCALES OF NOTATION. CHAPTER XXIX.

This is a whole number when is a wholeonumber. Thus any number is divisible by 3 when the sum of its digits is divisible by 3. For example. 111, 252, and 7851 are divisible by 3.446. It appears from Art. 443 that a number is divisible by 9 when the sum of its digits is divisible by 9; and that when any number is divided by 9, the remainder is the same as if the sum of the digits of that number were divided by 9.It appears from Art. 444 that a number is divisible by 11 when the difference between the sum of the digits in the odd places and the sum of the digits in the even places is divisible by 11.447. From the property of the number 9, mentioned in the j)receding article, a rule may be deduced which will sometimes detect an eιτor in the multiplication of two numbers.Let 9α + a: denote the multiplicand, and 96 + ?/ the multij)lierj then the product is 81αδ + 9δx + ^ay + xy. If then the sum of the digits in the multiplicand be divided by 9, the remainder is x; if the sum of the digits in the multiplier be divided by 9, the remainder is y; and if the sum of the digits in the product be divided by 9, the remainder ought to be the same as when xy is divided by 9, and will be if there be no mistake in the opera­tion.
EXAMPLES ON SCALES OP NOTATION.1. Express in the scale of seven the numbers which are expressed in the scale of ten by 231 and 452; multiply the num­bers together in the scale of seven, and reduce to the scale of ten.2. ' Transform 1357531 from the denary scale to the quinary.3. Transform 40234 from the quinary to the duodenary scale.
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EXAMPLES ON SCALES OF NOTATION. CHAPTER XXIX. 2454. Transform 545 from the senary scale to the denary.5. Transform 64520, which is in the septenary scale, to the undenary scale.6. Transform 4444 from the scale with radix five to the common scale.7. Transfer 3413 from a scale whose radix is six to that whose radix is seven.8. Transform 123456 from the denary scale to the septenary.9. Transform 15’75 from scale ten to scale eight.10. Transform 221’248 from scale ten to scale five.11. Convert 357234 into the scale whose radix is seven.12. Transform 1845’3125 from the common scale to one whose radix is twelve.13. Transform 444’44 from the scale with radix five to the common scale.14. Express 31462’125 in the scale whose radix is eight.15. Transform 3065’263 from the scale eight to scale ten.16. Express in the common scale and in the scale of eight the number denoted in the scale of nine by 723.17. Transform 15951 from scale eleven to scale ten, and 333310 from scale ten to scale eleven.18. Extract the square root of 33224 in the scale of six.19. The number 123454321 is referred to the radix six; extract its square root in that scale.20. Extract the square root of 3445’44 in the scale six, and reduce the result to scale three.21. Subtract 20404020 from 103050301 in the scale eight, and extract the square root of the result.
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246 EXAMPLES ON SCALES OF NOTATION. CHAPTER XXIX.22. Extract the square root of 11000000100001 in the binary­scale of notation.23. Find a fraction in the ternary scale equivalent to•120120.........., which is in the same scale.24. Find the simplest fraction which is represented by•1515.......... in the scale whose radix is seven.25. Reduce to a duodecimal.
7 226. In what scale will the number 95 be denoted by 137 127. In what scale is 2704 written 20304 ]28. In what scale is 1331 written 1000?29. In what scale does 16000 of the denary become 1003000?30. Anumber is represented in the denary scale by 35∙8333..., and in another scale by 55’5, find the radix of the latter scale.31. In what scale of notation is sixteen hundred and sixty- four ten-thousandths of unity represented by ∙0404 ?32. Shew that 12345654321 is divisible by 12321 in any scale greater than six.33. Shew that 144 is a square number whateveι∙ be the radix of the scale; the radix being supposed greater than four.34. Shew that 1331 is a perfect cube in any scale of notation; the radix being supposed greater than three.35. Of the weights 1, 2, 4, 8,...........2" pounds, find whichmust be selected to weigh 1719 pounds.36. Which of the weights 1 lb., 3 lbs., 3*lbs.,..........must beselected to weigh 1027 lbs., not more than one of each kind being used, but in either scale that is necessary ?37. Which of the same weights must be used to weigh 716 lbs.?38. Which of the same weights must be used to weigh 475 lbs. ?
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EXAMPLES ON SCALES OP NOTATION. CHAPTER XXIX. 24739. Find by operation in the scale with radix twelve what is the height of a parallelopiped which contains 94 cubic feet 235 cubic inches, and whose base is 24 square feet 5 square inches.40. Express 2 feet 10∣ inches linear measure, and 5 feet 79⅜ inches square measure, in the duodenary scale as feet and duodecimals of a foot; and the latter quantity being the area of a rectangle, one of whose sides is the former, find its other side by dividing in the duodenary scale.41. If jt>θ, pp ..........be the digits of a number beginningwith the units, prove that the number itself is divisible by eight if∕)θ + 2∕>j + 4∕)^ is divisible by eight.42. Prove that the difference of two numbers consisting of the same figures is divisible by nine.43. Find the greatest and least numbers with a given number of digits in any proposed scale.44. Prove that if in any scale of notation the sum of two numbers is a multiple of the radix, then (1) the digits in which the squares of the numbers terminate are the same, and (2) the sum of this digit and of the digit in which the product of the numbers terminates is equal to the radix.45. A certain number when represented in the scale two has each of its last three digits (counting from left to right) zero, and the next digit different from zero ; when represented in either of the scales three, five, the last digit is zero, and the last but one different from zero; and in every other scale (twelve scales ex­cepted) the last digit’ is differeut from zero. What are these twelve scales, and what is the number?
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248 ARITHMETICAL PROGRESSION.

XXX. ARITHMETICAL PROGRESSION.448. Quantities are said to be in Arithmetical Progression when they increase or decrease by a common difference.Thus the following series are in Arithmetical Progression :1, 3, 5, 7, 9, ..........40, 36, 32, 28, 24, ..........α, α + δ, a + 2δ, a + 3δ, ..........
a, a — b, a-2b, a —Zb, ..........In the first example the common difi*erence is 2, in the second — 4, in the third b, in the fouι*th — b.449. Let a denote the first term of an Arithmetical Progres­sion, b the common difference; then the second term is α + δ, the third term is α + 2b, the fourth term is a + Zb, and so on. Thus the term is a + (n ~ 1) b.450. To find the sum of a given number of quantities in Arith­

metical Progression, the first term and tlbβ common difference being 
supposed known.Let a denote the first term, b the common difference, n the number of terms, I the last term, s the sum of the terms. Then s = Λ + (a b') -l·· (a + ^b'^ +..........+ I.And, by writing the series in the reverse order, we have also

8 = I + — δ) + (I — 2b'^ +.......... + rt.Therefore, by addition,2s = (i + α) + (i + α) +..........to w terms
= n {l + α);

www.rcin.org.pl



ARITHMETICAL PROGRESSION. 249

thereforeAlsothus
....(1).....(2),....(3).The equation (3) gives the value of 5 in terms of the quan­tities which were supposed known. Equation (1) also gives a con­venient expression for s, and furnishes the following rule; the sum 

of any number of terms in Arithmetical Progression is equal io 
the product of the number of the terms into half the sum of the 
first and last terms.451. In an Arithmetical Progression the sum of any two 
terms equidistant from the beginning and end is equal to the sum 
of tJw first and last terms.The truth of this has already been seen in the course of the preceding demonstration; it may be shewn formally thus: Let a be the first term, b the common difference, I the last term; then the r*** term from the beginning is α + (r-l)δ and the r"* term from the end is I — (r— l')b, and the sum of these terms is therefore I + a.452. To insert a given number o∕ arithmetical means be­
tween two given terms.Let a and c be the two given terms, n the number of terms to be inserted. Then the meaning of the problem is, that we are to find n + 2 terms in Arithmetical Progression, a being the first term, and c the last. Let b denote the common difference; then c = α + (n + l)δj therefore b = -—%. This finds b, and the n required terms are

a + b, a+2bf a + 3b,... ...a + nb.453. In Art. 450 we have five quantities occurring, namely, 
a, b, I, n, 8, and these are connected by the equations (1) and (2), or (2) and (3) there established. The student will find that
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250 ARITHMETICAL PROGRESSION.if any three of these five quantities are given, the other two can be found; this will furnish some useful exercises. We give one as an example.454. Given the sum of an Arithmetical Progression, the first 
term, and the common difference; required tJie number of terms.Here thereforeBy solving this quadratic in n we obtain

455. It will be seen that two values are found for n in the preceding article; in some cases both values are applicable, as will appear from the following example. Suppose α = ll, bz=- 2, 
s = 27; we obtain n=3 or 9. The arithmetical progression is 
and it is obvious that the sum of the first three terms is the same as the sum of the first nine terms.456. Again, suppose α≈4, b≈2, s = 18; we obtain n = 3 or — G. The sum of three terms beginning with 4 is 4 + 6 + 8 or 18. If we put on terms before 4 we obtain the series-2 + 0 + 2 + 4 + 6 + 8,and the sum of these six terms is also 18. From this example we may conjecture that when there is a negative integral value for the number of terms as well as a positive integral value, the following statement will be true; begin from the last term of the series which is furnished by the positive value, and count backwards for as many terms as the negative value indicates, then the result will be the given sum. The truth of this conjec­ture may be shewn in the following manner.The quadratic equation in n obtained in Art. 454 is
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ARITHMETICAL PROGRESSION. 251Suppose a series in which the first term is 6 — α, the common difference δ, the number of terms m, and the sum s; then
2s = + (2δ-2a-δ)m...................................... (2).The roots of (1) and (2) are of equal values but of opposito signs (Art. 340); so that if the roots of (1) are denoted by and — Wj, those of (2) will be and — Hence terms of a series which begins with δ - a and has the common difference δ, will amount to the given sum s. The last term of the series which begins with α and extends to w, terms is α + (n-j-1)6; we have therefore to shew that if we begin with this term and count backwards for terms, we aιτive at δ- a. This amounts to proving that 

that is, thatNow therefore457. Another point may be noticed in connexion with a 
negative integral value of n.Let — Wj be a negative integral value of n which satisfies the equation 
then
ThereforeThis shews that if we count δac1cwards n, terms beginning with a — 6, the sum so obtained will be — s.For example, taking the case in Art, 456, by beginning at 2 and counting backwards for six terms we obtain that is, —18.
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252 ARITHMETICAL PROGRESSION.458. In some cases, however, only one of the values of n found in Art. 454 is an integer. Suppose α = 11, δ = -3, s = 24; we obtain n = 3 or 5⅜. The value 5⅜ suggests to us that of the two numbers 5 and 6, one will correspond to a sum greater than 24, and the other to a sum less than 24. In fact the sum of 5 terms is 25, and the sum of 6 terms is 22.459. To find live sum of n terms of the series 1, 2, 3, 4,...Here the n*** term is n; thus, by Art. 450,
We add two similar questions which lead to important results, although not very closely connected with the present subject.460. To find the sum of the squares of the first n ιιatural 

numbers.Let s denote the required sum; then 
and we shall prove that

We have

Hence, by addition.
that is.
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ARITHMETICAL PROGRESSION. 9.53

Therefore 
and

461. To find the sum of the cubes of tKe first n natural 
numbers.Let s denote the required sum; then 
and we shall prove that

We have

Hence, by addition.
that is,Thereforeand
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254 EXAMPLES. CHAPTER XXX.

EXAMPLES OF ARITHMETICAL PROGRESSION.Sum the following series:1. 2, 6, 10, 14, ............... to 20 terms.o , 15 7 13 .’ 2 ’ ^4^ ’ ........... to 32 terms.1 33. 2 > ~ ξ > “  to 24 terms.
4. 5,  to 20 terms.
δ. 1∣, 1∣, ⅛ ..........................to 10 terms.06. 1, 1∣, 2∣, ...........................to 12 terms.5 2 137. ..................... to 21 terms.8. ∣, 1,...............................to 50 terms.
9. 116, 108, 100, ............ to 30 terms.10. 9, 11, 13, 15, ............to n terms.11. 1, ........................... to n terms.Ό ό12. Find an a.p. such that the sum of the first five terms is one-fourth the sum of the following five terms, the first term being unity.13. The first term of a series being 2, and the fifth term being 7, find how many terms must be taken that the sum may be 63.14. Given α=16, δ=4, s = 88, find n.15. If the sum of m terms of an a. p. be always to the sum of n terms in the ratio of to n*, and the first term be unity, find the term.
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EXAMPLES. CHAPTER XXX. 25516. The sum of a certain number of terms of the series21 + 19 + 17 +..........is 120; find the last term and the number ofterms.17. What is the common difference when the first term is 1, the last 50, and the sum 204118. If the term of an A. p. be n and the η*** term m, of how many terms will the sum be ∣(zzι + w) (m, + n — 1), and what will be the last of them?19. If 2n + 1 terms of the series 1, 3, 5, 7, 9,..........be taken,then the sum of the alternate terms 1, 5, 9,......... will be to thesum of the remaining terms 3, 7, 11,......... as n+ 1 to n.20. Find the sum of the first n odd numbers, and of the first 
n numbers of the form 4r+ 1.21. How many terms of 1 + 3 + 5 + 7 +.......... amount to1234321?22. How many terms of 16 + 24 + 32 + 40+.......... amountto 1840?23. On the ground are placed n stones; the distance be­tween the first and second is one yard, betλveen the second and third three yards, between the third and fourth five yards, and so on. How far will a person have to travel who shall bring them, one by one, to a basket placed at the first stone?24. The 14th, 134th, and last terms of an A. p. are 66, 666, and 6666 respectively; find the first term and the number of terms.25. Find a series of arithmetical means between 1 and 21, such that their sum has to the sum of the two greatest of them the ratio of 11 to 4.26. The sum of the terms of an A. p. is 28∣, the first term is — 12, the common difference is f. Find the last term and the number of terms.27. Find how many terras of the series 3, 4, 5,..........must betaken to make 25.
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256 EXAMPLES. CHAPTER XXX.28. Find how many terms of the series 5, 4, 3,..........must betaken to make 14.29. Shew that a certain number of terms of an A. p. may be found of which the algebraical sum is equal to zero, provided twice the fiι∙st term be divisible by the common difference, and the series ascending or descending according as the first term is negative or positive.30. The sum of m terms of an a.p. is n, and the sum of 
n terms is τn. Shew that the sum of m + n terms is — (m + n) and the sum of m — n terms is (ττi — n) ^1 + —.31. Ifs = 72, it = 24, δ=-4, find n.32. If s = p?i + g?t’’ whatever be the value of n, find the 7λ“* term.33. If >S'a represent the sum of n of the natural numbersbeginning with a, prove that = 3⅛34. Prove that the squares of aj*-2aj-1, x*+l, andΛ* + 2x — 1 are in A. p.

35. The common difference of an A. p. is equal to the differ­ence of the squares of the first and last terms divided by twice the sum of all the terms diminished by the fiι∙st and last term.36. Insert 6 arithmetical means between 1 and 29.37. Find the number of arithmetical means between 1 and 19 when the second mean is to the last as 1 to 6.38. How many terms of the natural numbers commencing with 4 give a sum of 5350 ?39. In a series consisting of an odd number of terms, the sum of the odd terms (the first, third, <kc.) is 44, and the sum of the even terms (the second, fourth, <kc.) is 33. Find the middle term and the number of terms.40. If α*, b*, c*, be in a.p., then are
b+c c+a a+b in A.p.
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EXAMPLES. CHAPTER XXX. 25741. Sum to n terms the series whose r* term is 2r - 1.42. Sum 1 — 3 + 5 — 7 +............to w terms.43. Sum 1 — 2+3 — 4 +............to n terms.44. Given the p‘’* term Τ’, and the term Q of a seriesin A., p., express the sum of n terms in terms of P, Q, p, q, n.45. The q'^, and terms of an A. p. are x, y, z, re­spectively ; prove that if x, y, z be positive integers, there is an A. P. Λvhose a:'’’, y'^, z'''^ terms are p, q, τ, respectively; and that the product of the common differences of the progressions is unity.46. The interior angles of a rectilinear figure are in A. P.; the least angle is 120’ and the common difference 5’. Required the number of sides.47. Find the sum to terms of 1.2 + 2.3 + 3.4 + 4.5 + ...48. If the second term of an A. p. be a mean proportional between the first and the fourth, shew that the sixth will bo a mean proportional between the fourth and the ninth.49. If φ (n) be the sum of terms of an A. p., find ψ (n) i⅛ terms of n and the first two terms.Also shew that <∕> (n + 3) — 3φ (n + 2) + 3<∕> (w + 1) — φ (w) = 0.50. Sum to n terms the series whose term = 5 — ^.51. Divide unity into four parts in A. P. of which the sum of the cubes shall be .52. A servant agrees for certain wages the first month, on the understanding that they are to be raised a shilling every subsequent month until tlιey reach £3 a month. At the end of the first of the months for which he receives £3, he finds that his wages during his time of service have averaged 12 shillings a week. How long has he served 153. A quantity of com is to be divided among n persons, and is calculated to last a certain time if each of them receive
τ. A. 17
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258 EXAMPLES. CHAPTER XXX.a peck every week; during the distribution it is found that one person dies every week, and then the corn lasts twice as long as was expected; find the quantity of corn and the time it lasts.54. A number of persons were engaged to do a piece of work, which would have occupied them m hours if they had commenced at the same time; but instead of doing so they commenced at equal intervals, and then continued to work till the whole was finished : the payment being proportional to the work done by each, the first comer received r times as much as the last. Find the time occupied.55. Two persons A and B play at hazard ; A wins from B a certain number of guineas, consisting of 3 places whose digits are in arithmetical progression, in such a manner, that if the number of guineas be divided by the sum of the digits the quotient will be 48, and if from the said number of guineas 198 be taken, the digits will be inverted. Find the number of guineas.56. Prove that the sum of any 2n + 1 consecutive integers is divisible by 2n + 1.
XXXI. GEOMETRICAL PROGRESSION.462. Quantities are said to be in Geometrical Progression when each is equal to the product of the preceding and some constant factor. The constant factor is called the common ratio of the series, or more shortly, the ratio. Thus the following series are in Geometrical Progression :1, 2, 4, 8, 16,.........

1 1 i JL Jl3’ 9’ 27’ 81’...........
α, ar, ar^, ar’', ar*,...........In the first example the common ratio is 2, in the second ⅛, in the third r. '

t - ∙ .
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GEOMETRICAL PROGRESSION. 259463. Let α denote the first term of a Geometrical Progression, r the common ratio, then the second term is αr, the third term is ar®, the fourth term is ar®, and so on. Thus the w'** term is αr"~∖464. To find the sum, of a given number of quantities in 
Geometrical Progression, the first term and the common ratio being 
supposed known.Let a denote the first term, r the common ratio, n the number of terms, s the sum of the terms. Thens = α + αr + ar® + ar® +..........+ αr"~*;therefore sr= ar -∖- ar^ + ar^ +..........+ αr"~* + ar"*.Hence, by subtraction,

ST - s = ar" — a;therefore ' s = ............................................(1).If I denote the last term, we haveZ = αr"~* ........................................................(2),hence s = "^-—— ..............................(3).Equation (1) gives the value of s in terms of the quantities which are supposed known. Equation (3) is sometimes a con­venient form.4G5. We may widte the value of s thus,
a (1 — r")

8 = —------- .1 — rNow suppose r less than unity ; then the larger n is the smaller will r" be, and by taking n large enough r" can be made as small as we please. If then n be taken so large that r" may be neglected in comparison with unity, the value of s reduces to
We may enunciate the result thus; bp taking n large

n→
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260 GEOMETRICAL ΓEOGRESS1ON.

enough, the sum of n terms of the Geometrical Progression can be 
made to differ as little as we please from ∙ Tlιis statement issometimes abbreviated into the following; the sum of an-infinite 
number of terms of the Geometrical Progression ismust be remembered that it is to be considered as nothing more than an abbreviation of the preceding statement.The preceding remarks suppose that r is less than unity. In future, both in the text and in the examples, when we speak of an infinite Geometrical Progression we shall always suppose that r is less than unity.466. We may apply the preceding remarks to an example.Consider the series 1, ⅛, ∣, ∣,..........; hereα=l, r = thus thesum of n terms is y~y ¢1 “ 2^*'taking n large enough, 2"^' can be made as large as we please, and therefore as small as we please. Hence we may say that 
bg taking n large enough, tlse sum of n terms of t1se series can be 
made to differ from 1by cls small a quantity as ice please. This is abbreviated into the following; the sum of an infinite number of 
terms of this series is 2.467. Recurring decimals are cases of Λvhat are called infiniteGeometrical Progressions. Thus, for example, ∙2343434 ..........2 34 34 34 2denotes τ, < + —. + τ + —-r +........... Here the terms after10 10 10" 10’ 10constitute a Geometrical Progression, of which the first term is 34 1∙pp , and the common ratio is . Hence we may say that the sum of an infinite number of terms of this series is ÷ ∙f 1 —1,10 ( 10” j ’34: 2 34:that is, . Therefore the value of the decimal is yθ + .ΛVe will now investigate a general rule for such examples.
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GEOMETRICAL PROGRESSION. 261468. To find the value of a recurring decimal.Let P denote the figures which do not recur, and suppose tliera p in number; let Q denote the figures which do recur, and suppose them q in number. Let s denote the value of the recurrin" decimal; then 

by subtraction,Now 10’’·^’— 10'’= (10’- 1) 10’'; and 10’-1 when expressed by figures in the usual way will consist of q nines. Hence we deduce the usual rule for finding the value of a recurring decimal; subtract the integι∙al number consisting of the non-recurring figures from the integral number consisting of the non-recurring and recurring figures, and divide by a number consisting of as many nines as there are recurring figures followed by as many cyphers as there are non-recurring figures..469. To inseri a given number of Geometrical means between 
two given terms.Let a and c be the two given terms, n the number of terms to be inserted. Then the meaning of the problem is that we are to find n+2 terms in Geometrical Progression, a being the first term and c the last. Let r denote the common ratio; then c = ar’”·*; thus r= This finds r, and the required terms are ar, ar^,

a<P,..........ar".470. In Art. 464 we have five quantities occurring, namely, 
a, r, I, n, s; and these are connected by the equations (1) and (2), or (2) and (3), there given. λVe might therefore propose to find any two of these five quantities when the other three are given, j it will however be found that some of the cases of this problem are too difl5cult to be solved. The following four cases present no 
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262 GEOMETRICAL PROGKESSION.difficulty; (1) given α, r, w; (2) given α, w, Z; ,(3) given r,n,l', (4) given r, s.471. Suppose, however, that α, s, n are given, and therefore 
r and Z are to be found. Then r would have to be found from the equation 
we may divide both sides byr —1, and then we shall have an equation of the (n — 1)“* degree in the unknown quantity r, which therefore cannot be solved by any method yet given, if τ⅛ be greater than 3. Similar remarks will hold in the case where I, s, n are given, and therefore a and r are to be found.472. Four cases of the problem remain, namely, those four in which n is one of the quantities to be found. Suppose a, r, I given, and therefore s and n are to be found. Here n would have to be found from the equation Z=αr"~∖ where the unknown quan­tity n occurs as an exponent; nothing has been said hitherto as to the solution of such an equation.' 473. To find the sum of n terms of the following series;

Let 8 denote the sum; then

By subtraction 

therefore
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EXAMPLES. CHAPTER XXXI. 263

EXAMPLES OF GEOMETRICAL PROGRESSION.

1. Sum 1∣ + 2∣ + 4⅜ +..........to six terms.
2. Sum 2 — 2’ + 2® — 2* +..........to ten terms.

43. Sum to n terms 3 + 2+ ∙κ+..........
t>2 134. Sum to n terms θ + 5 + 3 +..........

o J o3
5. Sum to infinity 1 + j +..........6. Sum to infinity 5-1+A-i+..........
7. Sum to infinity + ξ +..........
8. Sum to infinity + ......3 2 89. Sum to infinity ..........410. Sum to infinity 3 + 2 + ^+..........

11. Sum to infinity 4 + ..........
5 2512. Sum to infinity ∏ + γ + + ^ +.........2 4 8 1613. Sum to infinity ^1^ + 2^+1 +..........

14. Sum to infinity ..........
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264 EXAMPLES. CHAPTER XXXI.15. Sum to infinity - 7 + |— “ +..........4 8 IGIC. Sum to infinity i-±+jL-..........
17. Sum to infinity?+^ +..........
18. Sum to n terms r + 2r® + 3r’ + 4√ +..........2 3 419. Sum to n terms l+0+33+^ +..........

Δ 2i Δ

35720. Sum to n terms l+κ+v+77 +..........2 4 83 5 721. Sum to w terms 1 — 7; +-7 — H +............2 4 822. Find the sum oi any number of terms in G. p. whose first and tliird terms are given.23. If the common ratio of a g.p, is — 3, what is the common ratio of the series obtained by taking every fourth term of the original series 124. The sum of £700 was divided among 4 persons, whose shares were in g. p. ; and the difference between the greatest and least was to the difference between the means as 37 to 12. What were their respective shares ?25. Sum to n terms the series whose term is (- l)"α*".26. If P be the sum of the series1 + + + +..........ad inf.,and <2 he the sum of the series1 + r’ + r®’ + r®* +..........ad inf,prove that P*{Q- 1/= ~ 1)’·27. Shew that ,∕(∙444..........)= ∙666..........
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EXAMPLES. CHAPTER XXXI. 265 .28. A person who saved every year half as much again as he saved the previous year had in seven years saved <£102.19s. How much did he save the first year?29. In a g.p. shew that the product of any two terms equi­distant from a given term is always the same.30. In a o. r. shew that if each term be subtracted from the succeeding, the successive differences are also in g.p.31. The square of the arithmetical mean of two quantities is equal to the arithmetical mean of the arithmetical and geometrical means of the squares of the same two quantities.32. In a g.p. continued to infinity, shew that each term beaι∙s a constant ratio to the sura of all that follow it. And find 
a series in which each terra is p times the sum of all the terms that follow it.33. If represent the sum of n terms of a given g.p., findthe sum of aS∖+ *Sζ+ Λζ+..........+ *S∖34. If n geometrical means be found between two quantities

n

a and c, their product will be (αc)'∖35. Let s denote the sum of n terms of the series a, ar, 
ar*, ...; let s' denote the sum of n terms of the series a, ar~∖ 
ar~^, ...; and let I denote the last term of the first series; then will as = Is'.36. If a, b, c, d be in G. P.,(a’ + δ≡ + c’) (δ≡' + c≡ + d^} = {ab + bc + cdγ.

ZT. If a, b, c, d be in g.p.,
{a - dγ = {b- cγ +{c- a)’ +{d-b}∖38. The sum of the first three terms of a g.p. = 21, and the sum of the first four terms = 45; find the series.39. Sum to n terms 1’ + 3’ + 5’ + 7’ +..........40. Sum to n terms 5 + 55 + 555 +........ .
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. 266 EXAMPLES. CΠAPTER XXXI.41. Prove that the two quantities between which A is the arithmetical and G the geometrical mean, are given by the formula
42. There are four numbers, the first three of which are in G. p,, and the last three in A. p. ; the sum of the first and last is 14, and that of the second and third 12; find the numbers.43. Three numbers whose sum is 15 are in a.p, ; if 1, 4, and 19 be added to them respectively they are in g. p. Determine the numbers.44. If α, δ, c be in a.p. shew that

if they be in g. p. shew that
45. Find the sum of the infinite series

r and br being each less than unity.
XXXII. HARMONICAL PROGRESSION.474. Three quantities A, ΰ, C, are said to be in Harmonical Progression when j4 : C :: A — B : B —C.

Xnj number of quantities are said to be in Harmonical Progression when every three consecutive quantities are in Har­monical Progression.475. The reciprocals of quantities in Harmonical Progression 
are in Arithmetical Progression.Let A, B, C be in Harmonical Progression; then
therefore
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HARMONICAL PROGRESSION. 267Divide by ΛBC, thus
This proves the proposition.476. There is no formula for the sum of any number of quantities in Harmonical Progression; the property established in the preceding article will however enable us to solve some ques­tions relating to Harmonical Progression.477. To insert a given number of Jιarmonical means between 
t∕ιoo given terms.Let a and c be the two given terms, n the number of terms to be inserted. Then the meaning of the problem is that we are to find n + 2 terms in Harmonical Progression, a being the first term and c the last. Hence the problem is reducible to the following; to insert n arithmetical means between - and -. Let b denote a c the common difference; then
thereforeThe Arithmetical Progression is
that is.

Therefore the Harmonical Progression is
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268 EXAMPLES. CHAPTER XXXIΓ.478. Let α and c be any two quantities; let Λ be tlieir arithmetical mean, G their geometrical mean, Il their harmonical mean. Then

It follows that (P = Λ1I∙, therefore A ∙. G ∙.∙. G ∙. II. Thus lies in magnitude between A and 7/; and A is greater than II, for 
that is, A — II is a positive quantity.479. We may observe that the three quantities a, b, c, are in Arithmetical, Geometrical, or Harmonical Progression, according as *
j----- = 1, therefore δ = ⅛ (α + c); in the second case
b — c

b(a-b') = a(h-c}∙,therefore 6® = ac; the third case is obvious by definition.
EXAMPLES OF ΠARMONICAL PROGRESSION.G 31. Continue the series 3 + - + - for two terms.

5 4
2. Insert 18 harmonical means between 1 and ~ .JO3. Find the n*** term of an ιι. p., of which a, b, are respectively the first and second terms.4. Find the (/’ + *7)**' term of an h.p., of which P is the ιP∙ term, and Q the y*** term.5. From each of three given quantities, what quantity must be subtracted that the three results may be in ιι. p. ?
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EXAMPLES. CHAPTER XXXIL 2696. The first of a series of n quantities in ιι. p. is unity, and the sum of the products of every (z⅛- 1) terms is to the product of all the terms as is to 1; find the progression.7. Shew that V is greater than, equal to, or less than αc, according as α, ά, c, are in a. p., g. p., or H. p.8. The arithmetical mean of two numbers is 3, and the har­monical mean ⅞; find the numbers.9. The geometrical mean of two numbers is also the geome­trical mean between the arithmetical mean of the two numbers and their harmonical mean. The arithmetical mean 7ninus the harmonical mean is equal to the square of the difference of two numbers divided by twice their sum.10. If z is the harmonical mean between a and b,

11. There are three numbers in ιι. P., such that the greatest is the product of the other two, and if one be added to each the greatest becomes the sum of the other two. Find the numbers.2912. The sum of two contiguous terms in ιι. P. is —— , and® 104their product is —. Find the series.
13. If between two numbers there be inserted two aiith- metical means and and two harmonical means ∕∕j, and between A ∣ and A^ there be inserted an harmonical mean, and between and IIan arithmetical mean; then the geometrical mean between these is equal to the geometrical mean between the original quantities.14. The arithmetical mean of two quantities x and y is A; the geometrical mean is G; the harmonical mean is 71. If 

A — G = a and 4 — 71 b, find x and y.
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270 EXAMPLES. CHAPTER XXXII.15. If α, δ, c be in A. P.; α, β, y in h. p, ; aa, bβ, cy in G. p.; then will
16. If α, b, c are in u. p., shew that
17. If a, b, c are in h. p., shew that 

are also in H. p.18. If n arithmetical and the same number of harmonical means be inserted between two quantities a and b, and a series of 
n terms be found by dividing each arithmetical by the correspond­ing harmonical mean, the sum of the series

19. Any whole number of the form 3a®—δ®, where a is greater than b, may be divided into three others in u. p., of which the sum of the squares shall be 3α* + b*.

XXXIII. MATHEMATICAL INDUCTION.480. We shall in the subsequent parts of this book have occasion to use a method of proof which is called mathematical 
induction or demonstrative induction, and we shall now exemplify the method.481. Suppose the following assertion made: the sum of nterms of the series 1, 3, 5, 7, ..........is n*. This assertion we can
see to be true in some cases; for example, the sum of two terms is 1 + 3 or 4, that is, 2*; the sum of three terms is 1 + 3 + 5 or 9, that is, 3®; we wish however to prove the theorem universally.
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MATHEMATICAL INDUCTION. 271Suppose the theorem were known to be true for a certain value of n; that is, suppose for this value of n that 
add 2n + 1 to both sides; then

Thus, if the sum of n terms of the series =n*, the sum of w + 1 terms will = (w + 1)^. In other words, if the theorem is time when we take a certain number of terms, whatever that number may be, it is true when we increase that number by one. But we see by trial that the theorem is true when 3 terms arc taken, it is therefore true when 4 terms are taken, it is therefore true when 5 terms are taken, and so on. Hence the theorem must be universally true.482. We will now take another example; we propose to establish the tι∙uth of the following formula:
We can easily ascertain by trial that this formula holds in simple cases, for example, when n = 1, or 2, or 3; we wish, how­ever, to establish it universally.Suppose the theorem were known to be true for a certain value of w: add (n + 1)* to both sides: then

where w⅛ = w + 1.
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272 MATHEMATICAL INDUCTION,Thus we obtain the same formula for the sum of n + 1 terms of the series 1®, 2®, 3“..........as was supposed to hold for n terms.In other words, if the formula holds when λve take a certain number of terms, whatever that number may be, it holds when we increase that number by one. But the formula does hold when 3 terms are taken, therefore it holds when 4 terms are taken, therefore it holds when 5 terms are taken, and so on. Hence the formula must hold universally.483. The two theorems which we have proved by the method of induction may be established otherwise. The first theorem is an example of an Arithmetical Progression, and the second has been investigated in Art. 460. There are many other theorems which are capable of easy proof by the method of induction; for example, that in Art. 461.The theorems asserted in Art. 69, respecting the divisibility of as" ± α" by x ± a may be proved by induction. For
£c" — ft" ft — α"~')-------- = ic" *+—i-------------- '
X — a x — ahence x"- d* is divisible by x — a when a;"”’ —α"^* is so; now by trial we see that ic — α is dirtsible by x — ft, therefore a;® — a* is divisible by x — a, therefore again x^ — is divisible by a; — α, and so on; hence x” — ft" is always divisible by a; — α when n is a ])ositive integer. Similarly the other cases may be established. As another example the student may consider the theorems in Art. 225.484. The method of 'mathematical induction may be thus described. We prove that if a theorem is true in one case, what­ever that case may be, it is time in another case which we may call the <next case; we prove by trial that the theorem is true in a certain case; hence it is true in the next case, and hence in the next to that, and so on; hence it must be true in every case after that with which we began.485. It is possible that this method of proof may bo less satisfactory to the student than a more direct proceeding; it may

www.rcin.org.pl



MISCELLANEOUS EXAMPLES. CHAPTEK XXXIII. 273 appear to him that he is rather compelled to believe propositions so proved than shewn why they hold. But as in some cases this is the only method of proof which can be used, the student must accustom himself to it, and should not pass over it when it occurs until he is satisfied of its validity.486. We may remark that the student of natural philosophy will find the word induction used in a difierent sense in that sub­ject; the word is there applied to the assumption or conjecture that some law holds generally which is found to be true in certain cases that have been examined. There, however, we cannot be sure that the law holds for any cases except those which we have examined, and can never arrive at the conclusion that it is a 
necessary truth. In fact, induction, as used in natural philosophy, is never absolutely demonstrative, often far from it; whereas the method of mathematical induction is as rigid as any other process in mathematics.

MISCELLANEOUS EXAMPLES.1. Transform 221∙342 from the scale with radix ten to the scale with radix five.2. If the radix of a scale be 4w + 2 the square of any num­ber whose last digit is 2zλ + 1 or 2zn + 2 will terminate with that digit,3. A digit is written down once, twice, thrice, .......... up to ntimes respectively, so as to form n numbers consisting of one, two, three, .........  n, places of figures respectively. If a be the first and
b the last of the numbers, and r the radix of the scale, the sum of
, , . rb — nathe numbers is -------— .

r — 14. If m, n be any two numbers, g their geometric mean, «J, A.J the arithmetic and harmonic means between m and g, and Λj, hJ the arithmetic and harmonic means between g and w, prove that = g* = aJι^.

5. If between b and a there be inserted n arithmetical means, and between a and b there be inserted n harmonic means, the sum
T. A. 18
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274 MISCELLANEOUS EXAMPLES. CHAPTER XXXIII.of the series composed of the products of the corresponding terms of the two series is (n + 2) ab.6. If n haιτnθnic means are inserted between the two posi­tive quantities a and b, shew that the difference between the first and the last bears to the difierence between a and b a less ratio than that of n — 1 to n + 1.
7. √1 sets out from a certain place and travels one mile the first day, two miles the second day, three the third, four the fourth, and so on. B sets out five days after A and travels the same road at the rate of 12 miles a day. How far will Λ travel before he is overtaken by B 18. From 256 gallons of wine a certain number are drawn and replaced with water; this is done a second, a third, and a fourth time, and 81 gallons of wine are then left. How much was drawn out each timel9. A and B have made a bet, the amount of the stakes being £90, and the sum staked by each being inversely proportional to all the money he has. If A wins he will then have five times what B has left; if B wins he will then have double what A has left. What sum of money had each?10. If (α + b + c) (α + b + d) = (c + d + a) (c + d + 5) or if ab = cd, prove that each of these quantities is equal to(α -c){a- d} (b -c')(b- d}

{a + b — c — dγ11. If the roots of ax’ + 2bx + c = 0 be possible and difierent,those of (α + c) (ax’’ + 2δx + c) = 2 (αc — b^} + 1) will be impossi­ble; and vice versA.12. Ifα + 5 + c = 0, X + 2/+ « + w = 0, then the two equations 
J {ax') + J(bιj) + J{cz} = 0, Jφx} - J{ay) + √(cw) = 0, are deducible the one from the other.
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PERMUTATIONS AND COMBINATIONS. 275

XXXIV. PERMUTATIONS AND COMBINATIONS.
487. The different orders in which any things can be ar­ranged are called their permutations.Thus the permutations of the letters a, b, c, taken two at a time are ab, ba, ac, ca, be, cb.I 488. The combiizations of things are the different collections that can be formed out of them, without regarding the order in which the things are placed.Thus the combinations of the letters a, b, c, taken two at a time are ab, ac, be ', ab and ba though different permutations forming the same cotnhination.489. We may observe that a difference of language occurs in books on this subject; what we have called permutations are called 

variations or arrangements by some writers, and they restrict the word permutations to the case in which all the things are used at once; thus they speak of the variations or arrangements of four letters taken two at a time, or three at a time, but of the permutcL·- 
tions of them taken all together.490. To find the number of permutations of n things taken r 
at a time.Suppose there to be n letters a, b, c, d,..........; we shall firstfind the number of permutations of them taken tu>o at a time. Put a before each of the other letters; we thus obtain n — 1 permutations in which a stands first. Next put b before each of the other letters; we thus obtain n — 1 permutations in which 
b stands fii’st. Similarly there are n — 1 permutations in which c stands first; and so on. Thus, on the whole, there are n {n — 1) permutations of n things taken two at a time. 18—2
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276 PERMUTATIONS AND COMBINATIONS.We shall now find the number of permutations of the n letters taken three at a time.It has just been shewn that out of n letters we can form n(n — 1) permutations each of two letters; hence out of the n — 1 letters ό, c, d, .......... we can form ∖n — 1) (n — 2} permutationseach of two letters; put a before each of these and we have (n — 1) (n — 2) permutations each of three letters in which α stands first. Similarly there are (w — 1) -2} permutationseach of three letters in which b stands first. Similarly there are as many in which c stands first; and so on. On the whole there are n (τι — 1) (n —2) permutations of n letters each of three letters.From these cases it might be conjectured that the number of permutations of n letters taken r at a time is 
and we shall prove that this is the case. For suppose it true that the number of permutations of n letters taken r - 1 at a time is
we shall shew that a similar formula will give the number of per­mutations of the letters taken r at a time. For out of the n — 1 letters b, c, d, .......... yrβ can form 
permutations each of r — 1 letters; put a before each of these, and we obtain as many permutations each of r letters in which a stands first. Similarly we have as many in which b stands first, as many in which c stands first, and so on. On the whole there are 
permutations of n letters each of r letters.If then the formula holds when the letters are taken r — 1 at 
a time, it will hold when they are taken r at a time; but it has been proved to hold when they are taken three at a time, therefore it holds when they are taken four at a time, therefore it holds 
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PERMUTATIONS AND COMBINATIONS. 277when they are taken five at a time, and so on; thus it holds universally.491. Hence the number of permutations of n things takenall together is n (n — 1) (n — 2)..........1.492. For the sake of brevity n (n — 1) (n — 2) 1 is often denoted by [n; thus [n denotes the product of the natuι∙al num­bers from 1 to n inclusive. The symbol [n may be read, ^fac­
torial n.493. Any combination of r things will produce [r permuta­tions. For, by Article 491, the r things which form the given combination can be arranged in [r different ways.494. To find tJie number of combinations of n things taken 
τ at a time.The number of combinations of n things taken r at a time is

For the number of permutations of n things taken r at a time is n{n-V){n-T)..........(n —r + l) by Art. 490; and eachcombination produces [r permutations, by Art. 493; hence the number of combinations must be
If we multiply both numerator and denominator of this ex- pression by jn — r it becomes ∣——- .
495. The number of combinations oj n things taken r at a 

time is ilte same as tike number of them taken n — r at a time.The number of combinations of n things taken n — r at a time is
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278 PERMUTATIONS AND COMBINATIONS.

that is,
Multiply both numerator and denominator by [r and we ob-

I . .tain -—---- , which, by Art. 494, is the number of combinations[r [n - r ’of n things taken r at a time.496. The proposition which we have proved in the preceding article will be evident too if we observe that for every combina­tion of r things which we take out of n things, we leave one com­bination of n — r things. Hence every combination of r things corresponds to a combination of n — r things which contains tlie remaining things. Such combinations are called complementari∕.497. To find for what value of r the number of tJw combina­
tions of n things taken τ at a time is greatest.Let Wr denote the number of combinations of n things taken r at a time,til® number of combinations of n things taken r — 1 at a time.then

The factor ——may be written — 1, which shewsthat it decreases as r increases. By giving to r in succession the values 1, 2, 3, .......... the number of combinations is continually7i Tincreased so long as--------- 1 is greater than unity. First sup­pose n even and = 2m, then — 1 is greater than 1 until
r = m inclusive, and when r = m + 1 it is less than 1. Hence the greatest number of combinations is obtained when the things are taken m at a time, that is, at a time.
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PERMUTATIONS AND COMBINATIONS. 279

_ _ _ * 111 + 1 + 1 _Next suppose n odd and = 2nι + 1, then ------ ---------- 1 isequal to unity when 7∙=τn + l. Hence the greatest number of combinations is obtained when they are taken m, at a time or 
m + 1 at a time, the result being the same in these two cases,
, . , ., ,, n-l  ̂ n∙ + l.that IS, when they are taken —at a time, or - at a

J Δtime.498. T’o find the number of permutations of n things taken all 
together which are not all different.Let there be n letters; and suppose p oi them to be a, q oι them to be b, r oι them to be c, and the rest to be unlike; the number of permutations of thein taken all together will be

For suppose JV to represent the required number of permu­tations. If in any one of the permutations the p letters a were changed into p new letters different from any of the rest, then without altering the situation of any of the remaining letters, we could from the single permutation produce ∣p different per­mutations ; and so if the p letters a changed into p different letters, the whole number of permutations would be N× [∕>. Simi­larly, if the q letters b were also changed into g new letters different from any of the rest, the whole number of permutations we could now obtain would be N × ∣p × [g; and if the r letters c 
'weιQ also changed, the whole number would be N× ∣p χ [g x [r. But this number must be equal to the number of permutations of 
n dissimilar things taken all together, that is, to [n.Thus
therefore
And similarly any other case may be treated.
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280 PERMUTATIONS AND COMBINATIONS.499. If there be n things not all different, and we require the number of permutations or of combinations of them taken r at a time, the operation will be more complex: we will exemplify the method in the following case.
There are n things of which p are alike and the rest unlike; 

required the nund)er of combinations of them taken τ at a time.We shall suppose r less than n— p, and put n-p = q. Con­sider first the number of combinations that can be formed without using any of the p like things; this is the number of combinations lg'of q things taken r at a time, that is, ;—— . Next take one of ® ’ ’ ∣r[g-rthe p things and r —1 of the q things; the number of ways in which combinations can thus be formed is the same as the num­ber of combinations of q things taken r — 1 at a time, that is, I?--------- !=---------. Next take two of the p things and combine [r — 117 — r + 1
I ?them with r — 2 of the q things; this can be done in -----—!=-------lr-2ways. Proceed thus, and add the number of combinations so obtained together, which will give the whole number of combi­nations.If however r is not less than q we should consider fiι*st the case in which r — q things are taken from the p like things, and 

q things are taken from the q unlike things; this can be done in only one way. Next take r — q + 1 things from the p things, and 9' — 1 from the q things; this can be done in q And so on.If the number of permutations be required, we have only to observe that each combination of r things in which s are alike and Ithe rest unlike, will produce ∣= permutations (Art. 498), and thus the whole number of permutations may be found.500. By the following method the formula for the number of combinations of n things taken r at a time may be found without assuming the formula for the number of permutations.
www.rcin.org.pl



PERMUTATIONS AND COMBINATIONS. 281Let {n∖ denote the number of combinations of n things taken r at a time. Suppose n letters a, b, c, d, .......... ; among the com­binations of these r at a time, the number of those which contain the letter a is obviously equal to the number of combinations of the remaining n — 1 letters r—1 at a time, that is, to (w — The number of combinations which contain the letter b is also (« — and so for each of the letters. But if we form, first allthe combinations which contain a, then all the combinations which contain b, and so on, each particular combination will ap­pear r times ; for if r = 3, for example, the combination αδc would occur among those containing α, among those containing b, and among those containing c. Hence
In this formula change n and r first into w — 1 and r — I respectively, then into n — 2 and r — 2 respectively, and so on ; thus

Multiply, and cancel like terms, and we obtain

501. To find the whole number of permutations of n things 
wlien each may occur once, twice, thrice, ..........up to r times.Let there be n letters a, b, c,.......... First take them one at atime; this gives the number n. Next take them two at a time ; here a may stand before a, or before any one of the remaining letters; similarly ά may stand before b, oτ before any one of
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282 EXAMPLES. CHAPTER XXXIV.the remaining letters ; and so on; thus there are w’ different per­mutations of the letters taken two at a time. Similarly by put­ting successively α, δ, c,..........before each of the permutations ofthe letters taken two at a time, we obtain n’ permutations of the letters taken three at a time. Thus the whole number of permu­tations when the letters are taken r at a time will be w’’.502. Since the number of combinations of n things taken r at a time must be some integer, the expression 
must be an integer. Hence we see that the product of any 
r successive integers must be divisible by [r. We shall give a more direct proof of this proposition in the chapter on the theory 
of numbers.

EXAMPLES OF PERMUTATIONS AND COMBINATIONS.

1. How many different permutations may be made of the letters in the word Caraccas taken all together ?2. How many of the letters in the word Heliopolis 23. How many of the letters in the word Ecclesiastical 14. How many of the letters in the word Mississippi ?

5. If the number of permutations of n things taken 4 toge­ther is equal to twelve times the number of permutations of 
n things taken 2 together ; find n.6. In how many ways can 2 sixes, 3 fives, and 5 twos be thrown with 10 dice 17. If there are twenty pears at three a penny, how many different selections can be made in buying six-pennyworth 1 In how many of these will a particular pear occur 1
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EXAMPLES. CHAPTER XXXIλ∖ 2838. From a company of soldiers mustering 96, a picket of 10 is to be selected; determine in how many ways it can be done, (1) so as always to include a particular man, (2) so as always to exclude the same man.9. How many parties of 12 men each can be formed from a company of 60 men 110. If the number of combinations of n things r — /toge­ther be equal to the number of combinations of n things r + / together, find n.11. In how many ways can a party of six take their places at a round table 112. In how many different ways may n persons form a ring ?13. How many different numbers can be formed with the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 ; each of these digits occurring once and only once in each number ? How many with the digits 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, on the same supposition Ϊ• 14. Out of 12 conservatives and 16 reformers how many different committees could be formed each consisting of 4 re­formers and 3 conservatives ?15. If there be x things to be given to n persons, shew that 
n" will represent the whole number of different ways in which they may be given.16. Suppose the number of combinations of n things taken r together to be equal to’ the number taken r + 1 together, and that each of these equal numbers is to the number of com­binations of n things taken r — 1 together as 5 to 4, find the value of n.17. Given m things of one kind, and n things of a second kind, find the number of permutations that can be formed con­taining r of the first and s of the second.18. How many different rectangular parallelepipeds are there satisfying the condition that each edge of each parallelo-
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284 EXAMPLES. CHAPTER XXXIV.piped shall be equal to some one of n given lines all of different lengths Ϊ19. The ratio of the number of combinations of 4n things taken 2w together, to that of 2w things taken n together is1.3.5..........(4n-l){1.3.5..........(2w-l)f ■20. Out of 17 consonants and 5 vowels, how many words can be formed, each containing two consonants and one vowel ?21. Out of 10 consonants and 4 vowels, how many words can be formed each containing 3 consonants and 2 vowels 122. Find the number of words which can be formed out of 7 letters taken all together, each word being such that 3 given letters are never separated.23. With 10 flags representing the 10 numerals how many signals can be made, each representing a number and consisting of not more than 4 flags Ί24. How many words of two consonants and one vowel can be formed from 6 consonants and 3 vowels, the vowel being the middle letter of each word 125. How many words of 6 letters may be formed with 3 vowels and 3 consonants, the vowels always having the even places Ϊ26. A boat’s crew consists of 8 men, 3 of whom can only row on one side and 2 only on the other. Find the number of ways in which the crew can be arranged.27. A telegraph has m arms, and each arm is capable of n distinct positions; find the total number of signals which can bθ made with the telegraph, supposing that all the arms are to be used to form a signal.28. A pack of cards consists of 52 cards marked differently in how many different ways can the cards be arranged in four sets, each set containing 13 cards ?29. How many triangles can be formed by joining the angular points of a decagon, that is, each triangle having three of the angular points of the decagon for its angular points ?
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EXAMPLES. CHAPTER XXXIV. 28530. There are n points in a plane, no three of which are in the same straight line with the exception of p, which are all in tlie same straight line; find the number of lilies which result from joining them.31. Find the number of triangles which can be formed by joining the points in the preceding question.32. There are n points in spaccy∣ of which p are in one plane, and there is no other plane which contains more than three of them; how many planes are there, each of which contains three of the points 133. If n points in a plane be joined in all possible ways by indefinite straight lines, and if no two of the stι∙aight lines be coincident or parallel, and no three pass through the same point (with the exception of the n original points), then the number of points of intersection exclusive of the n points will be
34. There are fifteen boat-clubs; two of the clubs have each tliree boats on the river, five others have two, and the remaining eight have one; find an expression for the number of ways in which a list can be formed of the order of the 24 boats, observing that the second boat of a club cannot be above the first.35. A shelf contains 20 books, of which 4 are single volumes, and the others form sets of 8, 5, and 3 volumes respectively; find in how many ways the books may be arranged on the shelf, the volumes of each set being in their due order.36. Find the number of the permutations which can be formed with the letters composing the word examination taken 4 at a time.37. There are n—1 sets containing 2α, 3α,..........no. thingsrespectively; shew that the number of combinations which can
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286 BINOMIAL THEOREM. POSITIVE INTEGRAL EXPONENT, 

be formed by taking a out of the first, 2α out of the second, and 
so on for each combination, is

38. Find the sum of all the numbers which can be formed with all the digits 1, 2, 3, 4, 5, in the scale of 10.39. The sum of all numbers that are expressed by the same digits is divisible by the sum of the digits.
XXXV. BINOMIAL THEOREM. POSITIVE INTEGRAL EXPONENT.503. We have already seen that {x + α)* = + 2xα + a’, andthat (x + a)® = aj’+ 3x⅛ + 3xα* + a®; the object of the present chapter is to find an expression equal to (x + a)” where n is any j)ositive integer.504. By ordinary multiplication we obtain

Now in these results we see that the following laws hold.I. The number of terms on the right-hand side is one more than the number of the binomial factors which are multiplied together.II. The exponent of x in the first term is the same as the number of binomial factors, and in the succeeding terms each exponent is less than that of the preceding term by unity.
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BINOMIAL THEOREM. POSITIVE INTEGRAL EXPONENT. 287III. The coefficient of the first term is unity; the coefficient of the second term is the sum of the second terms of the binomial factors; the coefficient of the third term is the sum of the pro­ducts of the second teι∙ms of the binomial factors taken two at a time; the coefficient of the fourth term is the sum of the pro­ducts of the second terms of the binomial factors taken three at a time; and so on; the last term is the product of all the second terms of the binomial factors.We shall now prove that these laws always hold whatever be the numbeι∙ of binomial factors. Suppose the laws to hold when n — 1 factors are multiplied together; that is, suppose 
{x + αJ(aj + αj. ..(x + = a:"'* + +∙ ∙ ∙+jP∏-pwhere p^ = the sum of the terms ..........J9j, = the sum of the products of these terms taken two at a time,∕>3 = the sum of the products of these terms taken three at a time,

= the product of all these terms.Multiply both sides of this identity by another factor x + ;thus
= the sum of all the terms α,, a..........a^;
= the sum of the products taken two at a time of all the terms α,, ..........
= the sum of the products taken three at a time of all the terms aa..........α^.

p^_^a^ = the product of all the terms.
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288 BINOMIAL THEOREM. POSITIVE INTEGRAL EXPONENT.Hence if the laws hold when i⅛ — 1 factors are multiplied together, they hold when n factors are multiplied together; but they have been proved to hold when 4 factors are multiplied . together, therefore they hold when 5 factors are multiplied toge­ther, and so on; thus they hold universally.We shall write the result for the multiplication of n factors thus for abbreviation.
The number of terms in is obviously n; the number of terms in is the same as the number of combinations of then things α,, a..........taken two at a time, that is, -Λ—and so on. Now suppose α^,..........each = a; thus q^ be­comes na, and q^ becomes —and so on; and we obtain

This formula is called the Binomial Theorem; the series on the right-hand side is called the expan^n of (x + α)", and when we put this series in the place of (a; + α)" we are said to expand (ic + α)". The theorem was discovered by Newton.505. For example, take (ic + a)*; here n = 5,

thus {x + a)* = x* + 5x*a + 10ic*α* + 1 Oa:*»’ + 5xa* + a’^.

Xg&in, suppose we require the expansion of {c* + yzf', we have only to write c* for x and yz for a in the preceding identity, tlius
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BINOMIAL THEOREM. POSITIVE INTEGRAL EXPONENT. 289

Similarly,
506. In the expansion of {x + α)" suppose £c = 1; thus∕τ ∖n 1 w(n-l) , w(n-l)(w-2) 3(1 ÷ Ct) — 1 + 7i(x∣ ÷ —z—77— Ct -1-------- —θ——------ cb + .∙∙.∙. + Ct ∫

1 ∙ 1 ∙ i2 ∙ usince this is true whatever a τaa,γ be, we may write x for a; thus /1 ∖n 1 w(n-l) , n(n-l)(n-2) 3 .(1 + a:) = 1 + wx -i—η—4—----- -  a: +........... + x .

507. The coefficient of the second term in the expansion of(1 + a;)" is n, the coefficient of the third term ; andgenerally the coefficient of the {r + 1)^** term, being the number of combinations of n things taken r at a time is, by Art. 494,
,, n (n - 1) (n - 2}..........(n - r + 1) , ,.,. , ,equal to —------- —-------- --------- '------------- -; by multiplying bothnumerator and denominator by ] w — r this becomes

508. The coefficient of the r*** term from the beginning is equal 
to the coefficient of the r*** term from the end.The coefficient of the r"* term from the be"inning iso o

which becomes by multiplying both numerator and denomi­nator by I n — r + 1
T. A. 19
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290 BINOMIAL THEOREM. POSITIVE INTEGRAL EXPONENT.The r*** term from the end is the {n — r + 2)“* from the begin- ning, and its coefficient is 
and this also

509. It appears from the preceding article that the coeffici-ent of the r*** term may be written thus, ;----- ϊ—-------- r. If we’ Ir- 1 [n-r + 1 θ'PP^y term for which r = n + l, this expressionItakes the form ∙ symbol [0 has had no meaning hitherto assigned to it; if we agree to consider it equivalent to 1, then the general expression will hold true for the last term.510. To find the greatest coefficient in the expansion of (1 + x}∖This has been investigated in the chapter on Permutations and Combinations (Art. 497); it is there shewn that when n is even, the greatest coefficient is found by putting for r in the expression 
2ι

g∙ ; when n is odd the greatest coefficient is found by put­
ting - or for 7∙ in the expression, the result being thesame in the two cases.511. To find the greatest term in the expansion of (pc + α)".The term of the expansion isλ(λ-1).........(n-r+T)[7771the (r + l)^* term may be obtained by multiplying the ∕** by
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that is, by This multiplieι∙ dimi­nishes as r increases, and is greater than 1only so long as is greater thanthat is, only so long asis greater thanthat is, only so long as
r is less than

be an integer, then, denoting this integer by p, the
2)“* term of the expansion is equal to the (/> + 1)“* term, and these terms are greater than any other term; but if 
be not an integer, then the greatest term is the {q +1)***, where q is the integral part of

512. In the theorem for expanding {x + α)", as a may have any value, we may suppose it negative if we please; thus put — c 
ioγ a and we have
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292 BINOMIAL THEOREM. POSITIVE INTEGRAL EXPONENT.We may observe that the expansion of a binomial can always be reduced to the case in which one of the two quantities is unity. For
We may then expand (1 + y)" and multiply each term by x^, and thus obtain the expansion of (x + α)".513. To find tlva sum of the coefficients of the terms in the 
expansion of (1 + x)”.The theorem 
is true for all values of x; put x = 1; thus
That is, the sum of the coefficients = 2".514. The sum of the coefficients of the odd terms in the expan­
sion of (1 + x)" is equal to the sum of the coefficients of the even 
terms.Put £C = — 1 in the expansion of (1 + a?)": thus

= sum of the odd coefficients — sum of the even coefficients.Since then the sums are equal, by the preceding article each 2"must = ; that is, 2"~*.
515. The result in Art. 513 gives a theorem relating to Combinations. For suppose there are n things; then we can take them singly in n ways, we can take them two at a time in ways, we can take them three at a time in
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EXAMPLES. CHAPTER XXXV. 2931 ®θ θ*^∙ Hence by Art. 513 the totalnumber of ways of taking n things is 2"- 1. This theorem was obtained by the early writers on Algebra before the Binomial Theorem was known; the proof is a simple example of mathe­matical induction which is deserving of notice. We have to shew that if unity be added to the total number of ways of taking n things, the result is 2". Suppose we have four letters rt, δ, c, (Z; form all the possible selections and prefix unity to them. Thus we have 1,cΓ', 5, c, cZ,αδ, αc, ad, be, bd, cd, 
al)c, abd, acd, bed, 
abed.Here the total number of symbols is 16, that is, 2*. Now take an additional letter e; the corresponding set of symbols will consist of those already given, and those which can be formed from them by aflixing e to each of them. The number will there­fore be doubled; that is, it will be 2®. The mode of reasoning is general, and shews that if the theorem is true for n things, it is true for n + 1 things.

EXAMPLES OF THE BINOMIAL THEOREM.1. Write down the 3"* term of (2. Write down the 49“' term of3. Write down the 5^** term of ∣4. Write down the 2001‘‘ term of5. Write down all the terms of6. Write down the 5“* term of7. Write down the 6“' term of (
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294 EXAMPLES. CHAPTER XXXV.

8. Write down all the terms of9. Write down the middle term of10. Write down the two middle terms of11. Expand {α + — I)}” + {α — — 1)}® in powers of a.12. Write down the coefiScient of y in the expansion of
13. If A be the sum of the odd terms and B the sum of the even terms in the expansion of (x + α)", prove that
14. Prove that the difference between the coefficients of and a?’’ in the expansion of (1 ÷af)"** is equal to the differ­ence between the coefficients of and in the expansion of (1 + x}∖15. Shew that the middle term of (1 + xf*

16. Find the binomial expansion of which four consecutive terms are 2916, 4860, 4320, 2160.17. Prove that the coefficient of x'^ in the expansion ofmay be represented by
18. Write down the coefficient of in the expansion of
19. Find the r∙*** term from the beginning, the r*** term from the end, and the middle term of20. If iθ, ij, ..........represent the terms of the expansionof (α + ic)", shew that
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BINOMIAL THEOREM. ANY EXPONENT. 295

XXXVL BINOMIAL THEOREM. ANY EXPONENT.
516. We have seen that when n is a positive integer
We now proceed to shew that this equation holds when n has any value positive or negative, integral or fractional, that is, we shall prove the Binomial Theorem for any exponent. We shall make some observations on the proof after giving it in the usual form.517. Suppose m, and n ‘άχα positive integers; then we have.................(1),

.................(2).But hence the product of the series which form the right-hand mem­bers of (1) and (2) must = (1 + re)’"''·”; that is,

Equation (3) has been proved on the supposition that m and n are positive integers; but the product of the two series which occur on the right-hand side of (3) must be of the same form whatever 
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296 BINOMIAL THEOREM. ANY EXPONENT.

m and n may be; we therefore infer that (3) must he true what­ever m and n may be. We shall now use a notation that will enable us to express (3) briefly. Let ∕(m-) denote the series * 
whatever m may be; then ∕(n} will denote what the series becomes when n is put for m; and f(m + n) will denote what the series becomes when m + n is put for m. And when m is any positive integer f{jn}= (1 + alsoy"(0) = l. Thus (3) maybe written ....(4).Similarly,

Proceeding in this way we may shew that
Λ5∖

Now let m = n=p = q=..........positiveintegers, and suppose the number of terms to be r; then (5) becomes 
thereforeBut since s is a positive integer /(«) =(1 + and therefore 
thereforeThis proves the Binomial Theorem when the exponent is any 
positive guaritiiy.
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BINOMIAL THEOREM. ANY EXPONENT. 297Again, in (4) put — n for m; thus 
thereforeBut if n be any positive quantity, f{n) = (1 + a:)"; hence 
that is,This proves the Binomial Theorem when the exponent is any 
negative quantity.518. The proof of the Binomial Theorem for any exponent contained in the preceding article was first given by Euler; although difficult and not altogether satisfactory, it is a valuable exercise for the student. We shall now offer some remarks upon it.The first point we have to notice is the mode of proving that 
f{m + n) = f (m) × f (n). The student should for an exercise write down three or four terms of the series for f{nι), and also of the series for f{n∖ and multiply them together; if the product be arranged according to powers of x, it will be found that so far as it has been completely formed, it will agree with the series for 
f{rn + n). But from knowing what and ∕(n) represent when 
m and n are positive integers, we infer without the trouble of actual multiplication, that the law expressed by. ∕(τzι + n) =f(m) ×f{n}must hold. The mode of establishing this law in the simple case in which m and n are positive integers is a valuable algebraical artifice.But the way in which we infer that/(«» + n) =∕(w) ×∕(n), 
whatever m and n nvay δe, is still more important. The principle is merely this; the form of any algebraical product is the same 
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298 BINOMIAL THEOKEM. ANY EXPONENT.whether the factors represent whole numbers or fractions, positive or negative numbers; thus, for example, 
is time whatever a, b, and c may be. Hence we infer that 
/(m) × f(n) will have the same form in all cases, whether m and n be positive integers or not.The student may also notice the proof of this result which is given in the Theory of Equations, Chapter xxιv.519. Tlie most difficult point however to be considered is the meaning of the sign = in the assertion ...(1).Suppose, for example, that n = — 1, then the above becomes.... (2).Now we know that the sum of r terms of the serieshence when x is numerically
less than unity, by taking enough terms of the series, we can obtain a result differing as little as v)e please from —, and thus we can in this case understand the assertion in (2). But when 
X is numerically greater than unity, there is no such numerical approximation to the value of --— obtained by taking a large

1 “l· Λ√number of terms of the series 1— x + x^- x^+..........We shall see in the chapter on the Convergency of Series, that when X is numerically less than unity, we can form a definite conception of the series on the right of (1) whatever n may be. In this case there is no difficulty in the statement 
each of the three series which it involves is arithmetically intelli­gible. But when x is numerically greater than unity, we cannot give an arithmetical meaning to the series or to the statement; all

www.rcin.org.pl



BINOMIAL THEOREM. ANY EXPONENT. 299we ought to say is, that if we form the product of the first τ terms of film) and the first r terms of fin), the first r terms of the result will agree with the first r terms of f{m, + n)', but this will not justify us in writing f(ιn + n)=f (m) × f (n).On the whole then we may conclude that the Binomial Theo­rem for the expansion of (1 + ic)" gives a result which is arithme­tically intelligible and true when x is numerically less than unity; in what sense the result is true when x is numerically greater than unity has not yet been explained in an elementary manner. The subject of the expansion of expressions is however properly a portion of the Differential Calculus, to which the student must be referred for a fuller consideration of the difficulties.520. To find the numerically greatest term in the expansion 
of (1 +ic)'*. ∙We consider x as positive.I. Suppose n a positive integer. term may beformed by multiplying the ∕** term by that is, by

; and this multiplier diminishes as r increases. Put
therefore p -If p be an integer, two terms of the expansion are equal, namely, the />“* and the (/» + 1)“*, and these are greater than any other term. If p be not an integer, suppose q the integral part of 

p, then the (g + 1)”' term is the greatest.II. Suppose n positive but not integral. As before, the (r + 1)'** term may be formed by multiplying the r'** by
If then X be greater than unity, there is no greatest term; for the above multiplier can, by increasing r, be made as near to — x as we please; that is, each term from and after some fixed term
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300 BINOMIAL THEOREM. ANT EXPONENT.can be made as nearly as we please nunierically x times the pre­ceding term, and thus the terms increase without limit. But if x be less than unity there will be a greatest term; for if p = >then as long as r is less than p the multiplier is greater than unity, and the terms go on increasing; but when r is greater than 
p the multiplier is less than unity, and so long as it continues positive it diminishes as r increases; and when the multiplier becomes negative it is still numerically less than unity; so that each term after r has passed the value p is numerically less than the preceding term. Hence, as in the first case, if p be an integer, the jo'** term is equal to the (p + 1)“* term, and these are greater than any other term; if p be not an integer, suppose g the in­tegral part of p, then the (g + 1)“* term is the greatest.III. Suppose n negative.Let nι=-n, so that m is positive. The numerical value of the 
(r + 1)“* term may be obtained by multiplying that of the term

If X be greater than unity we may shew, as in the second case, that there is no greatest term. If x be less than unity, puttherefore p

If JO be a positive integer, the jo*'* term is equal to the (jo + 1)''* term, and these are greater than any other term. If p be positive but not an integer, suppose g the integral part of p, then the (g+ 1)"' term is the greatest. If p be negative, then m is less than unity; in this case each term is less than the preceding, and the first term, that is, unity, is the greatest.We have supposed throughout that x is positive; if x be nega­tive, put y = — X, so that y is positive; then find the numerically greatest term of (1 + y)“, and this will also be the numerically greatest term of (1 + x)".
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BINOMIAL THEOREM. ANY EXPONENT. 301521. The first term of the expansion of (1 + x)^ is unity; any other term is known since the (r + 1)“* term is
Tlιis expression is called the general term, because by putting 1, 2, 3,......... successively for r, it gives us in succession the 2°'*,4'**,.......... terms; that is, we can obtain from it any term afterthe first. The expression for the general term may be modified in particular cases, and sometimes simplified, as will be seen in the following examples: the general term becomes

which may be written
Here n = ∖', the numerator of the coefficient of af is

if r is not less than 2, this may be written 
hence in the expansion of (1 + x)^, the first term is 1, the second is ^x, and any subsequent term may be found by putting for the (r + 1∕** term

(1 + £c) i This is a particular case of (1 + x) ". The co­efficient of aj' is
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302 BINOMIAL THEOREM. ANY EXPONENT.(1 — ic)^*. By the preceding example the (r + 1)“* term is
522. A Multinomial expression may be raised to any power by repeated use of the Binomial Theorem; thus, for example, 

if we now expand (δ + c)* and (δ + c)® and put the resulting ex­pansions in the place of these quantities respectively, we shall obtain the expansion of {α + δ + c}®. Similarly, 
the expansion may then be completed by finding the expansion of (δ + c + d'f and of (δ + c + c?)® in the manner just exemplified. 01* we may proceed thus.
the expansion may then be completed by expanding (α + δ)≡, (α + δ)®, &c.523. To find the number of homogeneous products of r dimen­
sions that can he formed out of n letters a, b, c, ..........and their
powers.By common division, or by the Binomial Theorem,
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BINOMIAL THEOREM. ANY EXPONENT. 303Thus

Here .. suppose.

that is, >S'j is equal to the sum of the quantities α, δ, c,.......... ; >¾ isequal to the sum of all the products, each of two dimensions, that can be formed of a, δ, c, ..........and their powers; is equal tothe sum of all the products, each of three dimensions, that can be formed; and so on. To find the number of products in any one of these sets of products, we put α, b, c, ..........each = 1 : thus,... becomesHence in this case is the coefficient of in the expansion of (1 - a:)·" ; that is,
This is therefore the number of homogeneous products of r dimen­sions that can be formed out of α, δ, c,......... and their powers.

524. To find the number of terms in the expansion of any 
multiizomial, tlι^ exponent being a positive integer.The number of terms in the expansion of {a^ + a^ + a^ +...+ af' is the same as the number of homogeneous products of n dimen­sions that can be formed out of α,, a^, a^, ..........aand theirpowers. Hence, by the preceding article, it is
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304 BINOMIAL THEOREM. ANY EXPONENT.

525. The Binomial Theorem may be applied to extract the roots of numbers approximately. Let A be a number whose • root is required, and suppose JV'= a” + &; then
where x = — . If now a: be a small fraction, the terms, in the a”

1expansion of (1 + a;)» diminish rapidly, and we may obtain an ap- 
£ 1proximate value of (l+a:)“ , and therefore of JV", by retaining only a few of these terms. It will therefore be convenient to take a so that α" may differ as little as possible from JV, and thus 

h may be as small as possible. Sometimes it will be better to sup­pose N= a” -526. The ratio (α + a;)" : α" is nearly equal to the ratio α + ιnjχ : a when nx is small compared with α. This holds whether x be positive or negative, and for values of n whole or fractional, positive or negative. See Art. 383.527. We will close this chapter with five examples which will illustrate the use of the Binomial Theorem.
(1) Expand in a series of ascending powers of x.

expand by the Binomial Theorem ; thus we have
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BINOMIAL· THEOREM. ANY EXPONENT. 305Or we may proceed thus,

and thus we obtain the same result as before.This example frequently occurs in mathematics, especially in cases where x is so small that its square and higher powers may be neglected; we have then approximately

(2) Required approximate values of the roots of the quad­ratic equation ax^ + 6ic + c = 0, when ac is very small compared with h^.The roots are
And by the Binomial Theorem,

Thus for the root with the upper sign we get
and for the root with the lower sign we get

If a be very small, while b and c are not small, the former root does not differ much from — , and the latter root is numericallyvery large. See Art. 342.
T. A. 20
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306 BINOMIAL THEOREM. ANY EXPONENT.It is deserving of notice that the approximate value of the root in the former case coincides with what we shall obtain in the following way. Write the equation thus,
For an approximate result neglect the term ax^ as small; thus 

∙<fiQ obtain x = — . Then substitute this approximate value of
X in the term ax^; thus we obtain
that is,Again, substitute this new approximate value of x in the term 
ax∖ and preserve the terms involving a and a®; thus we obtain
that is, and so on.(3) To prove that if be any positive integer the integral part of (2 + */3)" is an odd number.The meaning of this proposition will be easily seen by taking some simple cases; thus 2 + lies between 3 and 4 in value, so that the integral part of it is the odd number 3 j (2 + ^∕3)≡ will be found to lie.between 13 and 14 in value, so that the integral part of it is the odd number 13.Suppose then I to denote the integral part of (2 + ^3)", and 
I + F its complete value, so that F is a proper fraction. We have by the Binomial Theorem ..(1).Now 2 — ^3 is a proper fraction, therefore also so is (2-^3)"; denote it by F' ∙, then
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BINOMIAL THEOREM. ANY EXPONENT. 307

•(2).
Now add (1) and (2); the irrational terms on the right dis­appear, and we have

= an even integer.But F and F' are proper fractions : we must therefore have
F + F' = 1, and / = an odd integer.(4) Required the sum of the coefficients of the first r + 1 terms of the expansion of (1 -x}~^. We have

Therefore (1 — is equal to the product of the two series.Now if we multiply the series together, we see that the coefficient 
of x*' in the product is
this must therefore be equal to the coefficient of ic*" in the ex­pansion of (1 — J that is, to
thus the required summation is effected.(5) The Binomial Theorem may be applied in the manner just shewn to establish numerous algebraical identities; we will give one more example. 20—2
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308 EXA^IPLES. CHAPTER XXXVI.

Letit is required to shew that
The expression here given is the expansion of

which must obviously be zero.
EXAMPLES OF THE BINOMIAL THEOREM,Expand each of the following twelve expressions to four terms:1.4.

r* 
/.10.

2.o.8.11.
3.6.9.12.Find the (r+ 1)”’ term in the expansion of the following seven expressions :13.

17.
15.

18.
16.
19.Calculate the following four roots approximately :20. 21. 22. 23.24. If X be small compared with unity, shew thatnearly.25. Shew that the number of combinations of n things taken in ones, threes, fives, .......... exceeds the number when taken intwos, fours, ..........by unity.
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EXAMPLES. CHAPTER XXXYI. 30926. Shew that the number of homogeneous products of n things of n dimensions is
Find the greatest term in the following four expansions :27.
28.
29.
30.
31. Find the greatest term in the expansion ofwhere τι is a positive integer.32. Find the number of terms in the expansion of
33. Find the first term with a negative coefficient in the

11 expansion of (1 + * ■34. If p be greater than n, the coefficient of a?' in the expan­sion of
35. The coefficient of x^ in the expansion of
36. ΛVhat is the coefficient of x" in the expansion of
37. Expand in ascending powers of x. Write downthe coefficient of x ’̂" and of x·’··**.
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310 EXAMPLES. CHAPTER XXXVI.38. Prove that the n*** coefficient in the expansion of (1 - x)~" is always the double of the (ιι — 1)“".39. Shew that if denote the middle term in the expansionof (1 + then iθ + + ..........= (1 ~40. Write down the sum of
...ad inf.41. Find the sum of the squares of the coefficients in the expansion of (1 +iκ)", where n is a positive integer.42. , prove that

43. Prove that the coefficient of a” in the expansion ofis equal to the coefficient of a;" in the expansion of
44. Find the coefficient of a;' in» (1 + 2a; + 3a;® + 4aιθ + ad inf...........)".

XXXVII. THE MULTINOMIAL THEOREM.528. We have in the preceding chapter given some examples of the expansion of a multinomial; we now proceed to consider this point more fully. We propose to find an expression for the 
general term in the expansion of (αθ + a^x + a^x^ + a^x^ + ............)".The number of terms in the series αθ, a^, a^, .......... may be anywhatever, and n be positive or negative, integral or frac­tional.Put δj for a^x + a^x^ + a^x^ +.......... , then we have to expand(α + b )"; the general term of the expansion is
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THE MULTINOMIAL THEOREM. 311/X being a positive integer. Put b^ for + +.........., then
l>μ- = (^a^X + since ∕x is a positive integer the geneι∙al term ofthe expansion of (a ic + b y ma,y be denoted either byor bywe will adopt the latter form as more convenient for our purpose.Combining this with the foι∙mer result, we see that the general term of the proposed expansion may be written

Again, put b^ for a.jc^ + a^x* +..........., then b^~^ = (a^x‘ +and the general term of the expansion of this will be
Hence the general term of the proposed expansion may be written
Proceeding in this way we shall obtain for the required general term

whereIf we suppose n-μ=p, we may write the geneι∙al term in the form
where
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312 THE MULTINOMIAL THEOREM.Thus the expansion of the proposed multinomial consists of a series of terms of which, that just given may be taken as the general type.It should be observed that q, r, s, t,.......... are always positive
integers, but p is not a positive integer unless n be a j)ositive integer. When p is a positive integer, we may, by multiplying both numerator and denominator by Ip, write the coefficient 
in the more symmetrical form

529. Suppose we require the coefficient of an assigned power of X in the expansion of (αθ + a^x + +.......... )", for examplethat of x”. ^Wg have then
We must find by trial all the positive integral values of Ϋ, r, s, t, .......... which satisfy the first of these equations; thenfrom the second equation p can be found. The required coeffi­cient is then the sum of the corresponding values of the ex­pression
λVlιen n is a positive integer, then p must be so too, and we may use the more symmetrical form
530. For example, find the coefficient of x^ in the expansion of (1 + 2x + 3√ + 4√)∖
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THE MULTINOMIAL THEOEEM. 313Here *
Begin with the greatest admissible value of 

8; this is s = 2, with which we have r = 0, g = 1, ∕> = 1. Next try s = l; with this we may have 
r = 2, g = 0, p = 1; also we may have r = 1, 
(jf = 2, p = Q. Next try s = 0; with this we may haver =3, g' = l, j9 = 0. These are all the so­lutions ; they are collected in the annexed table.Also αθ = 1, Λj = 2, = 3, »3 = 4. Thus the required coeffi­cient is
that is, 384 + 432 + 576 + 216; that is, 1608.Again; find the coefficient of in the expansion of

Here
All the solutions are given in the annexed table, and the required coefficient is

that is. that is, 1.In this case, smce
the proposed expression is And
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314 EXAMPLES. CHAPTER XXXVII.thus we see that the coefficient of a;® ought to be 1; and the student may exercise himself by applying the multinomial theo­rem to find the coefficients of other powers of x, as, for ex­ample, X*.

EXAMPLES OF THE MULTINOMIAL THEOREM.Find the coefficients of the specified powers of x in the fol­lowing expansions:1. a* in2. ««in3. a;® in4. a;’* in
5. x^ inG. x^ in
7. in8. a;’ in9. x*^ in10. a?® in11. a;® in12. X* in13. a:® in14. a:* in15. x^ in16. X* in17. a;*· in18. a:® in19. X* in20. a:® in
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EXAMPLES. CHAPTER XXXVII. 31521. ωθ in (1-a≈*+α≡-ajγ.
22. a:* in (1 + αx +23. ic’ in (1 + a^x + a^x^ + a,^x^ +..........}^.24. Find the coefficient of αδc* in (α + ά + cy.

25. Find the coefficient of in (α — & — cf.26. Find the coefficient of a^b*c^ in (α + b + c + dy.

21. Find the coefficient of ab^d'd^ in (α — b + c -28. Write down those terms in the expansion of (a+ b + c)" which involve powers of b and c as high as the third power in­clusive.29. Write down all the terms-in the expansion of 
which contain30. Find the greatest coefficient in the expansion of

31. » The greatest coefficient in the expansion of 
where q is the quotient, and r the remainder when n is divided by m.32. Shew that the coefficient of in the expansion of

33. Expand34. Expand35. Expand36. In the expansion of (1 + x + α*+............+ aj*")", where w isa positive integer, shew that (1) the· coefficients of the terms equi­
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316 EXAMPLES. CIIAPTEE XXXVILdistant from the beginning and the end are equal; (2) the coeffi­cient of the middle term, or of the two middle terms, according as 
n is even or odd, is greater than any other coefficient; (3) the co­efficients continually increase from the first up to the greatest.37. If αθ, Λj, α^, α^, ... be the coefficients in order of the expansion of ∏ + aj + a3*+............+ xΥ. prove that(1)(2)38. If αθ, «J, a^,...........be the coefficients in order of theexpansion of (1 +£C + prove that

XXXVIII. LOGARITHMS.531. Suppose = then a: is called the logarithm of n to the 
base a; thus the logarithm of a number to a given base is the index of the power to which the base must be raised to be equal to the number.The logarithm of n to the base a is written log^n; thus loga n = X expresses the same relation as o’" = n.532. For example, 3* = 81; thus 4 is the logarithm of 81 to the base 3.If we wish to find the logarithms of the numbers 1, 2, 3,..........to a given base 10, for example, we have to solve a series of equa­tions 10®= 1, 10® = 2, 10® = 3,.......... We shall see in the nextchapter that this can be done approximately, that is, for example, although we cannot find such a value of x as will make 10® =2 
exactly, yet we can find such a value of x as will make 10® difier from 2 by as small a quantity as we please.We shall now prove some of the properties of logarithms.533. The logarithm of 1 is 0 whatever the base may be.
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LOGARITHMS.534. The logarithm of the base itself is unity.For α"' = a when a; = 1.
535. The logarithm of a product is equal to the sum of the 

logarithms of its factors.For let til ere fore t]ι ere fore therefore536. The logarithm of a quotient is equal to the logarithm of 
Uie dividend diminished by the logarithm of the divisor.For let therefore therefore 
therefore

537. The logarithm of any power, integral or f ractional, of a 
number is equal to the product of the logarithm of the number by the 
index of the power.For let therefore538. To find the relation between the logarithms of the same 
number to different bases.Letthereforetherefore therefore therefore
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318 LOGARITHMS.

•UHence y = x log⅛α, and = ■Hence the logarithm of a number to the base b raa,y be found by multiplying the logarithm of the number to the base a by
We may notice that log⅛α × log<,δ = 1.539. In practical calculations the only base that is used is 10; logarithms to the base 10 are called common logarithms. Wo will point out in the next two articles some peculiarities which constitute the advantage of the base 10. We shall require the fol­lowing definition ; the integral part of any logarithm is called the 

characteristic, and the decimal part the mantissa.540. In the common system of logarithms, if the logarithm of any number be known we can immediately determine the loga­rithm of the product or quotient of that number by any power of 10.For
That is, if we know the logarithm of any number we can determine the logarithm of any number which has the same figures, but differs merely by the position of the decimal point,541. In the common system of logarithms the characteristic of the logarithm of any number can be determined by inspection.For suppose the number to bo greater than unity and to lie between 10" and 10"**; then its logarithm must be greater than 

n and less than n + 1; hence the characteristic of the logarithm is n.Next suppose the number to be less than unity, and to lie 1 1 .between — and , ⅛ between 10 " and 10 then
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EXAMPLES OF LOGARITHMS. CHAPTER XXXVIII. 319 its logarithm will be some negative quantity between —n and — (w + 1); hence if we agree that the maiiiissa shall always he 
positive, the characteristic will be — (n + 1).Further information on the practical use of logarithms will be found in works on Trigonometry and in the introductions t'o Tables of Logarithms.

EXAMPLES OF LOGARITHMS.1. What is the logarithm of 144 to the base 2 1

2. What is the characteristic of the logarithm of 7 to the base 2 ?3. Find the characteristic of logj 5, and of logs .4. Find logs 3125.5. Give the characteristic of logjθ 1230, and of logjθ∙0123.6. Given log2=∙301030 and log 3 = ∙477121, find the loga­rithms of Ό5 and of 5'4.
T. Given log 2 and log 3 (see question 6), find the logarithm of ∙006.8. Given log 2 and log 3, find the logarithms of 36, 27, and 16. 9. Given log 648 = 2∙81157501, log 864 = 2∙93651374, find log 3 and log 5.10. Given log 2, find log ^(1∙25).11. Given log 2, find log ∙0025.12. Given log 2, find log ^(∙0125).13. Given log 2 and log 3, find log 1080 and log (∙0025)^.14. Having given logjθ 2 = '301030 and log,θ 7 - '845098, findlogio θθ the logarithm of ⅛θ t^ie base 1000.
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320 examples of logarithms. chapter xxxviπ.15. Find the number of digits in having given log 2.16. Given log 2 and log 5∙743491 = ∙7591760, find the fifth root of Ό625.17. If P he the number of the integers whose logarithms have the characteristic p, and Q the number of the integers the logarithms of whose reciprocals have the characteristic — q, shew that
I 1 __ 1__18. If = and s = e*~prove that a; = e'~'°"'.19. If α, &, c be in g.p., then log,, w, log^ w, log„ n are in π.p.20. If the number of persons bom in any year be th of the whole population at the commencement of the year, and the number of those who die th of it, find in how many years the population will be doubled ; having givenlog 2 = ∙301030, log 180 = 2∙255272, log 181 =2 257679.

XXXIX. EXPONENTIAL AND LOGAKITHMIC SERIES.542. To expand a® in a series of ascending powers of x ; thni 
is, to expand a number in a series of ascending powers of its 
logaritlt,m to a given base.

+ terms involving x*, x^, ⅛c.
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EXPONENTIAL· AND EOGARITIIMIC SERIES. 321This shews that α* can be expanded in a series beginning with 1 and proceeding in ascending pθΛvers of x; we may there­fore suppose that
where ς, c^, c^,.......... are quantities which do not depend on x,and which therefore remain unchanged however x may be changed; also
while c^, c^, .......... are at present unknown ; we proceed to findtheir values. Changing x into ic + y we have 
but Since the two expressions for α*^''*' are identically equal, we may assume that the coefficients of x in the two expressions are equal, thus

In this identity we may assume that the coefficients of the corresponding powers of y are equal; thustherefore therefore
therefore

ThusSince this result is true for all values of x, take x such that 
c^x = 1, then x≈-, and

T. A.. 21
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322 .EXPONENTIAL AND LOGARITHMIC SERIES.£this series is usually denoted by e; thus = e, therefore a — and c, = lθ2, a ; hence
This result is called the Exponential Theorem.Put β for a, then log^ a becomes log, e, that is, unity (Art. 534); thus
We shall in Art. 551 make a remark on the propriety of putting e for α, and we shall recur hereafter to the assumption which has been made twice in the course of the present article.543. By actual calculation we may find approximately thenumerical value of the series which we have denoted by e; it is 2∙718281828.........544. To expand log, (1 + x) in a series of ascending powers 

of X.We have seen in Art. 542, that c, = log, a; that is, by the same article.
For a put 1 + a;; hence
This series may be applied to calculate log^ (1 + a;) if £C is a proper fraction; but unless a: be very small, the terms diminish so slowly that we shall have to retain a large number of them; if X be greater than unity, the series is altogether unsuitable. We shall therefore deduce some more convenient formulie.545. We have 

therefore
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EXPONENTIAL AND LOGARITHMIC SERIES. 323 

by subtraction we obtain the value of logj (1 + x) — logg(l — x), 
that is, of logc ;i — Λ∕therefore

In this series write for x, and therefore — for :
m + n n 1 — £Cthus

Put n = l, then ∙(1)∙
•(2).Again, in (1) put m = n + 1, thus we obtain the value of- ?i+l -1 ∖ 1logs ∙ ; therefore loge (π + 1) — logj n

...(3).
546. The series (2) of the preceding article will enable us to find logg2j put m= 2, then by calculation we shall find
From the series (3) we can calculate the logarithm of either of two consecutive numbers when we know that of the other. Put 

n = 2, and by making use of the known value of log^ 2, we shall obtain
Put n = 9 in (3); then log^ n = log^ 9 = log^ 3® = 2 log^ 3 and is therefore known; hence we shall findloge 10 = 2∙30258509 ..........547. Logarithms to the base e are called Napierian loga­rithms, from Napier the inventor of logarithms; they are also called natural logarithms, being those which occur first in our 21—2
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324 EXPONENTIAL AND LOGARITHMIC SERIES.investigation of a method of calculating logarithms. We have said that the base 10 is the only base used in the practical appli­cation of logarithms, but logarithms to the Napierian base occur frequently in theoretical investigations.548. From Art. 538 we see that the logarithm of a number to the base 10 can be found by multiplying the Napierian loga- >>y ⅛δ’ ** 2∙80≡>Ui> ’multiplier is called the 'modulus of the common system.The series in Art. 545 may be so adjusted as to give common logarithms; for example, take the series (3), multiply throughout by the modulus which we shall denote by ∕χ; thus 
that is,

549. By Art. 542 we have
= x" + terms containing higher powers of a;......................(1).Again, by the binomial theorem. ........(2).Expand each of the terms e"^, e^" ......... ; thus the coefficientof x' in (2) will be

Hence from (1) we see that 
is = [n if r = w, and is = 0 if r be less than
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EXPONENTIAL AND LOGARITHMIC SERIES. 325It is easy to see that the term on the right-hand side of (1) which involves £c"*‘ is Thus we get
550. We will give another method of arriving at the expo­nential theorem. By the Binomial Theorem 

that is.

Put a; = 1, then

But 
hence

Now this being true however large n may be, will be true when n is made infinite; then - vanishes and λve obtain
n
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326 EXPONENTIAL AND LOGARITHMIC SERIES.

that is, = e'.We have thus obtained the expansion of e’ in powers of a;; to find that of a suppose a = e® so that c = logg α, thus
551. The student will notice that in the preceding article we have used the binomial theorem to expand a power of 1 + ~ >if — is Zess than unity, we are certain that the expansion gives an 

arithmetically true result (Art. 519). In the proof given of the exponential theorem in the first article of this chapter, if α — 1 is greater than unity, the expansion by the binomial theorem with which the proof commences will not be arithmetically intelligible; and consequently the proof can only be considered sound pro­vided a is less than 2. With this restriction the proof is sound, and X may have any value. In order to complete that proof we have to shew that the theorem is true for any value of a; and as 
e is greater than 2 we ought not to change a into e until we have removed this restriction as to the value of α. This restriction can be easily removed; for in the theorem 
put α = A≡', and by taking y small enough Λ may be made as great as we please, while a is less than 2. Then thus 
therefore, putting z for yx, 
thus the exponential theorem is proved universally.
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EXAMPLES OF LOGARITHMIC SERIES. CHAPTER XXXIX. 327

552. We have found in Art. 550, that when n increases / 1∖~without limit i 1 + - J ultimately becomes e'; in the same way we may shew that when n increases without limit + ultimately becomes e*·’.
EXAMPLES OF LOGARITHMIC SERIES.1. Prove that log^

Given log,. 3 = ∙47712 and =—^^^=∙43429, apply the above 010 logs 10series to calculate logjθll.2. Shew that logθ {x + 2∕⅛) = 2 log^ {x + Jι) — log^ x
3. If α, 5, c be three consecutive numbers, logeC = 2 log,δ-logeα
4. If λ and μ be the roots of ax^ + bx + c = Q, shew that
5.
6.
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328 EXAMPLES OF LOGARITHMIC SERIES. CHAPTER XXXIX.7. The Napierian logarithm of
5018. Find the Napierian logarithm of . To how many decimal places is your result correct ?9. Assuming the series for log^ (1 + ≈) and e‘, shew that 

nearly when n is large; and find the next term of the series of which the expression on the second side is the commencement.10. Find the coefficient of x” in the development of
11. Shew that
12. Shew that

XL. CONVERGENCY AND DIVERGENCY OF SERIES.
553. The expression

Wj + Mg + Wg + +...........in which the successive terms are formed by some regular law', and the number of the terms is unlimited, is called an infinite 
series.
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convergency and divergency of series. 329554. An. infinite series is said to be convergent when, the sum of the first n terms cannot numerically exceed some finite quan­tity however great n may be.555. An infinite series is said to be divergent when the sum of the first n terms can be made numerically greater than any finite quantity, by taking n large enough.556. By the sum of an infinite series is meant the limit towards which we approximate by continually adding more and more of its terms.For example, consider the infinite series
and suppose x a positive quantity. We know that

Hence if a: be less than 1, however great n may be, the sum of the first n terms of the series is less than . - : the series is1 — a3therefore convergent. And as by taking n large enough, the sum of the first n terms can be made to differ from -------by as small1 -Xa quantity as we please, is the sum of the infinite series.If x = l, the series is divergent; for the sum of the first n terms is n, and by taking sufficient terms this may be made greater than any finite quantity.If X is greater than 1, the series is divergent; for the sum . £c" — 1of the first n terms is----- ■, which may be made greater than
iC £ary finite quantity by taking n large enough.557. Λn infinite series in which all the terms are of the same 

sim is divergent if each term is greater than some assigned finite 
qιantity, however small.
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330 CONVERGENCY AND DIVERGENCY OF SERIES.For if each term is greater than the quantity c, the sum of the first n terms is greater than nc, and this can be made greater than any finite quantity by taking n large enough.
558. Λn in∕ini(e series of terms., the signs of which are alter­

nately positive and negative, is convergent if each term be numeri­
cally less than the preceding term.Let the series be Wj — ++ &c.; this may be written 
and also thus,

From'the first mode of writing the series we see that the sum of any number of terms is a positive quantity, and from the second mode of writing the series we see that the sum of any number of terms is less than ; hence the series is convergent.It is necessary to shew in this case that the sum of any number of terms is positive; because if we only know that the sum is less than u^, we are not certain that it is not a negative quantity of unlimited magnitude.559. An infinite series is convergent if from and after any 
fixed term the ratio of each term to the preceding term is numeri­
cally less than some quantity which is itself numerically less than 
unity.Let the series beginning at the fixed term be 
and let S denote the sum of the first n of these terms. Then

Now first let all the terms be positive, and supposeless than less thai less than k, ..........
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convergency and divergency op series. 331Then aS' is less than Wι{l +/? + /;’+..........+½"~*}j that is, less1 —than Wj -—. Hence if ⅛ be less than unity, /S' is less than; thus the sum of as many terms as we please beginning i “ rCwith Wj is less than a certain finite quantity, and therefore the series beginning with is convergent.Secondly, suppose the terms not all positive ; then if they are all negative, the numerical value of the sum of any number of them is the same as if they were all positive; if some are positive and some negative, the sum is numerically less than if they were all positive. Hence the infinite series is still convergent.Since the infinite series beginning with u^ is convergent, the infinite series which begins with any fixed term before will be also convergent; for we shall thus only have to add a Jinite number of finite terms to the series beginning with u^.560. An infinite series is divergent if from, and after any 
fixed term the ratio of each term to the preceding term is greater 
than unity, or equal to unity, and the terms are all of the same sign.Let the series beginning at the fixed term be+ + ..........»and let /S' denote the sum of the first n of these terms. Then

Now, first suppose— greater than 1, — greater than 1, — greater than 1,..........
ti] iig WgThen ,S is numerically greater than u^ {1 + 1 +.....................+ 1},that is, numerically greater than nu^. Hence S may be made numerically greater than any finite quantity by taking n large enough, and therefore the series beginning with u^ is divergent.
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332 CONVERGENCY AND DIVERGENCY OP SERIES.Next, suppose the ratio of each term to the preceding to be unity; then S = nu^, and this may be made greater than any finite quantity by taking n large enough.And if we begin with any fixed term before the series will obviously still be divergent.561. The rules in the preceding articles will determine inmany cases whether an infinite series is convergent or divergent. There is one case in which they do not apply which it is desirable to notice, namely, when the ratio of each term to the preceding is less than unity, but continually approaching unity, so that we cannot name any finite quantity k which is less than unity, and yet always greater than this ratio. In such a case, as will appear from the example in the following article, the series may be con­vergent or divergent. »562. Consider the infinite series
Here the ratio of the term to the {n — 1)“* term is (n — IV——J ; if p be positive, this is less than unity, but continually approaches to unity as τi increases. This case then cannot be tested by any of the rules already given; we shall however prove that the series is convergent if p be greater than unity, and divergent if p be unity, or less than unity. ,I. Suppose p greater than unity.The first term of the series is 1, the next two terms are toge- 2ther less than , the following four terms are together less4 . . 8than —, the following eight terms are together less than —,

4 8**and so on. Hence the whole-series is less than
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CONVERGENCY AND DIVERGENCY OF SERIES. 333 

that is, less than

2where 3; = ^· Since p is greater than unity, x is less than ∙ unity; hence the series is convergent.II. Suppose p equal to unity.The series is nowThe first term is 1, the second term is i, the next two terms 
2ι2 1are together gι∙eater than j 2’ following four terms are4 1together greater than — or -, and so on. Hence by taking a o Λsufficient number of terms we can obtain a sum greater than any finite multiple of ; the series is therefore divergent.

III. Suppose p less than unity or negative.Each term is now greater than the corresponding term in II.; the series is therefore a fortiori divergent.563. We will now give a general theorem which can be proved in the manner exemplified in the preceding article. If 
φ {x) be positive for all positive integral values of x, and continually diminish as x increases, and m be any positive iuteger^lhen the two infinite series ∙ 
and are both convergent or both divergent.Consider all the terms of the first series comprised between φ (n⅛*) and <∕>(m***), including the last aild excluding the first, k being any positive integer; the number of these terms is m*·*·’—τn∖ and their sum is therefore greater than τn*(zz⅛ — 1) <∕> Thusall the first series beginning with the term φ («i* + 1) will be
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334 CONVERGENCY AND DIVERGENCY OF SERIES.

greater than times the second series beginning with theterm φ Thus if the second series be divergent, so alsois the first.Again, the terms selected from the first series are less than — 1) ≠ (m*). Thus all the first series beginning with the term φ (w* + 1) will be less than m — 1 times the second series beginning with «i* <∕> (in*). Thus if the second series be con­vergent, so also is the first.As an example of the use of this theorem we may take the following ; tlbe series of which the general term is —~—— is con- n(logn)P 
vergent if p be greater than unity, and divergent if p be eqιwd to 
unity or less than unity. By the theorem the proposed series is convergent or divergent according as the series of which the general term is —is convergent or divergent: the latter ® m^ (log my ’general term is —, so that it bears a constant ratio to the(logm)Pi⅛P'general term -ι for all values of n. Hence the required result follows by Art. 562.564. The series obtained by expanding (1 + a?)" by the bino­mial theorem is convergent if x be less than unity.

* * Υb ?* I 1• For the ratio of the (r + term to the is------------ x; now
‰. ∙ ∙ ∙" >when r is greater than n, the factor ---- - ----- is numericallyless tlian unity, though it continually approaches to unity. If 71 7* "1“ 1 ∙ ∙then X be less than unity, the product----- - -----x will, when r is’ greater than w, be always numerically less than a quantity which is itself numerically less than unity. Hence the series is con­vergent (Art. 559.)
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EXAMPLES. CHAPTER XL. 335

565. The series obtained by expanding log (1 + a) in powers of a: is convergent if x be less than unity.For the ratio of the (r +1)“» term to the is------- -. . If thenr +1fic be less than unity, this ratio is always numerically less than a quantity which is itself numerically less than unity. Hence the series is convergent. (Art. 559.)566. The series obtained by expanding α' in powers of x is always convergent.For the ratio of the (r + 1)*** term to the r**∙ is . What-
' ' r

QNQι be the value of ic, we can take r so large that this ratio shall be less than unity, and the ratio will diminish as r increases. Hence the series is always convergent. (Art. 559.)
EXAMPLES OF CONVEKGENCY AND DIVERGENCY OF SERIES.

Examine whether the following ten series are convergent or divergent:1.
2.
3.
4.5.6.
7.
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336 EXAMPLES. CHAPTER XL.

8.
9.10.11.11. In. the series + w, + ω, + ...,'. each term is less than 0 t 1 a 'the preceding; shew that this series and the series

are convergent and divergent together.12. Shew that the series
is convergent if n be > 2, and divergent if n < 2, or — 2.

XLI. INTEREST.567. Interest is money paid for the use of money. The sum lent is called the Principal. The Amount is the sum of the 
Principal and Interest at the end of any time.568. Interest is of two kinds, simple and compound. When interest of the Principal alone is taken it is called simple interest; but if the interest as soon as it becomes due is added to the principal and interest charged upon the whole, it is called com­
pound interest.569. The rate of interest is the money paid for the use of a certain sum for a certain time. In practice the sum is usually .£100 and the time one year; and when we say that the rate of interest is £4. 6s. 8d. per cent,, we mean that £4. 6λ 8<Z., that is, 
£4^, is due for the use of £100 for one year. In theory it is convenient, as we shall see, to use a symbol to denote the interest of one pound for one year.
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INTEREST. 337570. To find the amount of a given sum in any time at simple 
interest.Let P be the principal in pounds.

n the number of years for which interest is taken.
r the interest of one pound for one year. 
M the amount.Since r is the interest of one pound for one year, Pr is the interest of P pounds for one year, and therefore nPr the interest of P pounds for n years;therefore M =P + Pnr.From this equation if any three of the four quantities M, P, 

n, r are given, the fourth can be found; thus
571. To find the amount of a given sum in any time at com- 

p)ound interest.Let R denote the amount of one pound in one year, so that 
R = 1 + r, then PR is the amount of P in one year; the amount of PR in one year is PRR or PR^, which is therefore the amount of P in two jQiiτs, at compound interest. Similarly the amount of PR^ in one year is Pli', which is therefore the amount of P in three years. Proceeding thus we find that the amount of P in n years is PR"·,therefore M = PR'.HenceThe interest gained in n years is M —P or P {R" — 1).

572. Next suppose interest is due more frequently than once a year; for example, suppose interest to be due every quarter,
7*and let be the interest of one pound for one quarter. Then, atτ.A. 22
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338 INTEREST.

compound interest, the amount of P in n years is P + ;for the amount is obviously the same as if the number of years were 4n, and the interest of one pound for one year. Simi­larly, at compound interest, if interest be due q times a year, and the interest of one pound be - for each interval, the amount of / r\’"
P in n JQΑT3 is P 1 + - J .

At simple interest the amount will be the same in the cases supposed as if the interest were payable yearly, r being the inter­est of one pound for one year.
573. The formulae of the preceding articles have been ob­tained on the supposition that n is an integer; we may therefore .ask whether they are true when n is not an integer. Suppose 

n = 7zi + -, -where m is an integer and - a proι>er fraction. At 
simple interest the interest of P for m jq&xs, is Pmr; and if the borrower has agreed to pay for any fraction of a year the same 

Prfraction οϊ the annual interest, then — is the interest of P for 
p

. Pr{ - ) of a year; hence the whole interest is Pmr -∖- —, that is, ∖p∕ μ-
Pnr, and the formula for the amount holds when n is not an integer. Next consider the case of compound interest; the amount of P in m years will be PR" ∙, if for the fraction of a year interest is due in the same way as before, the interest of PR" for ∕l∖th , PR^r . f r∖of a year is------- , and the whole amount is PR” + -J .On this supposition then the formula is not true when 7» is not an integer. To make the formula true the agreement must be 

zj∖ ththat the amount of one pound at the end of (-) of a year
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INTEREST. 339- . ∙ ζ1\«»sliall be (l+r)**, and therefore the interest for J of a year1. This supposition though not made in practice is often made in theory, in order that the formulae may hold uni­versally.Similarly if interest is payable q times a year the amount of / r∖*"P in n jQQX3 is P +-^ by Art. 572 if n be an integer; and it is assumed in theory that this result holds if n be not an integer.574. The amount of P in n years when the interest is paid 
q times a year is P ^1 +-J by Art. 572; if we suppose q to increase without limit, this becomes Pe"' (Art. 552), which will therefore be the amount when the interest is due every moment.575. The Present value of an amount due at the end of a given time is that sum which with its interest for the given time will be equal to the amount. That is, (Art. 567), the Principal is the present value of the amount.576. Discount is an allowance made for the payment of a sum of money before it is due.From the definition of present value, it follows that a debt due at some future period is equitably discharged by paying the 
present value at once; hence the discount will be equal to the amount due diminished by its present value.577. To find the present value of a sum due at the end of 
a given time and the discount.Let P be the present value; M the amount, D the discount, 
r the interest of one pound for one year, n the number of years, 
P the amount of one pound in one year.At simple interest:jW=P(l+ nr), (Art. 570); 22—2
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340 EXAMPLES OF INTEREST. CHAPTER XLI.

therefore
At compound interest:

therefore
578. In practice it is very common to allow the interest of a sum of money paid before it is due, instead of the discount as here defined. Thus at simple interest, instead of the payer■would be allowed Mnr for immediate payment.

EXAMPLES OF INTEREST.1. Shew that the discount is half the harmonic mean between the sum due and the interest on it.2. The interest on a certain sum of money is £180, and the discount on the same sum for the same time and at the same rate is £150; find the sum.3. If the interest on £J. for a year be equal to the discount on £J5 for the same time, find the rate of interest.4. If a sum of money doubles itself in 40 years at simple interest, what is the rate of interest ?5. A tradesman marks his goods with two prices, one for ready money, and the other for a credit of G months; what ratio ought the two prices to bear to each other allowing 5 per cent.• simple interest ?
www.rcin.org.pl



EXAMPLES OF INTEREST. CHAPTER XLI. 3416. Find in how many years £100 will become <£1050 at 
5 per cent compound interest; having givenlogl4 = l∙14613, log 15= l∙17609, log 16 = l∙20412.

7. Find how many years will elapse before a sum of money trebles itself at per cent, compound interest; having givenlog 10350 = 4Ό1494, log3 = ∙47712.8. If a sum of money at a given rate of compound interest accumulate to p times its original value in n yeaι∙s, and to p' times its original value in n years, prove that
= n log^y.

XLII. EQUATION OF PAYMENTS.579. When different sums of money are due from one person to another at different times, we may be required to find the time at which they may all be paid together, so that neither lender nor borrower may lose. The time so found is called the equated 
time.580. To find the equated time of payment ofi two sums due at 
different times supposing simple interest.Let P^, be the two sums due at the end of times t,, t^ respectively; suppose t^ greater than t^; let r be the interest of one pound for one year, x the equated time.The condition of fairness to both parties may be secured by supposing that the discount allowed for the sum paid before it is due i⅛ equal to the interest charged on the sum not paid until after it is due.The discount on years isthe interest on 1 for x — t years istherefore
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342 EQUATION OF PAYMENTS.This λvill give a quadratic equation in x, namely, 
that root must be taken which lies between and581. Another method of solving the question of the preced­ing article is as follows:The present value of ∕J due at the end of years is

the present value of due at the end of years is 
the present value of P + due at the end of x years isHence we may propose to find the equated time of payment 
X from the equation

582. In practice however the method would probably be to proceed as in the first solution, with this exception, that the lender would allow interest instead of discount on the sum paid before it was due: thus we should find x from 
thereforeIn this case the interest on 7^ + P^ for aj years is equal to the sum of the interests of P^ and P^ for the times t^ and t^ respect­ively; this follows if we multiply both sides of the last eqfiation by r. This rule is more advantageous to the borrower than that in Art. 580, for the interest on a given amount is greater than the 
discount. See Art. 577.583. Suppose there are several sums 7^, 7^, .......... due atthe end of times t^, t^, t^, ..........respectively, and the equated timeof payment is required.
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EQUATION OF PAYMENTS. 343The first method of solution (Art. 580) becomes very compli­cated in this case, and we shall therefore omit it.The second method (Art. 581) gives for determining the equated time x,

Pif we use the symbol 2 to express the sum of the terms
and '^P to express the sum of the terms + + ..., we maywrite the above result thus.

The third method (Art. 582), gives 
which may be written x^P = ~^Pt.584. Equation of payments is a subject of no practical im­portance, and seems retained in books chiefly on account of the apparent paradox of different methods occurring which may appear equally fair, but which lead to different results. We refer the student for more information on the question to the article Rebate in the Supplement to the Penny Cyclopaedia. We may observe, however, that the difficulty, if such it be, arises from the fact that simple interest is almost a fiction; the moment any sum of money is due, it matters not whether it is called principal or interest, it is of equal value to the owner; and thus if the interest on boιτowed money is retained by the borrower, it ought in justice to the lender, to be united to the principal, and charged with interest afterwards.585. If compound interest be allowed, the solutions in Arts. 580 and 581 will give the same result.
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341 EQUATION OF PAYMENTS.For the solution according to Art. 5S0 will be as follows:the discount on X years is 7ζthe interest on thereforeFrom this equation x must be found; by transposition we shall see that this is the same equation as would be obtained by the method of Art. 581; for we obtain 
therefore which shews that x is such that the present value of -f*ι + due at the end of x years is equal to the sum of the present values of 7ζ and due at the times and respectively.586. If there be different sums 2ζ, 2ζ,.......... due at theend of ip .......... years respectively, the equated time ofpayment {x), allowing compound interest, may be found from 
which may be written

587. We have said in Art. 580, that we must take that root of the quadι∙atic which lies between and i,; we will now prove that there will in fact be always one root, and only one, between ij andWe have to shew that the equation 
has one root, and only one, lying between and
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EXAMPLES. CHAPTER XLII. 345The expression 
is obviously positive when x = t^. If this expression is arranged in the form ax^ + bx + c^ the coefficient a is negative, being — P^r; hence must lie between the roots of the equation ∖>y Art. 339; that is, one root is greater than t^ and one less than It is obvious too that no value of x less than t^ can make the exq>ression vanish, so there cannot be a root of the eqiiation less than ; there must then be one root between t^ and t^, and one greater thanIt may be remarked that the value x = t^ + also makes the expression positive, and so the root which is greater than t^ must by Art. 339 be greater than t^ + i.

MISCELLANEOUS EXAMPLES.
V1. Find the equated time of payment of two sums, one of .£400 due two years hence, the other of £2100 due eight years hence, at 5 per cent. (Art. 580.)2. Find the equated time of payment of two sums, one of £20 due at the present date, the other of £16. 5s. due 270 days hence, the rate of interest being twopence-halfpenny per hundred pounds per day. (Art. 580.)3. Find the equated time of paying two sums of money due at different epochs, interest being supposed due every moment.4. A sum of money is left by will to be divided into three parts such that theiι∙ amounts at cortipound interest, in a, b, c years respectively, shall be equal; determine the parts.5. If a and n be positive integers, the integral part of {α + ^(α*-1)}" is odd.6. If a and n be positive integers, the integral part of {^(a’ + 1) + α}" is odd when n is even and even when n is odd.
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346 EXAMPLES. CHAPTER XLII.7. Shew that the remainder after n terms of the expansion of series of ascending powers of x is

shew that
shew that

10. With the same notation shew that
11. If s be the sum of n terms of a geometric progression whose first term is a and common ratio 1 ÷x, where x is very small, shew that • approximately.12. If a quantity change continuously in value from a to b in a given time <„ the increase at any instant bearing a constant ratio to its value at that instant, prove that its value at any time

(Art. 574.)
XLIII. ANNUITIES.588. To find the amount of an annuity left unpaid for any 

number of years^ allowing mmple interest upon each sum from the 
time it becomes due.Let A be the annuity, n the number of years, r the interest of one pound for one year, M the amount.
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ANNUITIES. 347At the end of the first year Λ becomes due, and at the end of the second year the interest of the first annuity is rA∙, at the end of this year the principal becomes 2A, therefore the interest due at the end of the third year is 2rA; in the same way the interest due at the end of the fourth year is 3rA; and so on; hence the whole interest is 
that is, and the sum of the annuities is nA;therefore

589, To find the present value of an annuity, to continue for 
a certain number of years, allowing simple interest.Let P denote the present value; then P with its interest for 
n years should be equal to the amount of the annuity in the same time; that is, , 
therefore

590. Another method has been proposed for solving the question in the preceding article. ■ AThe present value of A due at the end of 1 year is , (Art, 577); the present value of A due at the end of 2 years is √1 A--------: the present value of A due at the end of 3 years is -—~ , 
l + 2r' l + 3rand so on; the present value of the annuity for n years should be equal to the sum of the present values of the diflferent payments: hence
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348 ANNUITIES.591. Some writers on Algebra have adopted the solution given in Art. 589, and others that in Art. 590; we have already intimated in a similar case (Art. 584), that the solution of such questions by pimple interest must be unsatisfactory. The student may consult on this point Wood’s Algebra, the Treatise on Arith­
metic and Λl(jebra in the Library of Useful Knowledge, p. 102; Jones on the Value of Annuities and Reversionary Payments, Vol. I. p. 9; and the article Rebate in the Supplement to the 
Penny Cyclopaedia.592. The formulae in Arts. 589 and 590 make the value of a perpetual annuity infinite. For the value of P in Art. 589 may be written 
when n is infinite the denominator of this expression becomes r, and the numerator becomes infinite; thus P is infinite. The series given for P in Art. 590 also becomes infinite when n is infinite.This result is another indication that the value of annuities should be estimated in a different way. λVe proceed to the supposition of compound interest.593. To find the amount of an annuity left unpaid J or any 
number of years, allowing compound interest.Let A be the annuity, n the number of years, R the amount of one pound in one year, Af the required amount.At the end of the first year A is due; at the end of the second year RA is the amount of the first annuity, hence the wl ole sum due at the end of the second year is RA + A, that is, (A + 1) A ; at the end of the third year the sum due is A(jβ + l)J∙ + A, that is, (^R^ + RV) A ∙,and so on; hence the sum due at the end cf n years is
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ANNUITIES. 349

thus Al = Λ.

594. To find tlie present value of an annuity, to continue for 
a certain number of years, allowing compound interest.Let P denote the present value; then the amount of P in 
n years should be equal to the amount of the annuity in the same time; that is, 
therefore

595. We may also solve the question of the preceding article by supposing P equal to the sum of the present values of the different payments.The present value of Λ due at the end of 1 year is ,
the present value of Λ due at the end of 2 years is ;
the present value of Λ due at the end of 3 years is ~;and so on:therefore

If the present value of an annuity Λ for any number of years be mA, the annuity is said to be worth m years' purchase.596. To find the present value of a perpetual annuity.Suppose n = infinity in the formula
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350 ANNUITIES.

thus597. To find the present value of an annuity, to commence at 
tlie end of p years, and then to continue q years.The present value of an annuity to commence at the end of 
p years, and then to continue q years, is found by subtracting the present value of the annuity for p years from the present value of the annuity for p + q years; thus we obtain

If the annuity is to commence at the end of p years, and then to continue for ever, we must suppose q infinite, and the present value becomes
598, The preceding article may be applied to calculate the 

fine which must be paid for the renewal of a lease. Suppose an estate to be worth £A per annum, and that a lease of the estate is granted for p + q years for a certain sum of money paid down; and suppose that when q years have elapsed, the lessee wishes to obtain a new lease for + g years; he must therefore pay a sum equivalent to the value of an annuity of £A to begin at the end of p years, and to continue for q years. This sum is called the fine paid for renewing q yeays of the lease,599, We have hitherto in the present chapter confined ourselves to the case in which the interest and the annuity are due only once a year. We will now give a more general pro- j)osition,
To find the amount of an annuity left unpaid for n years, at 

compound interest, supposing interest due q times a year, and the 
annuity payable m times a year.

r . f 1 ∖Let - be the interest of one pound for of a year;then by Art, 573, the amount of one pound in 5 years is
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EXAMPLES OF ANNUITIES. CHAPTER XLIII. 351 +-^ whether s be an integer or not; thus the amount of one 
pound for of a year is we shall denote thisby p. Let a be the instalment of the annuity that should be paid each time; then the amount of the annuity at the end of n years is the sum of the following mn terms: 
that is, 
that is,

EXAMPLES OF ANNUITIES.In the examples the interest is supposed compound unless otherwise stated.1. A person borrows £G00. 5s.; how much must he pay annually that the .whole debt may be discharged in 35 years, allowing simple interest at 4 per cent.?2. Determine what the rate of interest must be in order that the present value of an annuity for a given number of years, at simple interest, may be equal to half the sum of the annuities.3. A freehold estate of £100 a year is sold for £2500; at what rate is the interest calculated?4. The reversion, after 2 years, of a freehold worth £1G8. 2.9. a year is to be sold; what is its present value, supposing interest at 21 per cent. ?5. If 20 years’ purchase must be paid for an annuity to con­tinue a certain number of years, and 2G years’ purchase for an annuity to continue twice as long; what is the rate per cent. ?
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352 EXAMPLES OF ANNUITIES. CHAPTER XLIII.6. When 3∣ per cent, is the rate of interest, find what sum must be paid now to receive a freehold estate of £320 a year 10 years hence: having given
7. Supposing an annuity to continue for ever to be worth 25 years’ purchase, find the annuity to continue for 3 years which can be purchased for £625.8. A sum of £1000 is lent to be repaid with interest at 4 per cent, by annual instalments, beginning with £40 at the end of the first year, and increasing 30 per cent, each year on the last preceding instalment. Find when the debt will be paid ofiT; having given
9. What is the present value of an annuity which is to com­mence at the end of p years, and to continue for ever, each pay­ment being m times the preceding? What limitation is there as to «I?10. What sum will amount to £1 in 20 years, at 5 per cent., the interest being supposed to be payable every instant?11. If interest be payable every instant, and the interest for

1Λone year be — of the principal, find the amount in n years.12. A person borrows a supι of money, and pays off at the end of each year as much of the principal as he pays interest for that year; find how much he owes at the end of n years.13. An estate, the clear annual value of which is £A is let on a lease of 20 years, renewable every 7 years on payment of a fine; calculate the fine to be paid on renewing, interest being allowed at six per cent.; having given
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EXAMPLES OF ANNUITIES. CHAPTER XLIII. 35314. A person with a capital of &a, for which he receives interest at r per cent., spends every year jSδ, which is more than his original income. In how many years will he be ruined 1Ex. If α=1000, r = 5, δ = 90, shew that he will be ruined before the end of the 17th year; having givenlog 2 = ∙3010300, log 3 = ∙4771213, log 7 = ∙8450980.
XLIV. CONTINUED FKACTIONS.

600. Every expression of the form is called
a c<yniinued fraction.We shall confine our attention to continued fractions of theform α +------— , where a, b, c, ...............are all positive integers,δ + -- 

c + &c.For the sake of abbreviation the continued fraction is some- XT- 1 1times written thus: a + τ------ -, .0 + c + &c.When the number of the terms α, b, c,..........is finite, the con­tinued fraction is said to be terminating; such a continued frac­tion may be reduced to an ordinary fraction by effecting the operations indicated.601. To convert any given fraction irdo a continued fraction.Let be the given fraction; divide m by n, let α be the quotient and p the remainder; thus
T. A. 23
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354 CONTINUED FEACTIONS.divide n by p, let δ be the quotient and q the remainder; thus
Similarly, 

and so on.Thus
If 7Zi be less than n, the first quotient a is zero.We see then that to convert a given fraction into a continued fraction, we have to proceed as if we were finding the greatest common measure of the numerator and denominator, and we must therefore at last arrive at a point where the remainder is zero and the operation terminates; hence every fraction can be converted into a terminating continued fraction.602. The fractions formed by taking one, two, three, <fec. ofthe quotients of the continued fraction a + -------are called6 + C + &C. 

converging fractions or convergente. Thus the first convergent is a; the second is formed from a + , it is therefore ; the third
o 01 cis formed from a + ---- - , that is, from a + ------ - , it is, 1 be + 1δ + -

c
, - abc Λ- a ->t-c ,therefore —,---- =—; and so on.oc + 1603. TJιe convergente taken in order are alternately leee and 

greater than the continued fraction.The first convergent a is too small because the part -—— is 
b + &c.omitted; α + is too great because the denominator b is too

1
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CONTINUED FEACTIONS. 355small; a Ί—ί— is too small because δ + - is too great; and
1 1 δ + - 

c 
so on.604. To prove the law of formation of the successive con- 
vergents.The first three convergents are ψ, , ; the1 ό oc +1numerator of the third is c(αδ+ 1) +α, that is, it may be formed by multiplying the numerator of the second by the third quotient, and adding the numerator of the first; the denominator of the third fraction may be formed in a similar manner by multiplying the denominator of the second by the third quotient, and adding the denominator of the first. We shall now shew by induction that such a law holds universally.be three consecutive convergents, m, m',

m", the corresponding quotients ; and suppose that
Let m"' be the next quotient; then the next convergent √'differs from only in taking in the additional quotient m"',so that we have to write m" + instead of m" ∖ thus the next mconvergent

If therefore we suppose 
the next convergent to will be equal to -f∏, thus the converg-

zzzent may be formed by the same law that was supposed to
23—2
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356 CONTINUED FRACTIONS.√'hold for ; but the law has been proved to be applicable for the third convergent, and therefore it is applicable for every subsequent convergent.We have thus shewn that the successive con vergents m/iy be formed according to a certain law; as yet we have not proved that when they are so formed each convergent is in its lowest terms, but this will be proved in Art. 606.605. The difference between any two consecidive convergente 
is a fraction whose numerator is unity, and denominator the pro­
duct of the denominators of the convergente.This is obvious with respect to the first and second converg- ents, forSuppose the law to hold for any two consecutive convergents that is, suppose p'q — pf = ±1, so that
then.so that thus the law holds for the next convergent. Hence it is univer­sally true.606. Λll convergents are in their lowest terms.For if the numerator and denominator of - had any common S'measure it would dividep’g—pf or unity, which is impossible.607. Every convergent is nearer to the continued fraction 
than any of the preceding convergents.We shall prove this by shewing that every convergent is nearer to the continued fraction than the preceding convergent.
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CONTINUED FRACTIONS. 357

Let ■ be consecutive convergents to a continuedfraction x; then ZZNow X differs from ~. only intaking instead of the complete qibotient m" + —; this will 7Zi “1“ θvC∙be some quantity greater than unity, which we shall denote by p; thus
therefore

Now 1 is less than p and q' is greater than g'; hence on both accounts the difference between x and ⅛ is less than the differ- 
ence between x and -; that is, is nearer to x than is.

<1 q q608. To determine limits to the error made in talcing any 
coτbvergent for the continued fraction.By the preceding article the difference between x and — is: this is less than and greater thanor

Since is greater than the error a fortiori isless than 4 and greater than ; these limits are simpler than those first given, though of course not so close.609. In order that the error made may be less than a given quantity , we have therefore only to form the consecutive con- Λ∕
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358 CONTINUED FRACTIONS.

vergents until we arrive at one -, such that o’ is not less 
<1than k.610. Any convergent is nearer to the continued fraction than 

any other fraction which has a smaller denominator than the 
convergent has.

P τLet he the convergent, and - a fraction, such that s isless than g. Let £c he the continued fraction, and - the converg- 
r! p r> . .ent immediately preceding Then ^∙> are either in

7* ascending or descending order of magnitude hy Art. 603. Now -
P p' . r pcannot lie between - and ; for then the difference of - and -g ? s q

P p'would he less than the difference of - and —,, that is, less than—■., and therefore the difference of ps and qr would he less thanthat is, an integer less than a proper fraction, which is im-jo p' r r p p'possible. Thus either -, x. —-, or -, , a:, must he inq q s s q qorder of magnitude. In the former case - differa more from x

p , τ » pthan does: in the latter case - differs more from x than - does,
P and therefore α fortiori more than does.

P p'611. Suppose —, two consecutive convergents to a con-
PPtinned fraction x, then is greater or less than a;’ according as— is greater or less than . For as in Art. 607
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CONTINUED FRACTIONS. 359

thereforeReduce the fractions on the right-hand side to a common de- o nominator: we have then in the numerator 
orthat is,The factor ∕i⅛V ~ i≡ necessarily positive; the factor 
pq —pq is positive or negative, according as is greater or less than : hence is greater or less than —7 , that is, is 5' g'x ° p qqgreater or less than a?’, according as is greater or less than .

EXAMPLES OF CONTINUED FRACTIONS,Convert the following fractions into continued fractions:
5. Find three fractions converging to 3∙1416.6. Find a series of fractions converging to the ratio of

P V P*ϊ. If —, , — be three consecutive convergents, shewS'a 5atl^at {p^-p,}q^ = (,q^-q,}Pr8. Prove that the numerators of any two consecutive con­vergents have no common measure greater than unity, and similarly for the denominators.
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360 EXAMPLES OF CONTINUED FRACTIONS. CHAPTER XLIV.

9. If be successive convergents to a con­tinued fraction greater than unity, prove that
10. Shew that the difference between the first and con­vergent is numerically equal to
11. Shew that
12. If be the quotient in a continued fraction greater than unity, shew that
13. . be successive convergents to thecontinued fraction ____ shew that

and hence that
Z? .14. If — denote the convergent to a fraction and 7,. V7? denote the remainder which occurs in the process of

" ' pconvertin" the fraction -7; to a continued fraction, shew that
Q

15. Shew that the difference of and16. In converting a fraction in its lowest teπns to a con­tinued fraction, shew that any two consecutive remainders have no common measure greater than unity.
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EEDUCT]ON OF A QUADKATIC SUED, &c. 361

XLV. REDUCTION OF A QUADRATIC SURD TO A CONTINUED FRACTION.
612. A quadratic surd cannot be reduced to a terminating continued fraction, because the surd would then be equal to a rational fraction, that is, would be commensurable; we shall see, however, that a quadratic surd can be reduced to a continued fraction which does not terminate; we will first give an example, and then the general theory. Take the square root of 6;

the steps now recur; thus we have
In the above process the expression which occurs at the beginning of any line is separated into two parts, the first part being the 
greatest integer which the expression contains, and the second part the remainder; thus the greatest integer in ,JQ is 2, we therefore write
again, the greatest integer in ∣g 2, therefore write 

www.rcin.org.pl



362 REDUCTION OF A QUADRATIC SURDand so on; the remainder is then made to have its numerator rational, and expressed as a fraction with unity for numerator; we then begin another line of the process.We may notice in the example that the qilotients begin to recur as soon as we arrive at a quotient which is double of the first. This we shall presently shew is always the case.613. Let JV^ be any integer which is not an exact square; let 
a be the greatest integer contained in J Ν'", write fJN^ in the formfor symmetry, and proceed as follows:

1 i.∙

In this process we suppose ά, b', l>",... to be the greatest integers contained in the expressions from which they resi)ectively spring; hence it follows that r, r", r"',... are all positive. For a’ is less than N, hence r is positive, and & is the greatest integer in
so that b is of course less than j hence a’ is less than N,

τand so r is positive; and so on. We have noticed this fact, because it follows very obviously from the process; it is, however, included in the proposition of the following article.
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TO A CONTINUED FRACTION. 363614. In the expressions which occur at the beginning of the lines in Art. 613, we have the following series of quantities:.. (1),-(2),and the corresponding series of quotients is ....i31.We shall now shew that the terms in (1) and (2) are all posi­tive integers; those in (3) are known to be such.Let a, a, a" be any three consecutive terms of (1); p, p, p" the corresponding terms of (2); β, β', β" those of (3). Let
β'p' + p be the corresponding con vergents to ^/( A), so that = β>>g> q> these con vergents can all be formed in the usual way, since all the terms in (3) are positive integeι∙s.Since the complete quotient corresponding to β' is ,P we have, by Art. 607,

Multiply up, and then equate the rational and irrational parts (Art. 299); thus 
thereforeNow/»/—pq= ± 1, hence α" and p' are integers. And it is proved in Art. 611 that pq—p'q·, pp'-qq'^, and /Ά—∕>'* have the same sign; hence a' and p" are positive integers.This investigation may be applied to any corresponding pair of quantities in (1) and (2) except the first two pairs; it cannot be
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364 REDUCTION OF A QUADRATIC SURD

applied to these because two convergents - and — are assumed to 
p" .precede the convergent But the first two pairs of quantitiesin (1) and (2), namely 0 and 1, and a and r, are known to be integers. Thus all the quantities in (1) and (2) are positive integers.615. The greatest term in (1) is α. For by the mode of formation of the series, pρ'=JV-a'*; since p and p' are positive, a'“ is less than N, and therefore a' is not greater than a.616. No term in (2) or (3) can be greater than 2α. For by the mode of formation of the series, α'+ a'=p'β; and since α' and α" cannot be greater than α, neither p' nor β' can be greater than 2a. 617. If o"=l. then α"=α.For, by Art. therefore

fractionNow is a nearer approximation to fJN than a is, and a
ris less than ^N', therefore is greater than a; hence

o!'= a.618. If any term in (1), excluding the first, be subtracted from α, the remainder is less than the corresponding term in (2). For, by Art. 614,
therefore
thereforetherefore, α fortiori,
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TO A CONTINUED FRACTION. 365This demonstration will only apply to the third or any fol­lowing term, because in Art. 614 it is supposed that two terms α, a precede a". The theorem, however, holds for the second term, as is obvious by inspection, for α — α or zero is less than r.619. It is shewn in Arts. 615 and 616 that the values of the terms in (1) and (2) cannot exceed a and 2α respectively; hence the same values must recur in the two series simultaneously, and there cannot be more than 2α* terms in each series before this takes place.620. Let the series (1) be denoted by
«U «^2» ............. «m-P + P ................ «n-P «· + Ρ.............and let a similar notation be used for (2) and (3). We have proved that a recurrence must take place, suppose then that the terms from the to the (n — 1)“* inclusive recur, so that

We shall shew that
We havebut thereforeAgain,thereforetherefore = zero or an integer.But, by Art. 618,

that is.
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366 REDUCTION OF A QUADRATIC SURD, &C.thereforetherefore
Comparing this with the former result, we see thatmust be zero;tlιereforβHence, knowing that the term recurs, we can infer that the (w —1)*** term also recurs. This demonstration holds as long as m is not less than 3; for it depends on the theorem established in Art. 618. Hence the terms recur beginning with .1. 1 , . + athe complete quotient —------ .
621. The last integral quotient will always be 2α.For let the last complete quotient be then thenext is hence

but thereforetherefore, by Art.therefore622. Every periodic continued fraction is equal to one of the roots of a quadratic equation with rational coefficients.Let
where
so that α, δ,. λ... A, A are quotients which do not recur, and i·, 8,..........u,v those which recur perpetually.
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EXAMPLES. CHAPTER XLV. 367

Let be the convergent formed from the quotients α, δ, ... down to k inclusive; and let be the convergent immediately preceding then, as in Art. 607, ........ (1)∙Let be the convergent formed from the quotients r, 8, ...

Pdown to V inclusive; and let r= be the convergent immediatelypreceding ; then
............. (2}-From (1) and {2') by eliminating y Nfe obtain a quadratic equation in x with rational coeflScients. To find x under an irrational form we should take the positive value of y found from (2), that is, from

and substitute it in (1).
EXAMPLES OF CONTINUED FRACTIONS FROM QUADRATIC SURDS.Express the following fourteen surds as continued fractions, and find the first four convergents to each;1.5.9.12.15.16. Find the 8‘*‘ convergent toFind the 8*** convergent to
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3G8 EXAMPLES. CHAPTER XLY.91617. Shew that differs from λ∕(23) by a quantity less(W 2(2⅛∙
18. Shew that the 9*·** convergent to ^(33) will give the true value to at least 6 places of decimals. 21119. Find the limits of the error when is taken for ,^(23).115120. Also when is taken for ,/(23).21. Find the limits of the error when the 6*^* convergent is taken for ,/(31).22. Shew that23. Shew that
24. Shew that

shew that the second convergent differs from the true value by a quantity less than l÷α(4α*+l)j and thence by making α = 7, 99 1shew that γθ differs from ,/(2) by a quantity less than .25. Shew that the 3"^ convergent to ,∕(α* + α + 1) is ∣(2α +1)./3 1326. Find convergents to ‰ ', shew that exceeds the true4 30value by a quantity less than 2^^ ∙

27. Find the 6®* convergent to .28. Find the 6*^ convergent to the positive root of2a:’-3»-6 = 0.
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EXAMPLES. CHAPTER XLV. 36929. Find the 6“* convergent to each root of
30. Find the 7*** convergent to the greater root of
31. Find the 5“* convergent to ->-7· : . √(45)32. Find the value of 1 ■
33. Find the value of
34. Find the value of 1
35. Find the value of
36. Find the value of 2

XLVI. INDETERMINATE EQUATIONS OF THE FIRST DEGREE.623. When only one equation is given involving more than one variable, we can generally solve the equation in an infinite number of ways; for example, if «x + δy = c, we may ascribe any value we please to x, and then determine the corresponding value of y.Similarly, if there be any number of equations involving more than the same number of variables, there will be an infinite number of systems of solutions. Such equations are called in­determinate equations.624. In some cases, however, the nature of the problem may be such, that we only want those solutions in which the variables have posUive integral values. In this case the number of solutions 
T. A. 24
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370 INDETERMINATE EQUATIONS OF THE FIRST DEGREE.

may be limited, as we shall see. We shall proceed then to some propositions respecting the solution of indeterminate equations in 
2)osiiive integers. The coefficients and constant terms in these equations will be assumed to be integers.625. Neither of the equations ax + by = c, ax-by = c can be solved in integei’s if a and b have a divisor which does not divide c.For, if possible, suppose that either of the equations has such a solution; then divide both sides of the equation by the common divisor; thus the left-hand member is integral and the right-hand member fractional, which is impossible.If α, b, c have any common divisor, it may be removed by division, so that we shall in future suppose that a and b have no common divisor.626. Given one solution of ax — by = c in positive integers, to 
find the general solution.Suppose x= a, y = β is otie solution of ax — by = c, so that 
aa — bβ = c. By subtraction 
thereforeSince is in its lowest terms, and x and y are to have 0integral values, we must have (as will be shewn in the chapter on the Theory of Numbers).
where t is an integer; therefore

Hence if one solution is known, we may by ascι∙ibing to t dif­ferent positive integral values, obtain as many solutions as we please. We may also give to t such negative integral values as make bt and at numerically less than α and β respectively.We shall now shew that one solution can always be found.
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INDETERMINATE EQUATIONS OF THE FIRST DEGREE. 371 627. A solution of the equation ax — by= c in positive integers 
can always be found.Let γ be converted into a continued fraction, and the succes- 0slve convergents formed j let — be the convergent immediately 
preceding then aq-hpFirst suppose aq — bp — 1, therefore aqc — bpc — c. Hence 
x= qc, y =pc is a solution of ax-by = c.Next supposethen thereforeHence is a solution ofIf a = l, the preceding method is inapplicable; in this case the equation becomes x-by = c∖ we can obtain solutions ob­viously by giving to y any positive integral value, and then making x = c + by. Similarly if δ = 1.

628. G’wen one solution of the equation ax + by = c in positive 
integers, to find the general solution.Suppose that ic = α, y = β is one solution of axΛ-by-c, so that aa + bβ = c. By subtraction.
therefore

Since v i≡ its lowest terms and x and v are to have inte- bgral values, we must have
where t is an integer; therefore

24—2
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372 INDETERMINATE EQUATIONS OF THE FIRST DEGREE.629. The number of solutions of ax + by = c in positive inte­

gers can never exceed the greatest integer in -^ + 1.Suppose there to be one solution, namely, when x~a and 
y = β, then all the solutions are comprised in α + bt and β-at as the values of a; and y respectively; hence we may give to t any positive integral value less than —, and any negative integral 

avalue numerically less than t xαsuJ also be zero. Hence the number of solutions is
. . β . , o>1 + greatest integer in — + greatest integer in .

Let = n +/ = r^^f',a 0where n and w' are integers and f and f' proper fractions; then the number of solutions is 1 + n + n', that is, 
that is,
that is,Hence if /+∕'= 1, or > 1, the number of solutions is the greatest integer in . If /+f'<∙ 1, the number of solutions is the greatest integer in 1 + — ; here, however, we must observe, that a zero value may occur, if, for example, /= 0, then is an integer, and when we put t=— we have y = θ∙ If "we wish to 

aej,clude zero values, then the conclusion will be thus: if / or 
f'≈Q the number of solutions is the greatest integer in — ; if
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INDETERMINATE EQUATIONS OF THE FIRST DEGREE. 373 /=0 and ∕' = 0, the number of solutions is the greatest integer m ,-1.ao630. We have shewn that the number of solutions of 
ax + by = c in positive integers is always limited; it may happen that there is no such solution. For example, if c is less than 
a + b, it is impossible that c = ax + by for positive integral values of X and y, excluding zero values.By the following method we can find a solution when one exists. Let be converted into a continued fraction, and let - δbe the convergent immediately preceding then aq-bp = ^∖.First suppose αg-δ∕) = l, then aqc — bpc = c∖ combine this with αx + δy = c; therefore a{qc-x)-b{pc ->ry') = (i∖ therefore 
qc — X = bt, pc + y = at, where t is some integer. Hencea; = gc — δi, y = at —pc.Solutions will be found by giving to t, if possible, positive

QCintegral values greater than — and less than Next suppose 
(Jb U

aq —bp = -1, then aqc-bρc = -c∙, combine this with ax + by = c,therefore α(ic + gc) — δ {pc -y) = 0. Hence
Solutions will be found by giving to t, if possible, positive integral values greater than y and less than -- .
631. To solve the equation ax + by + cz = d in positive inte­gers we may proceed thus: write it in the form ax + by = d-cz, then ascribe to z in succession the values 1, 2, 3,.......... and de­termine in each case the values of x and y by the preceding articles.632. Suppose we have the simultaneous equations
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374 . EXAMPLES. CHAPTER XLVI.eliminate one of the variables, z for example, we thus obtain an equation connecting the other two variables. Ax + By = C, sup­pose. Now if A and B contain no common factors except such as are also contained in G, by proceeding as in the previous arti­cles, we may obtain
Substitute these values in one of the given equations, we thus obtain an equation connecting t and z, which we may write 

A't + B'z = G'. From this, if A' and B' contain no common factors except such as are also contained in C', we may obtain
Substitute the value of t in the expressions found for x and y; thus

or Hence we obtain for each of the variables x, y, an expression of the same form as that already obtained for z.

EXAMPLES OF INDETERMINATE EQUATIONS.Solve the following equations in positive integers:1.3.5.
2.4.6.Find the general integral values in each of the following equations, and the least values of x and y which satisfy each :

7.9. 8.10.11. In how many ways can £500 be paid in guineas and five-pound notes ?12. In how many ways can £100 be paid in guineas and crowns ?
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EXAMPLES. CHAPTER XLVI. 37513. In how many ways can £100 be paid in half-guineas and sovereigns?14. In how many ways can £22. 3s. Gd. be paid with Frenchfive-franc pieces (value 4s. each), and Turkish dollars (value 3A 6d. each) ? ,15. In how many ways can 19a 6d. be paid in fiorins and half-crowns ?16. If there were coins of 7 shillings and of 17 shillings, in how many ways could £30 be paid by means of them ?17. What is the simplest way for a person who has only guineas to pay 10a Gd. to another who has only half-crowns ?18. Supposing a sovereign equal to 25 francs, how can a debt of 44 shillings be most simply paid by giving sovereigns and receiving francs ?19. Divide 200 into two parts, such that if one of them be divided by 6 and the other by 11, the respective remainders may be 5 and 4.20. How many crowns and half-crowns, whose diameters are respectively ∙81 and '66G of an inch, may be placed in a row together, so as to make a yard in length ?21. Find n positive integers in arithmetical progression whose sum shall be n^; shew that there are two solutions when 7i is odd.22. What is the least number which divided by 28 leaves a remainder 21, and divided by 19 leaves a remainder 17 ?23. Find the general form of the numbers which divided by 3, 5, 7, have remainders 2, 4, 6, respectively.24. What is the least number which being divided by 28, 19and 15, leaves remainders 13, 2 and 7 ? '
25. Solve in positive integers 17x + 23y + 3« = 200.26. Find all the positive integral solutions of the simul­taneous equations5x+4y+ s= 272, 8x + 9y + 3z = 656.
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376 EXAMPLES. CHAPTER XLVI.27. Ill how many ways can a person pay a sum of £15 in half-crowns, shillings, and sixpences, so that the number of shil­lings and sixpences together shall equal the number of half- crowns ?28. Find in how many different ways the sum of £4. 16s. can be paid in guineas, crowns, and shillings, so that the number of coins used shall be exactly 16.29. How can £2. ⅞. be j>aid in crowns, half-crowns, and florins, if there be as many crowns used as half-crowns and florins together ?30. What is the greatest sum of money that can be paid in 10 different ways and no more, in half-crowns and shillings ?31. The difference between a certain multiple of ten and the sum of its digits is 99; find it.32. The same number is represented in the undenary and septenary scales by the same three digits, the order in the scales being reversed and the middle digit being zero; find the number.33. A number consists of three digits which together make up 20; if 16 be taken from it and the remainder divided by 2 the digits will be inverted; find the number.34. Find a number of four digits in the denary scale, such that if the first and last digits be interchanged, the result is the same number expressed in the nonary scale. Shew that there is only one solution.35. A farmer buys oxen, sheep, and ducks. The whole number bought is 100, and the whole sum paid = £100. Supposing the oxen to cost £5, the sheep £1, and the ducks Is. per head; find what number he bought of each. Of how many solutions does the problem admit ?36. Find three proper fractions in Arithmetical Progression whose denominators shall be 6, 9, 18, and whose sum shall be 2∣.37. Three bells commenced tolling simultaneously, and tolled at intervals of 25, 29, 33 seconds respectively. In less than half 
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EXAMPLES. CHAPTER XLVI. 377an hour the first ceased, and the second and third tolled 18 seconds and 21 seconds respectively after the cessation of the first and then ceased; how many times did each toll 138. Two rods each c inches long, and divided into m, n equal parts respectively, where m and n are prime to each other, are placed in longitudinal contact with their ends coincident. Prove that no two divisions are at a less distance than — inches, and
mnthat two pairs of divisions are at this distance. If m = 250 and 

n = 243, find those divisions which are at the least distance.39. There are three bookshelves each of which will carry 20 books; when books are composed of 3 sets of 5 volumes each, 6 of 4, and 7 of 3, how must they be distributed, so that no set is divided ?
XLVII. INDETERMINATE EQUATIONS OF A DEGREE HIGHER THAN THE FIRST.
633. The solution in positive integers of indeterminate equa­tions of a degree higher than the first is a subject of some com­plexity and of little practical importance; we shall therefore only give a few miscellaneous propositions.634. To solve in positive integers the equation

rtixy + nx* +px + qy = r^,this equation contains only one of the squares of the variables, and it can always be solved in the manner indicated in the following example. Required to solve in positive integers the equation
Here therefore 
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378 INDETERMINATE EQUATIONS OF A

let 3χ = ζ; therefore 
thereforeSince x and ι∕ are to have integral values 3x-5 must be a divisor of 55, and from this condition we can find by trial the values of x, and then deduce those of The only cases for examination are the following: 
out of these cases only the following give a positive integral value to x,

3x — 5 = 55, therefore ic = 20;3a; — 5 = 1, therefore a; = 2.When a; = 20 we do not obtain a positive integral value for y; when x = 2 we have y = 5', this is therefore the only solution of the proposed equation in positive integers.635. The equation a;* — Ny^=l can always be solved in integers when W is a whole number and not a perfect square. For in the process of converting JN into a continued fraction we arrive at the following equation (see Art. 614), 
and at the end of any complete period of quotients p" = 1 (Art. 621); thus

Suppose now that the number of the recurring quotients is even, then is always an even convergent, and therefore greater than 
JN, and so greater than -. Hence pq — qp = 1, and we have 
-l=q'^K-p'*∙, so that p^ — Nq^ = 1. Hence we obtain solu­tions of the proposed equation by putting χ=p and y = q∙, where
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DEGREE HIGHER THAN THE FIRST. 379

—, is any convergent just preceding that formed with the quo- 7 »·'tient 2α.Next suppose that the number of the recurring quotients is odd; then when first p" = 1 the convergent is an odd convergent, when next p = 1 the convergent is an even convergent, and 
80 on. Hence solutions can be obtained by restricting ourselves to even convergents occurring just before those formed with the quotient 2α.636. If the number of recurring quotients obtained from 
JN be odd, then, as appears in the preceding article, if S be any odd convergent immediately preceding that formed with the quotient 2α, we have 
thus we obtain in this case solutions in integers of the equation

637. The equation a:* — Ny* = ± α* by putting x = ax and 
↑f = ay becomes x^ — Ny'^ = ^ 1, which we have considered in the preceding articles.638. The relation 
will give solutions of the equation a;’ — Ny^ = ÷ c in some cases in which c is difierent from unity. The method will be similar to that given in Arts. 635 and 636.639. If one solution in integers of the equation x’ — Ny^= 1 be known, we may obtain an unlimited number of such solutions. For suj)pose x = p and y = q to be such a solution, so that p’ - N(f = 1; then
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380 INDETERMINATE EQUATIONS, &C.therefore 
by supposition. Put then
tlius

it is obvious that if n be any positive integer, these values of 
X and y will be positive integers.640. Similarly, if one solution in integers of the equation α* — Ny* = — 1 be known, we may obtain an unlimited number of such solutions. For suppose x = p and 2∕ = γ to be such a solution, then
Now take n any odd integer: then 
by supposition.Then we proceed as in Art. 639.' 641. If one solution in integers of the equation x* — Ny* = a be known, we may obtain an unlimited number of such solutions. For suppose x=p and y = q to be such a solution, and let x = m and y = n be a solution of tc* - Nt∕ = 1; then the equation 
X* _ Ny* =z a be written 

we may therefore take
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EXAMPLES. CHAPTER XLVII. 381

EXAMPLES OF INDETERMINATE EQUATIONS.1. Solve in positive integers 3a:y — 4y + 3x= 14.2. Solve in positive integers xy + x*= 2x + 3y + 29.3. Find the least solution of x’— 13?/’=— 1.4. Find the least solution of a;* — 101y’= — 1.5. Shew how to find series of numbers which shall be at the same time of the two forms n’— 1 and 10z∕ιζ and find the value of the smallest.6. A gentleman being asked the size of his paddock an­swered, “between one and two roods; also were it smaller by 3 square yards, it would be a square number of square yards, and if my brother’s paddock, which is a square number of square yards, were larger by one square yard, it would be exactly half as large as mine.” What was the size of his paddock?
7. Find a whole number which is greater than three times the integral part of its square root by unity; shew that there are two solutions of the problem and no more.8. Shew that the number of solutions in positive integers of /+ αx*= δ is limited when a is positive.9. Find all the solutions in positive integers of3/- 2xy + 7a:’ = 27.10. Find all the solutions in positive integers of2a:’— 9a'y + 7/= 38.11. Find a general form for solutions of a;’—23/= 1, having given the solution a: = 24 and ?/ = 5.12. Find a general form for solutions of a:’—2/=7, having given the solution a: = 3 and y = l.
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382 PARTIAL FRACTIONS AND INDETERMINATE COEFFICIENTS.

XLVIII. PARTIAL FRACTIONS AND INDETERMI­NATE COEFFICIENTS.612. An algebraical fraction may be sometimes decomposed into the sum of two or more simpler fractions; for example,
The general theory of the decomposition of a fraction into simpler fractions, called partial fractions, is given in treatises on the Integral Calculus. (See Integral Calculus, Chap, ιι.) We shall here only consider a simple case.

"P δvC C643. Let -.------ .-.---------------r be a fraction, the denominatorof which is composed of three different factors of the first degree with respect to x, and the numerator is of a degree not higher than the second with respect to χ∙, this fraction can be decom­posed into three simple fractions, which have for their denomina­tors respectively the factors of the denominator of the proposed fraction, and for their numerators certain quantities independent of X. To prove this, assume 
where A, B, C are at present undetermined; we have then to shew that such constant values can be found for A, B and C, as will make the above equation an idevlity, that is, true whatever may be the value of x. Multiply by {x-a)(x-^)(∞-y); then all that we require is that the following shall be an identity,

ax*+bx + C=A{x-β){x-y)-^ B (x-a)(x-γ) + C (x-a)(x-β)',this will be secured if we arrange the terms on the right hand according to powers of x, and equate the coefficient of each power to the corresponding coefficient on the left hand; we shall thus obtain three simple equations for determining A, B and C.

www.rcin.org.pl



PARTIAL FRACTIONS AND INDETERMINATE COEFFICIENTS. 3S3644. The method of the preceding article may be applied to any fraction, the denominator of which is the product of different simple factors, and the numerator of lower dimensions than the denominator.The preceding article however is not quite satisfactory, because we do not shew that the final equations which we obtain are in­
dependent and consistent. But as we shall only have to apply the method to simple examples, where the results may be easily verified, we shall not devote any more space to the subject, but refer the student to the Integral Calculus. 2ic — 3 .64δ. Suppose we have to develop -θ----- ∩ in a seriesproceeding according to ascending powers of χ∙, there are various methods which may be adopted. We may proceed by ordinary algebraical division, writing the divisor* in the order 2 — 3« + as® and the dividend in the order — 3 + 2aj. Or we may develop ------ 1------  by writing it in the form (ff— 3x + 2)^*, and finding 
x^- ‘3x + 2the cocfticients of the successive powers of x by the multinomial theorem; we must then multiply the result by 2x— 3. It is however more convenient to decompose the fraction into partial fractions and then to develop each of these. Thus

Hence the required series for has for its general
term
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384 PARTIAL FRACTIONS AND INDETERMINATE COEFFICIENTS.646. Without actually developing such an expression as the above, we may shew that the successive coefficients will be con­nected by a certain relation; before we can shew this it will be necessary to establish a general property of series.
647. If the series

is always equal to zero whatever may be the value of x, the coefficients αθ, a^,.......... must each separately be equal to zero.For since the series is to be zero whatever may be the value of x, we may put aj = O; thus the series reduces to αθ, which must therefore itself be zero. Hence removing this term we have 
always zero; divide by x, then 
is always zero. Hence, as before, we infer that a^ — 0. Pro­ceeding in this way, the theorem is established.If the series and are always equal whatever may be the value of x, then 
vs always zero whatever may be the value of £c; hence we infer that 
that is, the coefficients of like powers of x in the two series are equal.The theorem here given is sometimes quoted as the Principle 
of Indeterminate Coefficients ; we assumed its truth in Art. 542. With respect to the difficulties of the demonstration of the Principle, the advanced student may consult the chapter on this subject in De Morgan’s Algebra.
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EXAMPLES. CHAPTER XLYIII. 385648. Suppose that the series
represents the development of - then

If n be greater than 1, the coefficient of as" on the right-hand side is hence since there is no power of xhigher than the first on the left-hand side, we must have by Art. 647, for every value of n greater than 1,
And by comparing the first and second terms on each side, we have

the last two equations determine wθ and , and then the previous equation will determine ^4j .......... making successivelyτ⅜ = 2, 3, 4, .........
EXAMPLES OF PARTIAL FRACTIONS AND INDETERMINATE

COEFFICIENTS.Expand each of the following seven expressions in ascending powers of x, and give the general term:
1.

4.

7.Expand each of the following five expressions in ascending powers of x as far as five terms, and write down the relation which connects the coefficients of consecutive terms:
8.

T,
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386 EXAMPLES. CHAPTER XLVIII.

11. 12.13. Sum the following series to n terms by separating each term into partial fractions :
14. Sum in a similar manner the following series to n terms:
15. Determine α, δ, c, d, e, so that the term in the

p <expansion oi may be n⅛" ’.
XLIX. RECURRING SERIES.649. A series is called a recurring series, when from and after some fixed term each term is equal to the sum of a fixed number of the preceding terms multiplied respectively by certain 

constants. By constants here we mean quantities which remain unchanged whatever term of the series we consider.650. A geometrical progression is a simple example of arecurring series; for in the series α + αr + ar^ + αrθ +.......... eachterm after the first is r times the preceding term. If and denote respectively the (n —1)‘^ term and the n*'*' term, then——0; the sum of the coefficients of u„ and with their proper signs, that is, 1 — r, is called the scale of relation.Again, in the series 2 + 4sc + 14ic^ + 46a3≡ + 152ic* +.......... thelaw connecting consecutive terms is u„—3xu^_^ —x’‘u^_^= 0; this law holds for values of n greΑter than 1, so that every term after the second can be obtained from the two terms immediately pre­ceding. The scale of relation is 1 — 3χ∙ — χ^.
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RECURRING SERIES. 387651. To find the sum of π terms of a recurring series.Let the series be wθ + u^x + u^x’‘ + u^x^ +.........., and let the scaleof relation be l-jyχ-gx^, so that for every value of n greater than unity ω,, — —θ∙ Denote the first w terms ofthe series by S, then 
hence

S —pxS — qx^S =u^ + u^x — u^px — u^_^px'' — u^_^q'id' — u^_^qx’''^^, for all the other terms on the right-hand side disappear by virtue of the relation which holds between any three consecutive terms of the given series; therefore
If as n increases without limit the term 

diminishes Λvithout limit, we may say that the sum of an infinite number of terms of the recurring series is
It is obvious, that if this expression be developed in a series according to powers of x, we shall recover the given recurring series. (See Art. 618.)652. If the recurring series be wθ + u^ + u^+ u,^ +......... , andthe scale of relation 1 — p — q, we have only to make x = 1 in the ' results of the preceding article, in order to find the sum of n terms, or of an infinite number of terms.
653. The expression may sometimes be de-1 — qjx — qxcomposed into partial fractions, each having for its denominator an expression containing only the first power of x (see Art. 643).

25-2
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388 EXAMPLES. CHAPTER XLIX.When this can be done, since each partial fraction can be de­veloped into a geometrical progression, we can obtain an expres­sion for the general term of the recurring series. We have thus also another method of obtaining the sum of n terms, since the sum of n terms of each of the geometrical progressions is known.
EXAMPLES OF RECURRING SERIES.Find the expressions from which the following three series are derivable; resolve the expressions into partial fractions, and give the general term of each series.1.2.3.4. Find how small x must be in order that the series inexample 3 may be convergent.

5. Find the general term of the series3 + 11 + 32 + 84+.........6. Sum the following series to n terms,1 + 5 + 17 + 53 + 161 +485 +..........7. Find the general term of the series 10 + 14 + 10 + 6 + ... and the sum to infinity.8. Find the expression from which the following series is derivable, and obtain the general term2 — α + 2a^- 5a^ + 10α^- 17a® +..........
L. SUMMATION OF SERIES. ,654. Series of particular kinds have been summed in the chapters on arithmetical progression, geometrical progression, and ιecurring series; we shall here give some miscellaneous examples which do not fall under the preceding chapters.
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SUMMATION OF SERIES. 389

655. To find the sum of the series
We have already found this sum in Art. 482; the following method is however usually given. Assume

where Λ, B, C, I), E, ..........are constants at present undetermined.Change n into n + 1; thus
By subtraction,
Equate the coefficients of the respective powers of n; thus 

E = 0, and so any other term after E would = 0;
hence
ThusTo determine .4 we observe that since this equation is to hold for all positive integral values of n, we may put n = 1; thus 
Λ = 0. Hence the required sum is

The same method may be applied to find the sum of the cubes of the first n natural numbers, or the sum of their fourth powers, and so on.656. Suppose the term of a series to be 
where m is a fixed positive integer, and a and & known constants; then the sum of the first n terms of this series will be
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390 SUMMATION OF SERIES.

c,where C is some constant.Let denote the term of the proposed series, the sum of n terms: then we have to prove that
Assume that the formula is true for an assigned value of n; add the (j⅛+ I)*** term of the series to both sides: then 

that is,
thus the same formula will hold for the sum of n + 1 terms, which was assumed to hold for the sum of n terms. Hence if the formula be true for any number of terms it is true for the next greater number; and so on. But the formula will be true when n = 1 if we take C such that ∙* 
that is, thus C is determined and the truth of the theorem established.Since
HenceThus the sum of the first n terms of the proposed series is ob­
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SU5ΓMATI0N OP SERIES. 391tained by subtracting tlie constant quantity -—⅛-τ- from, a
(in + 1) acertain expression which depends on n. This expression is+ δ 1 , , . ...------u ,,: we may also put this expression into the equι- (∕7i+l)α

,,- a(n + nι) + b ,, . ,valent lorm - ' '*^n.∙> assist the memory we mayobserve that it can be formed by introducing an additional factor 
at the end of and dividing by the product of the number of 
factors thus increased and the coefficient of n.657. We may obtain the result of the preceding article in another way. As before, let denote{αn + δ}{α(n+ 1) + δ} {a(n + 2) + b}..........{α(n +τn-1) + δ},and let denote the sum of the first n terms of the series of which w,, is the n*'^ term.We have 
let an + b =p', thus 
change n into n — 1, thus 
similarly,

Hence, by addition,
thereforetherefore
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392 SUMMATION OF SERIES.

658. Suppose the π*** term of a series to be — , where u is the same as in the preceding article; then the sum of the first n terms of this series will be — — ψ q
{m> — 1) au^Assume, as before,

to both sides, then

Hence, as before, the truth of the theorem is established, pro­vided G be such that
Thus
and

This result may also be obtained in the manner of Art. 657.
659. A series may occur which is not directly included in the general form of the preceding article, but may be decomposed into two or more which are. For example, required the sum of 

n terms of the series
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SUMMATION OF SERIES. 393Here the w*** term
3n + 4 : thus the w*** term

If each term of the proposed series be decomposed in this manner we obtain three series, each of which may be sumreed by the method of the preceding article; thus the proposed series can be summed. In the present case the required sum is

660, Polygonal Numbers. The expression n + ^n(n- l)δis the sum of n terms of an arithmetical progression, of which the first term is unity and the common difference b. If we make b— 0, 1, 2, 3, ... we obtain expressions which are called the general terms of the 2nd, 3rd, 4th,......... order of polygonal numbers respectively.The first order is that in which every term is unity. Thus we have 1st order, term 1; series 1, 1, 1,..........2nd order, term n∖ series 1, 2, 3, 4, 5,..........3rd order, term 1); series 1, 3, 6, 10,..........4th order, term Vb ∙, series 1, 4, 9, 16,.........5th order, term ∣n(3n-1); series 1, 5, 12, 22, ..........The numbers in the 2nd, 3rd, 4th, 5th, series have been called respectively linear., triangular, square, pentagonal, &c.
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394 SUMδIATION OF SERIES.661. The n*'^ term of the r*** order of polygonal numbers is 
the sum of n terms of this series is (Art. 656) 
or Hence for triangular numbers 
for square numbers

<fec.662. To find the number of cannon-balls in a pyramidal heap.(1) Suppose the base of the pyramid an equilateral triangle, let there be n balls in a side of the base; then the number of balls in the lowest layer is
n + (?i - 1) + (n - 2) +..........+ 1,that is, the triangular number ∣w(n + l)j the number in the next layer will be found by changing n into n—1; and so on. Hence, by Art. 660, the number of all the balls is⅜w(n + l)(n + 2).(2) Suppose the base of the pyramid a square; let there be n balls in a side of the base; then the number of balls in the lowest layer is η“, in the next layer (n —1)*, and so on. The number of all the balls is

^n {n + 1) (2n + 1).Similarly we may proceed for any other form of pyramid.We may see from this proposition a reason for the terms 
triangular number, square number, <fec.If the pile of cannon-balls be incomplete, we must first find the number in the pile supposed complete, then the number in 
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SUMMATION OF SERIES. 395the lesser pile which is deficient, and the difference will be the number in the incomplete pile.663, A question analogous to that in Art. 662 arises when we have to sum the balls in a pile of which the base is rectangular but not square. In this case the pile will terminate in a single row at the top; suppose p the number of balls in this row; then the layer reckoned from the top has p + n — 1 balls in its length and n in its breadth, and therefore contains n(^p + n- 1) balls. Hence the number of balls in n layers is
or

If n' be the number in the length of the lowest row, n!=p + n — 1, and the sum may be written 
as n is the number in the breadth of the lowest row, the sum is thus expressed in terms of the numbers in the length and breadth of the base.661. Figurate Numbers. The following series form what are called the different orders of figurate numbers.1st order, 1, 1, 1, 1, 1,2nd order, 1, 2, 3, 4, 5,3rd order, 1, 3, 6, 10, 15,
the general law is, that the √** term of any order is the sum of 
n terms of the preceding order. Thus the π'** term of the second order is n, of the third order is -, of the fourth order is— and generally the term of the r*** order is∙∙∙ . This we may prove by induction. For, 
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396 SUMMATION OF SERIES.assuming this expression for· the term of the r*** order, we may find the sum of the first n terms of the r*** order by the formula of Art. 656. We have only to put 1 for a, 0 for b, and 
r — 1 for m. Hence we obtain for the sum 
and then, by definition, this is the expression for the term of the (r+ 1)*** order.665. We have already shewn that the Binomial Theorem maybe sometimes applied to find the sum of a series (see Art. 527); we give another example. Find the sum of the series 
whereand P = (n —r) (w —r + 1) (w —r + 2)..........{n-r-Vp- 1).We can see that= (2< × the coefficient of in the series for (1 — and 7( = × the coefiicient of a:"”’’”' in the series for (1 — ic)~i'''''b,Hence we have so far as terms not higher than as""®.

Therefore the series which we have to sum is equal to the product of (79 into the coefiicient of in the expansion of the product of (1 — a5)~(***> and (1 — that is, the series isequal to the product of into tfiθ coefficient of in the expansion of (1 - Hence the series is equal to
666. By the method of Art. 655 we may investigate an ex­pression for the sum 1' + 2' + S’" +............+ n’’, where r is any posi-
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SUMMATION OF SERIES. 397tive integer. Denote this sum by /S'; then it may be shewn, as in Arts. 460 and 461, that /S' can be put in the form of a series of descending powers of n, beginning with and all we haveto do is to determine correctly the coefficients of the various powers of n. Assume that
S =

It is convenient to represent the coefficients in the manner here exhibited; thus instead of a single letter for the coefficientI*of we use the symbol - and so on. We shall now pro- 
2tceed to determine the values of j4θ, ......... ; and it will befound that these quantities are independent of r as well as of n.In the assumed identity change n into n + 1; thus

Therefore, by subtraction.

Expand all the expressions (n + l)'+*, (n + 1/, {n + 1∕~*,.........by the Binomial Theorem; and then equate the coefficients of the various powers of n. Thus, by equating the coefficients of n*·, we have
l=C(r + l),
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398 SUMMATION OF SERIES,then, by equating the coefficients of w''~∖ we have
thusEquate the coefficients of n’’”’’, putting for C and their values; thus we shall obtain generally

where the terms on the right-hand side extend as far as that involving inclusive; and by putting for p in succession the values 2, 3, 4,.......... we determine in succession A.......... ;and we see that these quantities are independent of w and r.

"ψζi shall obtain,It is remarkable that all the coefficients Λvith even suffixes
A^, A^, Ag,.......... are zero; this can be proved as follows.In the original assumed identity change n into n — 1, and subtract; thus

Equate the coefficients of nJ putting for C and A^ their values; thus
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EXAMPLES. CHAPTER L. 399The result formerly obtained may be expressed thus, .

Hence, by subtracting and putting for p in succession the values 3, 5, 7,.........  we shew in succession that zero is the value
∙^4f ...........

EXAMPLES OP THE SUMMATION OF SERIES.1. Shew that the sum of the first n terms of the series of which the %*** term is n {n + 1) (n + 2) (n + τzι - 1) is obtained by placing one more factor at the end of this expression, and dividing by the number of factors so increased.2. Give the rule for summing the series of which theterm is the reciprocal of n (re + 1) (n + 2)..........(re + m — 1).Sum the following series to re terms, and also to infinity.3.
4.
5.
6.
7.8.9. Sum to n terms 1 + 3 + 6 + 10 +..........If re be even, shew that
10. Sum to re terms α≡ + (α + 1)® + (α + 2)® +.......... ,11. Sum to re terms 1® + 2⅛ + + 4⅛'' +...........
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400 EXAMPLES. CHAPTER L.12. If the terms of the expansion of (α + δ)" be multipliedrespectively by , —, ^^3^ ,.......... , n being a positive integer,find the sum of the resulting series.13. Expand ------ in a series of ascending powers of x,(a “ Xi exand shew that the coeflicient of ic’’ is■ .-fl , , , (>··-1)(«··-4Χτ’-9)_., )I ^[Γ —S— ------- i∑-------14. Find the coefl0Lcient of x'^y" in the expansion of
X (1 — ax')

(A. — x') (1 — ax — by) ’15. Shew that2n 2n (2n + 2) 2τ⅛ {2n + 2) (2n + 4)^3 376 + 3.6.9 ............... }∙16. If denote the coefficient of a:’’ in the expansion of (1 + a;)", where w is a positive integer, shew that
Py , , '^Pn n(n + l).
P3 Pl P3 Pn-1 1∙2O’o +7^1) (Τ’! + 7>J............{Pn-l + Pn} = ’..... ÷i=^^- = l + i + ∣÷...... + i.* 2 3 n 2 ό n17. Prove by developing the identity ^-^^--1^= thatn(n + l)..........(n+p — 1) n {p>-∖)............{n+p-2)[p ι' ifw(w-l) (n-2)............(nΛ-p-^)

1?is zero when w and p are positive integers an<⅛ > p∙
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EXAMPLES. CHAPTER L. 40118. If shot be piled on a triangular base, each side of which exhibits 9 shots, find the whole number contained in the pile.19. What number of shot is contained in 5 courses of an unfinished triangular pile, the number in one side of the base being 15 ?20. The number of balls contained in a truncated pile of which the top and bottom are rectangular, is 
where m and n represent the number of balls in the two sides of the top, and p the number of balls in each of the slanting edges.21. Shew that

22. Prove that

23. The coefficient of in the expansion of 
the number of factors being infinite and c less than unity, is

24. If be the coefficient of a3*" in the expansion of
...ad infinitum,

prove that
and shew that

T. A. 26
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402 EXAMPLES, CHAPTER L.25. If n be any multiple of 3, prove that
LI. INEQUALITIES.667. It is often useful to know which is the greater of two given expressions; propositions relating to such questions are usually collected under the head Inequalities.We say that a is greater than δ when a — b is a positive quantity. See Art. 95.668. An inequality will still hold after the same quantity has 

been added to each member or taken from each member.For suppose α> δ, therefore a — b is, positive, therefore α÷ c—(δ± c)is positive, thereforeHence we may infer that a term may be removed from one member of an inequality and affixed to the other with its sign 
changed.669. If the signs of all the terms of an inequality be changed 
the sign of inequality must be reversed.For to change all the signs is equivalent to removing each term of the first member to the other, and each term of the second member to the first.670. An inequality will still hold after each member has been 
multiplied or divided by the same positive quantity.For suppose a>b, therefore a —δ is positive, therefore if m be positive m (a — δ) is positive, therefore ma > mb; and similarlyis positive, andIn like manner we can shew that if each member of an ine­quality be multiplied or divided by the same negative quantity, the sign of inequality must be reversed.
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INEQUALITIES. 403671. . then
For by supposition, a — b, a'-b', a"-b",..........are all positive;therefore a — b + a — b' + a!' — b'' Λ-.......... is positive; therefore
672. If α>δ, a'>b', a">b",.......... and all the quantities arepositive, then it is obvious that ac^a".......... ∙>bb'b''.............673. If α>δ, and α and b are positive, then α">δ", where n is any positive quantity.This follows from the preceding article if n be an integer. If nbe fractional suppose it = -; let oF=a' and l^=b'∙, then o! is >δ',

1and we have to prove that a'’ > b'^ ∙, this we can prove indirectly ; II IIfor if a'^=b'^, then a'=b', and if α'^<δ'*', then a'<b'∙, both of
1 £these results are false; hence we must have a'’ > b"*.If n be a negative quantity, let w = — m, so that m is positive; then ·4:<Χ; that is, a"<b".

a b674. Let be fractions of which the de-δ, ∖ ∖ ∖nominators are all of the same sign, then the fraction 
lies in magnitude between the least and greatest of the fractions

For suppose y, ~, ,... ~ to be in ascending order of magnitude, and suppose that all the denominators are positive; then
26—3
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404 INEQUALITIES.

therefore
therefore
therefoι∙eand so on;therefore, by addition,

therefore
Similarly we may prove that
In like manner the theorem may be established when all the denominators are supposed negative.then each of these fractions is equal to

1 2 3the fraction whose numerator is the sum of the numerators and denominator the sum of the denominators.675. Since is a positive quantity orzero, according as x and y are unequal or equal, we have
the inequality becoming an equality when x == y. Hence
that is, the arithmetic mean of two quantities is greater than the geometric mean, the inequality becoming an equality when the two quantities are equal.
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INEQUALITIES. 405676. Let there be n positive quantities a, b, c, ... k∖ thenαδc ...k,unless the n quantities are all equal, and then the inequality becomes an equality.For ab cd

therefore abed

and
therefore abed ■By proceeding in this way we can shew that if p be any posi­tive integral power of 2,

abed ...{p factors)
Now let p = n + r, and let , andsuppose each of the remaining r quantities out of the p quantities to be equal to t: we have then

abed ...(n factors) that is,therefore abcd...(n factors) <t”’, that isThus the theorem is proved whatever be the number of quan­tities a, b, c, d, ... The inequality becomes an equality when all the n quantities are equal.We may also write the theorem thus, 
by extending the signification of the terms arithmetical mean and 
geometrical mean, we may enunciate the theorem thus; the arith­
metical mean of any number of positive quantities is greater than 
the geometrical mean.
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406 INEQUALITIES.677. The following proof of the theorem given in the pre­ceding article will be found an instructive exercise.
_ . -n 1 / 7 7 7∖" 7 √~1 1 r <l + δ÷C + iZ+ + lcLet P denote {abed κΥ, and Q denote-------------------------- .nSuppose a and b respectively the greatest and least of the n quantities α, b, c, d, ................ Tt', let a^ = b^ = ^{a + b∖ and let

1

P^ = {af>^cd..........kY', then since ajj^>ab, we have > .P. Nextif the factors in P^ be not all equal, remove the greatest and least of them, and put in their places two new factors, each equal to half the sum of those removed; let 7ζ denote the new geometrical mean; then P^ > P^. If we proceed in this way, we obtain a series P, P^, P^, P^,..........P^, each term of which is greater thanthe preceding term; and by taking r large enough, we may have the factors which occur in P^ as nearly equal as we please; thus when r is large enough, we may consider P^ = Q∙, therefore P is less than Q.We will now compare the quantities
ΛVe suppose a and b positive, and a not less than ά.

Since — is less than the series is convergent {Κγϊ.
2i564), so that we have a result which is arithmetically intelligible and true. Hence if m be negative or any positive integer, it followsIf 7λi be positive and less than unity,remains to consider the case in which m
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IN U AXjI a lJl*b∙ ⅛V ∙is positive and greater than unity, but not an integer. Suppose » - i
m = -^, where /» is >q, and let α = α’, β = b^, Λ=a^, B = .Then 
according as 
that is, according as 
that is, according asWe know by what has already been proved, that the expres­sion on the left hand is the greater, since - is positive and less than unity; hence is > when m is positive andgreater than unity.

679. Let there be n positive quantities a, b, c,..........k', then 
when m is negative, or positive and greater than unity; but the reverse holds when m is positive and less than unity. The inequality becomes an equality when all the n quantities are equal.This may be proved by a method similar to that used in Art. 676. We will suppose m negative, or positive and greater than unity. Then
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408 INEQUALITIES.

therefore 
thereforeBy proceeding in this way we can establish the theorem in the case where the number of quantities is jo, if p be any positive integral power of 2, Now let p = n + r, and let the last r of the 
p quantities be all equal, and each equal to L say, where 
therefore 
therefore that is, therefore which was to be proved.In a similar way we may establish the rest of the theorem, namely, that when m is positive and less than unity the reverse holds.680. The theorem of the preceding article may also be esta­blished by a method similar to that used in Art. 677.681. The following problems are analogous to the subject considered in the present chapter.Divide a given number 2α into two parts, such that their product shall have the greatest possible value. Let x denote one part and 2a — x the other part, and let y denote the product; then we have to determine x so that y may have the greatest possible value. Since p = x (2a — x), we have x‘ — 2ax + y = 0; therefore x = a^ J(a^^ — y). Thus since x must be real y cannot be greater than a®, and x = a, when y = a’‘.
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INEQUALITIES. 409682. Divide a given number 2α into'two parts, such that the sum of their square roots shall have the greatest possible value. Let X denote one part and 2a — x the other part, and let y denote the sum of the square roots of the parts; then we have to deter­mine X so that y may have the greatest possible value.Since
andthereforeThus, since ^Jx must be real cannot be greater than 4σ, thus 2 J a is the greatest value of y, and x~a when y=2 J a.

683. Find the least value which -------  can have whatever
Xreal value x may have.

, thus therefore
Thus y^ cannot be less than 4a®; hence 2α is the least value of y.

x^+a^ .Or thus, --------= ic 4— ; suppose x positive, then we canput this expression in the form (^Jx —+2a∙, and as 2α is constant the least value of the whole expression will be obtained when the positive term (^Jx — vanishes, that is, when x = a. 
It is unnecessary to consider negative values of x, because has the same numerical value when x has any negative value as when X has the corresponding positive value.
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410 EXAMPLES OF INEQUALITIES. CHAPTER LI.

EXAMPLES OP INEQUALITIES.In the following examples the symbols are supposed to denote positive quantities; and the inequalities may, in certain cases, become equalities, as in some of the articles of the text.1. If α, 0, c be such that any two of them are greater than the third,
2. If l‘‘ + 7Zi≡ + w≡= 1, and Γ + + √≡= 1, then
3.

4.

5.
6.

7. Shew that £c’— 8x + 22 is never less than 6, Λvhatcvermay be the value of ic.8. Which is greater,9. If n be >1, then Χ­

ΙΟ. Find the least value of11. Divide an odd integer into two others, of which the product may be the greatest possible.12. Ifα>δ, then13. If a, b, c, d are in harmonic progression, a + d> b c.14. If a, b, c are in harmonic progression and n a positive integer, α"+c">2δ".15. If α>&, shew that , is > or < , accord-
,J{x^+a^) J{x^+b^ying as 33 is > or < J {Ob').16. If a, b, c, or b, c, a, or c, a, b are in descending order of magnitude, + l?c + c^a > a’‘c + b^a + c^b; if they are in ascending order of magnitude, a'b + b'c + c^a < a^c + b^a + c^b.

t

www.rcin.org.pl



EXAMPLES OF INEQUALITIES. CHAPTER LI. 41117.18.19.20.21. The difference between the arithmetic and geometric mean of two quantities is less than one-eighth of the squared difference of the numbers divided by the less number, but greater than one-eighth of such squared difference divided by the greater number.22.
23.24.25.26.27.28.29.30. If/) and q be each less than unity,is and
31.
32. If a and x both lie between 0 and 1, then
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412 THEORY OF NUMBERS.

LIT. THEORY OF NUMBERS.684. Throughout the present chapter the word number is used as an abbreviation for positive integer.685. A number which can be divided exactly by no number except itself and unity is called a, prime number, or shortly a, prime.686. Two numbers are said to be prime to each other when there is no number, except unity, which will divide each of them exactly. Instead of saying that two numbers are prime to each other, the same thing is expressed by saying that one of them is prime to the other.687. Jf a, number p divides a product ab, and is prime to one 
factor a, it must divide the other factor b.Suppose a greater than p; perform the operation of finding the greatest common measure of a and p; let q, q, f',... be the successive quotients, and r, r, ,... the corresponding remainders. Thus a~pqΛ-r, p = rqΛ-r', r = r'f~r, multiply each member of each of these equations by δ, and divide by»: thus

Since — is an integer, it follows from the first of these equa­tions that — is an integer; then from the second of these equations 
P

br . . . br' .— is an integer: then from the third — is an integer; and so Τ’ 7>on. But, since a and p are prime to each other, the last of the remainders r, r', r", ... is ιmity; therefore is an integer; that 
Pis, b is divisible by p.688. When the numerator and denominator of a fraction 

are prime to each other the fraction cannot be reduced to an equi­
valent fraction in lower terms.
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THEORY OF NUMBERS. 413Suppose th⅛t a is prime to δ, and, if possible, let be equal to , a fraction in lower terms. Since = ~we have a' =~ ;
o bobtherefore δ diviles αδ'; but δ is prime to a, therefore δ divides δ' (Art. 687); but this is impossible, since δ' is less than δ by sup­position. Hence cannot be reduced to an equivalent fraction in lower terms. a a'689. If A, is prime to b, and = ∣v» a' and b' must be the 

same multiples of a and b respectively.
r.. a a , , ab' i r·Since have α = ; but 6 is prime to α, thereforeδ divides b'', hence δ' = wδ, where n is some integer; therefore 

a = na.690. 7/ α prime number p divides a product abed... it must 
divide one of the factors of that product.For since p is a prime number, if jo does not divide a it is prime to it, and therefore it must divide bed... (Art. 687). Similarly, if 
p does not divide δ, it is prime to it, and therefore it must divide 
cd... By proceeding in this way we shall prove that p must divide one of the factors of the’ product.691. If a prime number divides a", where n is any positive 
integer, it must divide a.This follows from the preceding article by supposing all the factors equal.692. If a number n is divisible by p, p', p", ... and each of 
these divisors is prinw to all the otlters, n is also divisible by the 
product ppV^..For since n is divisible by p, we have n = pq, where q is some integer. Since p' divides pq and is prime to p, p must divide q ∙, hence q=ρ'q, where q is some integer; thus u = ppq, and is therefore divisible by pp'. proceeding thus we may shew that 
n is divisible by ppp"...
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414 THEORY OF NUMBERS.693. 7∕*a and b ^be each of them prime to c, then ab is prime 
to c.For if αδ is not prime to c, suppose αδ = nr and c = ns, where 
n, r, and s are integers; then, since a and δ are prime to c, they are prime to ns, and therefore to w; but αδ = nr, therefore - = ∙

no therefore δ is a multiple of n (Art. 689). Hence δ is both prime to n and a multiple of which is impossible. Therefore ab is prime to c.694. If a. and b are primΛ to each other, a“ and b" are prime 
to each other; m and n being any positive integers.For since a is prime to δ, it follows that a × a or a® is prime to b (Art. 693); similarly a® × α or a® is prime to b∙, and so on; thus aΓ is prime to δ. Again, since a” is prime to δ, it follows that aΓ is prime to δ × b or b^∙, and so on.695. No rational integral algebraical formula can represent 
prime numbers only.For, if possible, suppose that the formula 
represents prime numbers only; suppose when x = m that the formula takes the value p, so that
Put for X, in the formula, m-∖∙np, and suppose the value then to be thus 
where 11 (∕>) denotes some multiple of p', thus 2>' is divisible by p, and is therefore noi a prime.Or we may prove the proposition briefly thus. If α = 0, the expression is always divisible by x; and if a is not = 0, put 
X = na, and then the expression is divisible by a} hence the ex­pression cannot represent prime numbers only.
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THEORY OF NUMBERS. 415696. The number of prime numbers is infinite.For if the number of prime numbers be not infinite, suppose p the greatest prime number; the product of all the prime numbers up to p, that is, 2.3.5.7.11 ... p is divisible by each of these prime numbers; add unity to this product, and we obtain a number which is not divisible by any of these prime numbers; this numbei’ is therefore either itself a prime number, or is divisible by some prime number greater than p; thus is not the greatest prime number, which is contrary to the supposition. Hence the number of prime numbers is infinite.697. If a is prime to b, and the quantities a, 2a, 3 a,..........(b — 1) a, are divided by b, the remainders will all be different.For, if possible, suppose that two of these quantities ma and 
ma when divided by b leave the same remainder, so that 
then therefore hence m — m' is a multiple of b (Art. 689); but this is impossible, since m and m' are both less than b.698. A number can be resolved into prime factors in only 
one way.Let N denote the number; suppose A = abed.......... , where
a, b, c, d,  are prime numbers equal or unequal. Suppose, if possible, that A also=α∕3γδ , whereto, β, y, δ,  are other prime numbers. Then abed.........= aβy8 ; hence αmust divide abed , and therefore must divide one of the factors of this product; but these factors are all prime num­bers; hence α must be equal to one of them, a suppose. Divide by a or α, then bed..........= βγ8............; from this we can prove that
β must be equal to one of the factors in bed..........; and so on.Thus the factors in abed.......... cannot be differ cut from those in
aβy8..........
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416 THEORY OF NUMBERS.699. To find the highest power of a prime number a which is 
contained in the product [ m.Let denote the greatest integer contained in

let denote the greatest integer contained ir
let denote the greatest integer contained inand so on; then the highest power of the prime number a which is contained in 1 m is

For among the numbers 1, 2, 3,..........m, there are I y whichcontain a at least once, namely the numbers α, 2α, 3α, 4α, ..........Similarly there are I which contain α* at least once; there are I which contain a® at least once; and so on. The sum of these expressions is the required highest power.This proposition will be illustrated by considering a numerical example. Suppose for instance that w⅛ = 14 and a = 2; then we have to find the highest power of 2 which is contained in |_14.Here I = 7, / = 3, I = 1; thus the requiredpower is 11. That is, 2’* will divide [_14, and no higher power of 2 will divide ∣^14. Now let us examine in what way this num­ber 11 arises. Of the factors 1, 2, 3, 4,..........14 there are sevenwhich we can divide at once by 2, namely 2, 4, 6, 8, 10, 12, 14.■ There are three factors which can be divided by 2 a second time, namely 4, 8, 12. There is one factor which can be divided by 2 a third time, namely 8.Thus we see the way in which 7 + 3 + 1, that is 11, arises.
www.rcin.org.pl



THEORY OF NUMBERS. '417700. The product of any n successive integers is divisible 
by [a.Let m + 1 be the first integer; we have then to shew that
is an integer. Multiply both numerator and denominator of this expression by ∖m∙, it then becomes which we shall de-

p ~^note by y-. Let α be any prime number; let r^, r^, r^, ..........

, , . . m-∖-n m + n m + ntienote the greatest integers in -------, —, —5—, ............ re-
Cb Cb Cbspectively; let 5∣, Sj,, sθ, .......... denote the greatest integers in

'nb mm ,∙ 1 ∙, 1 1 1"^, ^^2> ^3j .........  respectively; and let t^ t^, t^,..........denote the
it it (igreatest integers in -, .......... respectively. Then in Pthe factor ti occurs raised to the power r^ + + r^ + ; in Q the factor α occurs raised to the power
Now it may be easily shewn that r^ is either equal to + t^ oτ to Sj + ij + 1, and that is either equal to s^ + or to + + 1,and so on. Thus α occurs in P raised to at least as high a poΛver as in Q. Similarly any prime factor which occurs in Q occurs in 
P raised to at least as high a power as in Q. Thus P is divisible by Q.701. If TO. be a prime number, the coefficient of every term in 
the expansion of (a + b)", except the first and last, is divisible by n.For the general form of the coefficients excluding the first and last is

T. A. 27
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418 THEORY OF NUMBERS.where r rciΑy have any value from 1 to n — 1 inclusive. Now, by Art. 700, this expression is an integer; also since n is a prime number and greater than r, no factor which occurs in ∣r can divide therefore (w —l)(w-2)..........(n —r + l) must be divi­sible by [r. Hence every coefficient, except the first and last, is divisible by n.702. If n be a prime number, the coefficient of every term In
the expansion of (a + b + c + d+..........)", except those of a", b", c",d”, .........., is divisible by n.Put j8 for δ + c + (/ +..........; then

(a + b -∖- c + d +..........)"~ "I" 'By Art. 701, every coefficient in the expansion of (α + /?)" is divisible by n, except those of α" and β^, and the coefficient of each of these terms is unity. Again,j8" = (b + c + d +..........)" = (δ + γ)” suppose;and every coefficient in the expansion of (δ + γ)" is divisible by 
n except those of b^ and ∙f. By proceeding in this way we arrive at the theorem enunciated.703. If n be a prime number, and N prime to n, then N"^* — 1 
⅛ a multiple of n. (Fermat’s Theorem.)By the preceding article,(α + δ + c + c? +......... + ½)" = α" + b" + c" + d^ +............+ k^ + M (rι},where M {n) denotes some multiple of n. Let each of the quanti­ties a, b,’ c, d, ..........k be equal to unity, and suppose there are
N oi them; thus
therefore A(A^"~* — 1) = MSince A is prime to n, it follows that A"~* — 1 is divisible by n.

NIc may therefore say that A"^* = l+j9n, where p is some positive integer.
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THEORY OF NUMBERS. 419704. Since n is a prime number in the preceding article, 
71—1 is an even number except when »= 2; hence we may λvrite the theorem thus,
therefore, either 2V ≡ -1 or # ’ + 1 is divisible by 7τ, so that 

n—1
“ =pn + l, or else=j9n-1, where j9 is some positive in­teger.705. The following theorem is an extension of Fermat’s. Let 

n be any number; and let 1, α, δ, c, ..........n— 1, be all the num­bers which are less than n and prime to n; suppose there are m these numbers; then aj*" — 1 = Mwhen for x we substitute any one of the above m numbers, except unity. For multiply all the 
7n numbers by any one of them except unity, and denote the multiplier by £c; thus we obtain 1 . x, ax, bx, ex, .......... (n—1)«:;these products are all different and all prime to n. It may be easily shewn that when these products are divided by n, the re- maindera are all different and all prime to n; thus the remain­ders must be the original τn numbers 1, a, b, c, .......... w—1;they will not necessarily occur in this order, but that is imma­terial for the object we have in view. Hence the product of the new series of m numbers x, ax, bx, ex, .......... (n-l)x, canonly differ from the product of the original τn numbers bp some 
m'idti2)le of n; thus

Since two of the three terms which enter into this equation are divisible by abc..........(n — 1), the third term must likewise be sodivisible, and as abc..........{n- 1) is prime to n, the quotient afterJ∕(n) is divided by abc..........{n- 1) must still be some multiple of
n, and may be denoted by J∕{n) ∙, thus

706. We will now deduce Fermat’s theorem from the result of the preceding article. Suppose n a prime number; then the 
27—2
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420 THEORY OF NUMBERS.numbers 1, 2, 3,......... n — 1, are all prime to n∙, thus m = n-1.Therefore «"“* — 1 = 4∕(i⅛), where «: may be any number less than n. Next let y denote any number Λvhich is greater than n and prime to n, then we can suppose y =pn + x, where p is some integer and 
X is less than λ. Therefore

= {jpn + = a3"~* + (p,- ∖')x^~^pn +............= x"~' +but we have already shewn that ic"~* — 1 +4∕(rt); thusy"~* = 1 + J∕(n), and — 1 = Jil(n).Thus Fermat’s theorem is established.707. 7/n δe α prime number, 1 + [n — 1 is divisible by n.(Wilson’s Theorem.)By Art. 549 λve have— 1 = (w — 1)”“^ — — 1) (?i — 2)"“*. + ⅛≡iχnj±) _ 3).-, _ (2→(!L-J (!LlS _ 4).-, ........... ..1.2  1 , J .oby Fermat’s theorem we have(?i - 1)"^* = 1 + p,n, In - 2)”“’ = 1 + p^n, (n - 3)"~* = 1 .........where p^, p^, p^, ..........are positive integers. Therefore- 1 = M (w) + 1 - {n - 1) _(n —l)(n-2) (n — l)(n — 2)(n — 3)172 “ 1.2.3 ..........’
, . Λ ! 1 ∖ (^ “ 1) ~ 2) . 1 , -1the series 1 - (n - 1) + ------p-∖}------- ~ ∙∙∙ extends to 7i - 1 terms,and is equal to (1 - 1)"~‘-(-1)"^∖ that is, to -1, since n-1 is an even number. Thus [_n — 1 =≈ J∕(n) — 1; therefore~ divisible by w.If n be not a prime number, 1 + [W' — is not divisible by n. For suppose p a factor of n∙, then p is less than n—1, and there­fore [n—1 is divisible by p ∙, hence 1 + [n — 1 is not divisible by 

p, and therefore not divisible by n.
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THEORY OF NUMBERS. 421708. The following inference may be drawn from Wilson’s Theorem. If 2/? + 1 be a prime number, {[p}^+(- 1)** is divisi­ble by 2p + 1.By Wilson’s Theorem, since 2p + 1 is a prime number, 1 + ^p is divisible by 2p + 1. Put n for 2p + 1, then may be written thus,1 (n — l)2(n — 2)3(i⅛ — 3)..........p{n —p}',if these factors be supposed multiplied out, it is obvious that wo shall obtain (— 1)^Ι*2*3*..........p^ together with some multiple of n.Hence 1 + (—1)’’{[^}® must be divisible by w, and therefore {+ (— 1)'’ must be divisible by n.709. To find the number of positive integers which are less 
than a given number and prime to it.Let di denote the number, and first suppose di=a^', where a is a prime number. The only terms of the series 1, 2, 3, 4,......... N^

NΛvhich are woi prime to W are a, 2a, 3α, 4α, ..........there
diare — of these terms. Hence after rejecting these multiples of 

a, we have remaining W— terms, that is, √V^1 — terms; thus there are di ^1 — positive integers which are less than W and prime to W.Next, suppose di = (i^ld, where a and δ are prime numbers. The multiples of a in the series 1, 2, 3, 4,......... di, are a, 2α, ^a,
di ■ di

4a,..........— a, so that there are — of them. Let di be the number
a a

c>i positive integers remaining after the multiples of a have been rejected, then di'= di----- . We have now to reject all the mul­tiples of b which occur among the di' terms; and these multiples consist of the multiples of b in the di terms diminished by the
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422 THEORY OF NUMBERS.

y . ymultiples of b in the — terms; the number of the former is ; and the number of the latter is the same as that of the multiples of ab in the # terms, that is, —r . Thus the number of the mul- 
ab

y y'tiples of b which are to be rejected y ~ i there-
N' .fore the number of positive integers remaining is N' — -j~, that is.that is.Again, suppose N=a'^b’‘c', where α, b, c, are prime numbers. 

NFirst reject from the — multiples of a; suppose A' the number , Aof positive integers remaining, so that A = A----- . Next reject
N' .the multiples of b which occur in the A terms; these are in number, so that the number of positive integers remaining is A' . .A'—which we will denote by A". We have now to reject all the multiples of c which occur among the N'' terms. The number of the multiples of c which occur among the A' terms is A'—, in the same manner as the number of the multiples of b 

c
N' . N'among them was . The multiples of c among the terms are the same as the multiples of be among the A' terms, and the A'number of them is therefore -γ- . Thus the number of the multi- bc

. N' N’ . N" pies of c which are to be rejected is —---- that is, —; there­fore the number of positive integers remaining is A" that
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THEORY OF NUMBERS. 423Similarly we conclude that if N = a^'b‘‘c''d'..........., where a, b, c,
d,..........are prime numbers, the number of positive integers whichare less than N and prime to N is

It will be observed that in this theorem unity is considered to be one of the numbers which are less than N and prime to N.710. To find the number of divisors of any given number.Let N denote the number, and suppose N=(db''(d.........., where
a, b,c,.......... are prime numbers. It is evident that N will be divi­sible by any number which is formed by the product of powers of 
a, b, c,......... provided the power of a be comprised between 0 and∕>, the power of b between 0 and g', the power of c between 0 and r, and so on; and no other number will divide N. Hence the divi­sors of N will be the various terms of the product(1 + a + a^+ ... + α'')(l + ά + + ... +&’) (1 + c + + ... +C’·)...;the number oi the divisors will therefore be
This includes among the divisors unity and the number N itself.711. To find the number of ways in which a number can 
be resolved into two factors.Let N denote the number, and suppose N=a^b''d.........., where
a, b, c,..........are prime numbers. First, suppose N not a perfectsquare; then one at least of the exponents p, q, r,.......... is an oddnumber; the required number then is ⅛(∕)+ 1)(<∕ + 1) (r+ 1).......... ,because there are two divisors of corresponding to every way in which 1 can be resolved into two factors. Next suppose χV a perfect square, then all the exponents p, q, r,.......... are even; therequired number is found by increasing (∕> + 1) (7 + 1) (r + 1)..........by unity, and taking half the result; for in this case the square root of N is one of the divisors, and if this be taken as one factor 
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424 EXAMPLES. CHAPTER LTI.of y, the other factor is equal to it, so that only one divisor arises from this mode of resolving N into two factors.It will be observed that in this theorem JV × 1 is counted as one of the ways of resolving N into two factors.712. To find the sum ofi the divisors of a number.With the notation of Art. 710, we have the sum equal to(1 + α + α^+ ... + α'')(l + b + b^+ ... + b'^') (1 + c + c* + ... +c^γ..∙,that is,
713. To find the number of ways in which a number can 

be resolved into two factors which are prime to each other.Let the number A = .......... as before. Since the twofactors are to be prime to each other, we cannot have some power of a in one factor, and some power of a in the other factor, but a’’ must occur in one of the factors. Similarly, ά’ must occur in one of the factors; and so on. Hence the required number is the same as half the number of divisors of abc.........., and is therefore2"“\ where n is the number of different prime factors which occur in N.

EXAMPLES OF THE THEORY OF NUMBERS.1. If p and q are whole numbers, and p + q is an even num­ber, then — g' is also even.2. Find the least multiplier which will render 3234 a perfect square.3. Find the least multiplier which will render 1845 a perfect cube.4. Find the least multiplier which will render 6480 a perfect cube.5. Find the least multiplier which will render 13168 a per­fect cube.
www.rcin.org.pl



EXAMPLES. CHAPTER LII. 4256. If the sum of au odd square number and an even square number is also a square number, then the even square number is divisible by 16.7. Every square number is of the form 5n or 5n÷ 1.8. Every cube number is of the form 7n or 7n ÷ 1.9. When the cube of any number is divided by 7, the re­mainder is 0, 1, or 6.10. No square number is of the form 3n— 1.11. No triangular number is of the form 3n — 1.12. If n be any number whatever, a the difference between 
n and the next number greater than n which is a square number, and b the difference between n and the next number less than n will ch is a square number, then n — ab is a square number.13. If the difference of two numbers which are prime to each other, be an odd number, any power of theii' sum is prime to every poΛver of their difference.14. If there be three numbers one of which is the sum of the other two, twice the sum of their fourth powers is a square number.15. Shew when n is any prime number, that x"- 1 and (« — 1)" will leave the same remainder when divided by n.16. If 2/) + 1 be a prime number and the numbers 1®, 2®,.../)®, be divided by 2∕> + 1, the remainders are all different.17. Every even power of every odd number is of the form 8n + 1.18. Every odd power of 7 is of the form 8w — 1.19. If n be any integer, ~ n + 1 cannot be a square number.20. If n be any odd integer, then n®+ 1 cannot be a square number.21. If a and a» are integers, the greatest value of ax — 2a;’ isa’the integer equal to or next less than -g- .

www.rcin.org.pl



426 EXAMPLES. CHAPTER LTI.22. Shew that n(n + l) (2n + 1) is always divisible by 6.23. If n be odd, (n — 1) n(n + 1) is divisible by 24.24. If n be odd and not divisible by 3, then 5 is divisible by 6.
25. If n be a prime number greater than 5, then π*- 1 ia divisible by 240.26. Shew that + is an integer if m be.Uu λ4 ov

27. Shew that vi} ~n is always divisible by 42.28. If n be any prime number and x prime to n, prove that x" and X when divided by n will leave the same remainder.29. If n be any prime numbeι∙ and N prime to n, then J ∙g (Jiyigi51θ })y30. If n be any prime number greater than 3 and N prime to n, then N"- JV^is divisible by 6τ⅛.31. If w and JV^ be different prime numbers, and each greater than 3, then JV'"^*-1 is divisible by 24w.32. If n be any prime number greater than 2, except 7, then w® — 1 is divisible by 56.33. If n be any prime number greater than 2 and N odd number prime to n, then √V"^*- 1 is divisible by 8n.34. If 7i be any prime number greater than 2, then1"+ 2"+ 3"+ ... + (rw)"is a multiple of n.35. Shew that the 10^∙* power of any number is of the fθ)τa lln or lln + 1.36. Shew that the 12“* power of any number is of the form 13/i or 13n + 1.37. Shew that the 9*** power of any number is of the form 19zi or 19w± 1.38. Shew that the 11“* power of any number is of the form 23z⅛ or 23n ±1.
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EXAMPLES. CIIAPTEK LIΓ. 42739. Shew that the 20'** power of any number is of the form 
25n or 25n + 1.40. How many positive integers are less than 140 and prime to 140 141. How many positive integers are less than 360 and prime to 360 142. How many positive integeι∙s are less than 1000 and prime to 1000 143. How many positive integers are less than 3*× 7^× 11 and prime to it 144. How many positive integers are less than 10" and prime to it 145. Find the number of divisors of 140.46. Find the number of divisors of 1845.47. Find how many divisors there are of [_9, and the sum of these divisors.48. Into how many pairs of factors prime to each other can 1845 be resolved?49. In how many ways can a line of 100800 inches long be divided into equal parts, each some multiple of an inch ?50. In how many ways can four right angles be divided into equal parts so that each part may be a multiple of the angular unit. (1) when the unit is a degree, (2) when the unit is a grade ?51. How many different positive integral solutions are there of xy=10"l52. If be any number, n the number of its divisors, and P the product of its divisors, shew that P = N^∙, shew that N" is in all cases a complete square ?53. Find the least number which has 30 divisors.54. Find the least number which has 64 divisors of which three are primes whose continued product is 30.
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428 EXAMPLES. CHAPTER LIT.

55. Suppose a prime to b, and let the quantities
a, 2a, 3α, ... (δ - l)αbe divided by b; prove that the sum of the quotients arising from any two terms equidistant from the beginning and end will be a — 1, and that the sum of the corresponding remainders will be b.56. If any number of square numbers be divided by a given number n there cannot be more than ~ different remainders.57. Express generally the rational values of x and y which satisfy 140ic = 2∕*.58. If r the radix of a scale of notation be a prime number7* + 1 .greater than 2, there are —different digits in which square numbers terminate in that scale.59. If any number n can be resolved into the sum of p squares, 2 (jθ — 1) w can be resolved into the sum of p {p — 1) squares.60. If n be any positive integer 2®" + 15n—1 is divisible hy 9.61. If P denote the sum of the products of the first n num­bers taken r together,1 + Pj + + ... + P _J is a multiple of [n.62. Shew that the 100*’’ power of any number is of the form 125n or 125n + 1.

LIII. PROBABILITY.714. If an event may happen in α ways and fail in b and all these ways are equally likely to occur, the probability of its happening is ~~^∙> the probability of its failing is- This may be regarded as a definition of the meaning ofα + 0
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PROBABILITY. 429the word probability in mathematical works. The following ex­planation is sometimes added for the sake of shewing the consist­ency of the definition with ordinary language. The probability of the happening of the event must, from the nature of the case, be to the probability of its failing as a to δ; therefore the proba­bility of its happening is to the sum of the probabilities of its happening and failing as a to a + b. But the event must either happen or fail, hence the sum of the probabilities of its happen­ing and failing is certainty. Therefore the probability of its hap­pening is to certainty as α to a + b. So if we represent certainty l)y unity, the probability of the happening of the event is repre­sented by715. Hence if p be the probability of the happening of an •event, 1 — p is the probability of its failing.716. The word chance is often used in mathematical works as synonymous with probability.717. When the probability of the happening of an event is to the probability of its failing as a to b, the fact is expressed in popular language thus; the odds are α to δ for the event, or b to 
a against the event.718. Suppose there to be any number of events A, B, C, &c.,such that one must happen and only one can happen; and suppose 
a, b, c, &c., to be the numbers of ways in which these events can respectively happen, and that all these ways are equally likely to occur, then the probabilities of the events are proportional to a, b, c, &c. respectively. For simplicity let us consider three events, then A can happen in a ways out of a + b + c ways and fail in δ + c ways; therefore, by Art. 714, the probability of 
A’s happening is ---- y---- , and the probability of A’s failing is

Cb 4" u 4" C". Similarly the probability of B’s happening is ,and the probability of C’s happening is —.
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430 PROBABILITY.719. We will now exemplify the mathematical meaning of the word probability.If n balls A, B, G, ..., be thrown promiscuously into a bag and a person draw out one of them, the probability that it will . 1 . 2be A is - i the probability that it will be either' A or ΰ is -.The same supposition being made, if two balls be drawn out 2the probability that these will be A and B is —----- . For thew(w-l)number of pairs of balls is the same as the number of combinations of n things taken two at a time, that is, 1); and one pairis as likely to be drawn out as another; therefore the probability..1 . 2of drawing out an assigned pair is 1 n{n- 1), that is, .Again, suppose that 3 white balls, 4 black balls, and 5 red balls are thrown promiscuously into a bag, and a person draws out one of them; the probability that this will be a white ball is 3 . 4Y2, the probability that it will be a black ball is > and the 5probability that it will be a red ball is . But suppose two balls to be drawn out, and estimate the probabilities of the different cases. The number of pairs that can be formed out of 12 things is i×12×ll, that is, 66. The number of pairs that can be formed out of the 3 white balls is 3; hence the probability of 3drawing two white balls is . Similarly the probability of draw- Ging two black balls is —; and the probability of drawing two redballs is . Also since each white ball might be associated with 00each black ball^ the number of pairs consisting of one white ball and one black ball is 3 × 4, that is, 12; hence the probability of
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PROBABILITY. 43112drawing a white ball and a black ball is . Similarly the proba-20bility of drawing a black ball and a red ball is ; and the pro-15 bability of drawing a red ball and a white ball is —. The sum of the six probabilities which we have just found is unity, as, of course, it should be.We will give one example from a subject which constitutes an important application of the theory of probability. According to the Carlisle Table of Mortality, it appears that out of 6335 persons living at the age of 14 years, only 6047 reach the age of 21 years. As we may suppose that each individual has the same chance of being one of these survivors, we may say that is the proba-
∖)0OObility that an individual aged 14 years will reach the age of 21 288years : and - is the probability that he will not reach the age vOOOof 21 years.

720. Suppose that there are two independent events of which the respective probabilities are known ; we shall proceed to esti­mate the probability that both will happen.Let a be the number of ways in which the first event may happen, and b the number of ways in which it may fail, all these ways being equally likely to occur; and let a' be the number of ways in which the second event may happen, and b' the number of ways in which it may fail, all these ways being equally likely to occur. Each case out of the a + b cases may be associated with each case out of the a' + b' cases ; thus there are (α + δ) (a' + b') compound cases which are equally likely to occur. In aa' of these compound cases both events happen, in bb' of them both events fail, in ab' of them the first event happens and the second fails, and in a'b of them the first event fails and the second happens. Thus ×
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432 PKOBAEILITY.

CbCb------ 7τ-,--;—zyr is the probability that both events happen, (α + 0) (α + ∙' ’
, ,—Tz? is the probability that both events fail, 
(a+b){a'+b') '

ab' (is the probability that the first happens and the(α + b~) (a' + b') ( second fails,
a'b (ia the probability that the first fails and the(α + b) (α' + b') t second happens.Thus if p and jo' be the respective probabilities of two inde­pendent events, pp' is the probability of the happening of both events.721. The probability of the concurrence of two dependent events is the product of the probability of the first into the probability that when that has happened the second will follow. This is only a slight modification of the principle established in the preceding article, and is proved in the same manner; we have only to suppose that a' is the number of ways in which after the first event has happened the second will follow, and b' the number of ways in which after the first event has happened the second will not follow, all these ways being supposed equally likely to occur.722. In like manner, if there be any number of independent events, the probability that they will all happen is the product of their respective probabilities of happening. Suppose, for example, that there are three independent events, and that p, p', p" are their respective probabilities. By Art. 720, the probability of the con­currence of the first and second events is pp' ∙, then in the same way the probability of the concurrence of the first two events and the third is pp × p", that is, ppp"> Similarly the probability that all the events fail is (1 — p} (1 -p'} (1 — p"}. The probability that the first happens and that the other two fail is p (1 — p") (1 -p '} ; and so on.

www.rcin.org.pl



PEOBABILITY. 433723. We will now exemplify the estimation of the probability of compound events.(1) Required the chance of throwing an ace in the first only of two successive throws with a single die. Here we require a compound event to happen ; namely at the first throw the ace is to appear, at the second throw the ace is not to appear. The chance of the first simple event is —, and of the second simple event~ ; hence the required chance is .
b 3b(2) Suppose 3 white balls, 4 black balls, and 5 red balls to be thrown promiscuously into a bag ; required the chance that in two successive trials two red balls will be drawn, the ball first drawn, 
being replaced before the second trial. Here the chance of drawing5a red ball at the first trial is γθ , and the chance is the same of 1 Jidrawing a red ball at the second trial; hence the chance of drawing two red balls is ∙(3) Suppose now that we require the chance of drawing two red balls, the ball first drawn not being replaced before the second 
trial. This will be an example of Art. 721. Here the chance of5drawing a red ball at the first trial is γχ ; if a red ball be drawn 12ιat first, out of the eleven balls which remain four are red, and4 therefore the chance that a second trial will give a red ball is ∣- -;5 4hence the chance of drawing two red balls is - × γγ. This is

1J 11the same result as we found in Art. 719, for the chance of drawing two red balls simultaneously; and a little consideration will shew that the results ought to coincide.(4) Required the chance of throwing an ace with a single5die in two trials. The chance of failing the first time is --, and the b
T. A. 28
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434 PROBABILITY. 5chance of failing the second time is also - : hence the chance of o∕5∖* 25failing twice is f θ J , that is, . Hence the chance of not failing 25 . 11twice is 1 — , that is, ; this is therefore the chance of suc­ceeding.(5) In how many trials will the chance of throwing an ace with a single die amount to ? Suppose x the number of trials ; then the chance of failing x times in succession is , by Art. 722. Hence the chance of succeeding is 1 — ;therefore 
hence 
hence 
thereforeBy using the values of the logarithms, we find ic = 3.8 nearly. Thus we conclude that in 3 trials the chance of success is less than ∣, and that in 4 trials it is greater than(G) In how many trials is it an even wager to throw sixes with two dice 1 The chance of sixes at a single throw with two dice is X , that is, - _ ; hence the chance of not having sixesG 6 3b35is . Suppose X the number of throws required; then we have V (S) ‘''“'θ'·”'

www.rcin.org.pl



PROBABILITY. 435By using the values of the logarithms, we find x lies between 24 and 25, which we interpret as before.(7) To find the probability that two individuals, A and whose ages are known, will be alive at the end of a year. Let p be the probability that Λ will be alive at the end of a year, p' the probability that li will be; then pp' is the probability that both will be alive at the end of a year. The values of p and p' can be found from the Tables of Mortality in the manner exemplified in Art. 719.(8) To find the probability that one at least of two indivi­duals, A and A, whose ages are known, will be alive at the end of a given number of years. Let p be the probability that A will be alive at the end of the given number of years, p' the probability that B will be. Then 1 —p is the probability that A will be dead, and 1 —p' is the probability that B will be dead. Hence (1 — p) (1 - p') is the probability that both will be dead. The probability that both will not be dead, that is, that one at least will be alive, is 1 — (1 — p) (1 -p'}, that is, p -∖-p'-pp'.

724. If an event may happen in different independent ways, the probability of its happening is the sum of the probabilities of its happening in the different independent ways.If the independent ways of happening are all equally probable, this proposition is merely a repetition of the definition of proba­bility given in Art. 714; and if they are not all equally probable, the proposition seems to follow so naturally from that definition, that it is often assumed without any remark. The following method of illustrating it is sometimes given ; suppose two urns 
A and B; let Λ contain 2 white balls and 3 black balls, and let 
B contain 3 white balls and 4 black balls; required the pro­bability of obtaining a white ball by a single drawing from one of the urns taken at random. Since each urn is equally likely to be taken, the chance of taking the urn A is , and the chance then

28—2
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436 PROBABILITY.2 of drawing a white hall from it is ; hence the chance of ob-1 2 taining a white ball so far as it depends on Λ is θ ×-. Similarly, the chance of obtaining a white ball so far as it depends on B is 13iy × ■ Hence the proposition asserts that the probability of ob-12 13 1 /2 3∖taining a white ball is θ × + - × ∙=, that is, -z (+ - ), TheJ 5 2 7 2 ∖O 1 /accuracy of this result may be confirmed by the following steps. First, without affecting the question, we may replace the urn A by an urn A', containing any number of balls we please, 79royi(∕eJ 
the ratio of the white halls to the black halls he that of 2 to 3; and similarly, we may replace the urn B ∖rγ an urn , containing any number of balls we please, provided the ratio of the white halls to 
the black halls he that of 3 to 4. Let then A' contain 14 white balls and 21 black balls, and let B' contain 15 white balls and 20 black balls; thus A' and B^ each contain 35 balls. Secondly, without affecting the question, we may now suppose the balls in A' and B' collected in a single urn; thus there will be 70 balls, of which 29 are white. The probability of drawdng a white ball will 29 14 + 15 . 1 /14 15∖therefore be ; that is, ———; that is, + i•1/2 3∖2 ∖5 77 ■

125. The probability of the occurrence of one or other of two events which cannot concur is the sum of their separate pro­babilities. For the complete event we are considering occurs if the first event happens, or if the second event happens; thus the proposition is a case of the preceding proposition.726. The probability of the happening of an event in one trial being known, required the probability of its happening once, twice, three times, &c., exactly in n trials.Let p denote the probability of the happening of the event in one trial, and q the probability of its failing, so that q=l-p. The
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PROBABILITY. 437probability that in n trials the event will occur in one assigned 
trial, and fail in the other n— 1 trials is pq^~^, (Art. 722); and since there are n trials, the probability of its happening in some one of these and failing in the rest is npq"~^. The probability that in n trials the event will occur in two assigned trials, and fail in the 72, (72» 11other n — 2 trials, is there are —-.. „ - ways inwhich the event may happen twice and fail n — 2 times in n tι∙ials; therefore the probability that it will happen exactly twice in n trials is p^q"~^. Similarly the probability that theevent will happen exactly three times in n trials is
and the probability that it will happen exactly r times in n trials is

Similarly, the probability that the event will fail exactly r times in n trials is
727. Thus if (∕> + 9')" be expanded by the Binomial Theorem in the series p" + np"~^ q + <fcc., the terms will represent respectively the probabilities of the happening of the event exactly n times, 

n— 1 times, n — 2 times, &c., in n trials. Hence we may de­termine what is the most probable number of successes and failures in n trials; we have only to ascertain the greatest term in the above series. Let us suppose, for example, that p= —

q = ■ , n = m,{a + b}, where a, b, and τn are integers; then, byArt. 510, the most probable case is, that of r failures and n — r '4' 1successes, where r is the greatest integer contained in , that
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438 PROBABILITY.

is, in nib d----- -, ; so that r =■ mb, and — r = nιa. Tlιe mostα + 0probable case therefore is, that in which the numbers of successes and failures are proportional to the probabilities of success and failure respectively in a single trial.728. The probability of the happening of the event at least r times in n trials is

for if the event happen every time, or fail only once, twice,.........(n — r) times, it happens r times; therefore the probability of the happening of the event at least r times is the sum of the proba­bilities of its happening every time, of failing only once, twice, ........
n — r times; and the sum of these is the expression given above.For example; in five throws with a single die what is the chance of throwing exactly three aces ? and what is the chance of throwing at least three aces?Here thus the chance of throwingexactly three aces is , that is. the chanceof throwing at least three aces is

The following four articles contain problems illustrating the subject.729. Λ and B play a set of games, in which √Γs chance of winning a single game is p, and B's chance is g; required the probability of Λ's winning m games out of m + n.If Λ wins in exactly m + r games he must win the last game and m — 1 games out of the preceding m+r— 1 games; the proba-
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PROBABILITY. 439bility of this is where M is the number of combinationsof m + r — 1 things taken m — 1 at a time; that is, the probability is
Now in order that Λ may win m games out of τn + w, he must win m games in exactly m games, or m + 1 games, .......... , or m-∖- ngames. Hence the probability required is the sum of the series obtained by giving to r the values 0, 1, 2,......... n in the expression 

that is, the required probability is
If A in order to win the set must win m games before B wins n games, A must win wz games out of m + n — 1; the probability of this event is given by the preceding expression with the omis­

sion of the last term. Similarly, the probability of B'^ winning n games out of m + n — 1 is
This problem is celebrated in the history of the theory of probabilities, as the first of any difficulty which was discussed; it was proposed to Pascal in 1654, with the simplification however which arises from supposing p and q to be equal.It appears from the preceding investigation that the probability of ^’s winning r games out of n is 

but this probability must from the nature of the question be the same as the probability of the happening of an event at least r times in n trials when the probability of the event is p. Thus the expression just given must be equivalent to that given in Art.728; we may verify this as follows. Denote the expression just given 
www.rcin.org.pl



440 PROBABILITY.by and tliafc given in Art. 728 by and let and denote respectively what they become when n is changed to n + 1; then we shall shew that if = v'^ when n has any specific value, then also = '*’„+1∙
We have ω,, = ‰ (∕> + ?) j (^p + g) gives two series, andwhen the like terms in these two series are united we obtain 

therefore 
and obviously

This shews that w,,+j ≈ , if = v„. Now obviously is equalto v„ when n = r,∙ therefore is equal to v„ for every value of n greater than r,730. A bag contains w +1 tickets which are marked with the numbers 0, 1, 2, ..........n, respectively. A ticket is drawn andreplaced; required the probability that after r drawings the sum of the numbers drawn is s.The number of drawings which can occur is (n + I)*·, for any one of the tickets may be drawn each time. The number of ways in which the sum of the drawings will amount to s is the coeffi­cient of in the expansion of (a;® + a:’ + +........... + a:’*)’’; becausethis coefficient arises from the different modes of forming s by the addition of r numbers of the series 0, 1, 2,......... n. Thus the pro­bability required is found by dividing this coefficient by (n + 1)∖The above coefficient may be obtained by the Multinomial Theorem; or we may proceed thus:
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PEOBABILITY. 441

and
We must therefore find the coefl⅛cient of aj* in the prodτιct of these two series; it is 

this series is to stop at the (⅜ + 1)“* term, where i is the gι∙eatest integer contained in ; then the required probability is ob­tained by dividing this series by (n + 1/.
731, A box has three equal compartments, and four balls are thrown in at random; determine the probability of the different arrangements, assuming that it is equally likely that any ball will fall into any compartment.Since it is equally likely that a ball will fall into any com­partment there are 3 equally likely cases for each ball; and on the whole there are 3* equally likely cases. Now there are four possible arrangements.I. All the balls may be in one compartment; this can happen in 3 ways.II. Any three of the balls may be in any one of the com­partments, and the remaining ball in either of the remaining compartments; this can happen in 4.3.2 ways.III. Any two of the balls may be in any one compartment, and one of the remaining balls in one of the remaining compart­ments and the other in the other; this can happen in 6.3.2 ways.
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442 PROBABILITY.IV. Any two of the balls may be in any one compartment, and the other two balls in either of the remaining compartments; this can happen in 6.3 ways.Thus the probabilities of the different arrangements are re­spectively ~, ∣j, , ; the sum of these fractious is, ofcourse, unity.In the preceding solution the point which deserves particular attention is the statement that there are 81 equally likely cases; for when this is admitted all the rest follows necessarily. If this is not admitted and the student substitutes any other statement in the place of it, he will be really taking another problem instead of the one intended. In fact in a problem which relates to permuta­tions, combinations, or probabilities it is not unfrequently found that different results are obtained because different meanings have been attached to the enunciation; especial care is necessary in these subjects to ensure that whatever meaning is given to the enun­ciation should be consistently retained throughout the solution.We will next consider the general problem of which the present is a particular case.732. A box is divided into m equal compartments. If n balls are thrown in promiscuously, required the probability that there will be a compartments each containing α balls, b compartments each containing β balls, and so on, whereαα + bβ + cy +..........= n.Since any ball may fall into any compartment, there are m* cases equally likely to occur. We shall first shew that the num­ber of different ways in which the n balls can be divided into α + δ + c+..........parcels containing α, β, γ,............ balls respectively is
For consider first in how many ways a parcel of α balls can be selected from n balls; the result is ways.
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PROBABILITY. 443Then consider in how many ways a second parcel of α balls can be selected from the remaining n — a. balls; the result is 
(re—{n —1) (re—2α + 1) Similarly a third parcel of 
a balls can be selected from the remaining re — 2α balls in (re-2α)(re-2α-1)......... (re - 3α + 1) ∙ i + +1 χi-------- i--------------- ways. We might then atfirst infer that the number of ways in which three parcels of α balls , , , r 1 r 1 11 ∙ ......... (re-3α+l)each can be selected from re balls is —>-------—j—-----------------',and this is correct in a certain sense; but each distinct group of three parcels has in this way occurred [3 times, and we must therefore divide by [3 in order to obtain the number of different ways in which three parcels of α balls each can be selected from re balls. And similarly the number of different ways in which a parcels of α balls each can be selected from re balls is
By proceeding thus we obtain the proposed result.Now the number of ways in which the parcels can be arranged in the m compartments is 
whereHence, the probability required is

For example, suppose six balls thrown into a box which has three compartments. The seven possible modes of distribution are, 6, 0, 0; 1, 5, 0; 2, 4, 0; 3, 3, 0; 1,1,4; 1, 2, 3; 2, 2, 2; and ^their respective probabilities are fractions whose common denominator is 243, and numerators 1, 12, 30, 20, 30, 120, 30.733. If 2? represent a person’s chance of success in any trans­action, and m the sum of money which he will receive in case 
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444 PROBABILITY.of success, then the sum of money denoted by pm is called his 
expectation. This is a definition of the meaning we shall attach to the word expectation, and might of course be stated arbitrarily without any further remark; it is however usual to illustrate the propriety of the definition as follows. Suppose that there are 
m-∖-n slips of paper, each having the name of a person written upon it, and no name recurring ; let these be placed in a bag, and one slip drawn at random, and suppose that the person whose name is drawn is to receive £,a. Now all the expectations must be of equal value, because each person has the same chance of obtaining the prize; and the sum of the expectations must be worth because if one person bought up the interests of all the persons named, he would be certain of obtaining £,a. - Hence, if 
£,x denote the expectation of each person, we have (m + w) x = a;thusAlso, it is evident that the value of the expectation of two per­sons is the sum of the values of their respective expectations; and 80 for three or more persons. Hence the value of the expectation of m persons is . Now suppose that one person has hisname on m of the slips; then his expectation is the same as the sum of the expectations of m persons, each of whom has his name on one slip: that is, his expectation is . But his

m+nchance of winning the prize is —, since he has m cases out of 
m + n in his favour; thus his expectation is the product of his chance of success into the sum of money which he will receive in case of success.734. An event has happened which must have arisen from some one of a given number of causes; required the probability of the existence of each of the causes.Let there be n causes, and suppose that the probability of the existence of these causes was estimated at ...P respectively, 
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PEOBABILITY. 445

before the event took place. Let ∕>, denote the probability of the event on the hypothesis of the existence of the first cause, the probability of the event on the hypothesis of the existence of the second cause, and so on. Then the probability of the existence of the r®* cause, estimated after the event, is , where stands for P^p^ + P^p+... + P,^p^-From our first notions of probability we must admit that the probability that the r*** cause was the true cause is proportional to the antecedent probability that the event would happen from this cause, and may therefore be represented by GP^p^. And since some one of the causes must be the true cause we have 
therefore therefore the probability that the r*** cause was the true cause is

735. The preceding article will require some illustration before it will be fully appreciated by the student Let there be, for example, two urns, one containing 7 white balls and 3 black balls, and the other 5 white balls and 1 black ball; suppose that a white ball has been drawn, and we wish to know what the probability is that it came from the first urn, and what the probability is that it came from the second urn. It must have come from one of the two urns, so that the sum of the required probabilities is unity. Instead of the given urns let us substitute two others which have the whole number of balls the same in each urn, and such that each urn has its white and black balls in the same proportion as the urn which it replaces. Thus we may suppose one urn with 21 white balls and 9 black balls, and the other with 25 white balls and 5 black balls. Each urn now contains 30 balls, and the chance of each ball being drawn, is the same. Since, by supposition, a white ball is drawn we may suppose the black balls to have 
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446 PEOBABILITY.been removed, and all the white balls put into a new urn. Thus there would be 46 white balls; and the probability that the white . 21ball drawn was one of the 21 is ∣ θ, and the probability that it 25 7 5was one of the 25 is ∣θ ∙ Now here = — , and = - ; thus „ 21. ϋ 2 5- — = — , and --— = . Thus the result acrrees with that+Λ 4θ Pi+P2 46given by the theorem in Art. 734, supposing thatP^ andare equal.Next, suppose that there had been 4 urns, each having 7 white balls and 3 black balls, and 3 urns, each having 5 white balls and 1 black ball. In this case, by proceeding in the manner just shewn, we may deduce that the probability that a white ball which was drawn came from the group of 4 similar urns is 
and the probability that it came from the group of 3 similar unis is
Now let us apply the theorem of Art. 734 to estimate the proba­bility that the white ball came from the first group and the proba­bility that it came from the second group. Since there are 7 urns, of which 4 are of the first kind and 3 of the second, Λve take and also and Thus

and these results agree with those which we have already indicated.736. It is usual to call the quantities 7^, ...7^ of Art. 734 the a priori probabilities of the existence of the respective causes; and <2p ■·· the a posteriori probabilities. Students
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PROBABILITY. 447are sometimes perplexed in endeavouring to estimate P^,...P^∙, the safest plan is to observe that the product P^p^ denotes the probability that the event will happen as the result of the r"* cause; and the coιτectness of the product is the important part of the solution, because 7’ and p^ do not occur separately in the results. The whole proposition may be best understood if arranged in the following order. First suppose the different causes all equally probable before the observed event; let denote the probability of the occurrence of the event on the hypothesis of the existence of the r*·’^ cause; then the probability of the r*** cause, estimated 
after the occurrence of the observed event is . This seemsnearly self-evident, and if any doubt remains it may be removed by the mode of illustration given in the first part of Art. 735. Secondly, suppose that the terms in 2t∏∙ can be arranged in groups; suppose there to be terms in the first group, and that each term is equal to p^, suppose there to be terms in the second group, and that each term is equal to∕>j,, and so on, the last group consisting of p.,, terms, each equal to p^^. Then 2τσ may be written 
'2,p.p, where the series 2pp consists of n terms. Thus the proba- bility of the »·*“ cause is . Also the probability of the first group of causes is the sum of the separate probabilities of the members of that group, that is, . Similar expressions hold for the probabilities of the other groups. Thus we finally aιτive at the results given in Art. 734, where, in fact.

737. When an event has been observed, we may, by Art. 734, estimate the probability of each cause from which that event could have arisen; we may then proceed to estimate the j>ro- bability that the event will occur again, or that some'other event will occur. For by Art. 724 we multiply the probability of each cause by the probability of the happening of the required event on 
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448 PROBABILITY.the hypothesis of the existence of that cause, and the sum of all such products is the probability of the happening of the required event.For example, a bag contains 3 balls, and it is knoΛvn that each ball is either black or white; a white ball has been draλvn and replaced, what is the probability that another drawing will give a white ball ?There are three possible hypotheses: (1) all the balls may be white, (2) only two of the balls may be white, (3) only one of the balls may be white. We have first to find the probability of each hypothesis by the method of Art. 734. On the first hypothesis, the observed event is certain, that is, the chance of it is 1 ; on the 2second hypothesis, the chance of the observed event is ; on the third hypothesis, the chance of the observed event is i. Hence, assuming that before the observed event the three hypotheses were equally probable, we have after the observed event.probability of first hypothesis = 12 probability of second hypothesis = probability of third hypothesis = ∣
The probability that another drawing will give a white bail is 1 12“X 1, so far as it depends on the first hypothesis; it is - × , so

Ji O ofar as it depends on the second hypothesis; and it is i × -∣, so far 0 Oas it depends on the third hypothesis. Hence the required pro­bability is that is.
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PROBABILITY. 449738. We give another example. Suppose a bag in which the ratio of the number of white balls to the whole number of balls is unknown, and it is equally probable, a priori, that the ratio is any one of the following quantities x, 2x, 3x,..........nx; supposea white ball to be drawn and replaced; required the probability that another drawing will give a white ball.Here n hypotheses can be formed. On the first hypothesis the probability of the observed event is x, on the second hypothesis it is 2x, on the third 3x, and so on. Hence the probability of the ic 2 'first hypothesis is —-— ----------------r : that is, — -----77-∙ Theic(l + 2 +........... +n) " ’ w(n + 1). . 2 × 2probability of the second hypothesis is ∙ probability2 × 3of the third hypothesis is —-.----- =-. And so on. Hence then(n + l) 2i37 probability that another drawing will give a white ball is —-—2a; × 2® . 2x × 3’on the first hypothesis, ------— on the second hypothesis, —-.-----’n(n + l) ’w(n+l)on the third, and so on. Hence the required probability is
that is. that is.

When n is very great this approximates to . If the ratio of the number of the white balls to the whole number of balls is equally likely, a priori, to have any value between . 2zero and unity, then nx = l, and the required probability is .739. The following problems will illustrate the subject.(1) A bag contains m white balls and n black balls; ifp + q balls are drawn out, what is the probability that there will be p white balls and q black balls occurring in an assigned order 2 We
T. A. 29
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4δ0 PBOBABILITY.suppose p less than m, and q less than n∖ and the balls are not replaced in the bag after being drawn out.Suppose, for example, that the first ball is required to be white, the second to be black, the third to be black, the fourth to be white, and so on in any assigned order. Then the required proba­bility is the product of 
therefore the required probability is 
and it will be observed that so long as p white balls and q black balls are required, the probability is the same whatever may be the 
assigned order in which they are to occur.(2) The suppositions being the same as in (1), what is the probability of p white balls and q black balls occurring in any 
order whatever ?Let N represent the number of difierent orders in which p white balls and q black balls can occur; then the required proba­bility is obtained by multiplying the probability found in (1) by 
N. And
The problems (1) and (2) are introductory to one which we shall now consider.(3) A bag contains m balls which are known to be all either white or black, but how many of each kind is unknown; suppose 
p white balls and q black balls have been drawn and not replaced; find the probability that another drawing will give a white ball.The observed event here is the drawing of p white balls and q black balls. To render this possible, the original number of white balls may have been any number from m — q to inclusive, and
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PROBABILITY. ■ 451the number of black balls any number from q to m— p. Let us denote the hypothesis of m—q white and q black by Zf,, and the • hypothesis of m—q—1 white and y+1 black by and so on.Then ∕∕j gives for the probability of the observed event
where N denotes the number of different ways in which p white balls and q black balls can be combined in p-∖-q trials. Put C for

then IIgives for the probability of the observed event
whereandSimilarly, H gives for the probability of the observed event
where

Thus, if we find for the probability of ZΓ,,
this we may denote by

Similarly the probability of and so on. Now theprobability of drawing a white ball on another trialon the hypothesis II^ is
on the hypothesis II^ it is

29—2
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452 PKOBABIL1TY.and so on. Thus the whole probability of drawing a white ball is
The series in brackets is of the same kind as /S' with ∕> + l written instead of p, the number of terms being one less than in 5.Now by Art. 665, 

hence the series within brackets is 
and the required probability is

740. The mathematical theory of probability has been applied to estimate the probability of statements whicli are supported by assertions or by arguments. We will give some examples.The probability that A speaks truth is and the probability that B speaks truth is p' ∙, what is the probability of the truth of an assertion which they agree in making? There are two possible hypotheses; (1) that the assertion is true, (2) that it is not. If it be true, the chance that they both make the assertion is pp'∙, if it be false, the chance that they both make it is (1 — 79) (1 Hence, by Art. 734, the probabilities of the truth and falsehood of the assertion are respectively
Similaι∙ly, if the assertion be also made by a third person whose probability of speaking truth is p', the probabilities of the truth and falsehood of the assertion are respectively 

and so on if more persons join in the assertion.
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PROBABILITY. 453741. We will make a few remarks on the preceding article.When we say that the probability of A’s speaking truth is p, we mean that out of a large number of statements made by A, the ratio of the number that are true to the number that are not true is that ofp to 1 — p∖ thus the value of/) depends on the correct­ness of √l's judgment as well as on his veracity.The result in Art. 740 gives the probability of the truth of the assertion, so far as that truth depends solely on the testimony of the witnesses considered; there may be from other sources addi­tional evidence foι∙ or against the assertion. Thus the person who is estimating the probability may himself have a conviction more or less decided in favour of the assertion Λvhich is independent of the testimony he receives from the witnesses. It has been proposed to combine this conviction with the testimonies which are con­sidered in the problem. Thus, if there be two witnesses with pro­babilities p and p' respectively of speaking the truth, and a third person estimates the probability of the truth of the assertion at p" from his own independent sources of belief, then to him the odds in favour of the truth of the assertion are
Still the result is considered unsatisfactory by some writers, who object with great reason to the solution on the ground that it omits all consideration of the circumstance that it is the same occurrence to which the several testimonies are offered. In the following problem this circumstance is expressly considered.742. Tλvo persons, whose probabilities of speaking the truth are p and p' respectively, assert that a specified ticket has been drawn out of a bag containing n tickets; required the probability of the truth of the assertion.The observed event here is the coincident testimony of Λ and 7? in favour of a specified ticket.Here - is the a priori probability that the specified ticket would be drawn. The probability of the event on the hypothesis that the
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454 PROBABILITY.

vp'specified ticket was drawn is then -— . The probability of the event on the hypothesis that it was not drawn might at first be n — 1supposed to be (1 — p} (1 -p'}------ ∙, but if the persons have noinducement to select the specified ticket among those really un­drawn, this expression must be multiplied by which isthe probability of their selecting the same number among the undrawn numbers. Thus the probability of the event on the second hypothesis is '. Thus the odds for the truthn(n-l)of the assertion are
743. The question in Art. 740 is respecting the truth of 

concurrent testimony; we may now consider the truth of tra­
ditionary testimony. Λ says that B s,a,ya that a certain event took place; required the probability that the event did take place. Let p and p' be the probabilities of speaking the truth of Λ and B respectively. The event did take place .if they both speak trath, or if they both speak falsehood; and the event did not take place if only one of them speaks truth. Thus the odds that the event did take place are

744. If there be n witnesses, each of whom has transmitted a statement of an occurrence to the next, and if p be the probability of speaking the truth of each witness, the probability of the truth of the statement is to the probability of its falsehood as the sum of the odd terms of the expansion of {p + 7)" is to the sum of the even terms, q being put equal to 1 —p after the expansion has been effected. For the statement is true if all the witnesses speak truth, or if two, or four, or any even number speak falsehood.
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EXAMPLES ON PEOBABILITY. CHAPTER LIII. 455745. Suppose that certain arguments are logically sound, and that the probabilities of the truth of their respective premises are known; required the probability of the truth of the conclusion. For example, suppose that there are three arguments, and let 7?, p', p" denote the respective probabilities of their premises. The conclusion is valid unless all the arguments fail. The chance that they all fail is (1 — y>)(l — ∕>')(1 -p"}', hence the chance that they do not fail is 1 — (1-/7)(1-y*')(l—79"), which is, therefore, the required probability.746. Of such an extensive subject as the Theory of Proba­bility only an outline can be given in an elementary work on Algebra. The student who is prepared for further investigation will find a list of the necessary books in the article Probability in the Penny Cyclopaedia; to that list may be added the work of Professor Boole on the Laws of Thought. For an elementary discussion of the fiι∙st principles of the subject the student may consult De Morgan’s Formal Logic, Chapters ιx. and x.
EXAMPLES ON PROBABILITY.1. The odds against a certain event are 3 to 2; and the odds in favour of another event independent of the former are 4 to 3. What are the odds for or against their happening together ?2. Supposing that it is 8 to 7 against a person who is now 30 years of age living till he is 60, and 2 to 1 against a per­son who is now 40 living till he is 70; find the probability that one at least of these persons will be alive 30 years hence.3. A party of 23 persons take their seats at a round table; shew that it is 10 to 1 against two specified individuals sitting next to each other.4. The chance that Λ can solve a certain problem is ; the2chance that P can solve it .is - ; what is the chance that the pro- oblem will be solved if they both try 1
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456 EXAMPLES ON PROBABILITY. CHAPTER LIII.5. Wliat is the chance of drawing two black balls and one red from an urn containing five black, three red, and two white ?6. What is the probability that an ace and only one will be thrown in two trials with one die?7. What is the probability of throwing one ace at least in two trials with one die ?8. What are the odds against throwing one of the two num­bers 7 or 11 in a single throw with two dice ?9. Two purses contain the same number of sovereigns and 
a different number of shillings; one purse is taken at random and a coin is drawn out; shew that it is more likely to be a sovereign than it would be if all the coins had been in one purse ?10. There are four men, ff, B, C, D whose powers of rowing may be represented by the numbers 6, 7, 8, 9 respectively; two of them are placed by lot in a boat, and the other two in a second boat. Find the chance which each man has of being a winner in 
a race between the boats.11. In one throw with a pair of dice what is the chance that there is neither an ace nor doublets?12. If from a lottery of 30 tickets marked 1, 2, 3, .........four tickets be drawn, what is the chance that 1 and 2 will be among them?13. A has 3 shares in a lottery where there are 3 prizes and 6 blanks; B has 1 share in another where there is but 1 prize and 2 blanks. Shew that A has a better chance of getting a prize than B in the ratio of 16 to 7.14. Two bags contain each 4 black and 3 white balls; a person draws a ball at random from the first bag, and if it be white he puts it into the second bag and then draws a ball from it; find the chance of his drawing two white balls.
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EXAMPLES ON PROBABILITY. CHAPTER LIII. 457

15. A coin is thrown up n times in succession; Λvhat is the chance that the head will present itself an odd number of times 116. When n coins are tossed up, what is the chance that one and only one will turn up head?17. Supposing the House of Commons to consist of m Tories and w Whigs, find the probability that a committee of p + q selected by lot may consist of p Tories and q Whigs.18. What is the chance that a person with two dice will throw aces at least four times in six trials?19. Find the chance of throwing an ace with a single die once at least in six trials.20. If on an average 9 ships out of 10 return safe to port, what is the chance that out of 5 ships expected at least 3 will arrive ?21. In three throws with a pair of dice, what is the proba­bility of having doublets one or more times ?22. What is the chance of throwing sixes once or oftener in three throws with a pair of dice ?23. In a lottery containing a large number of tickets where the prizes are to the blanks as 1 to 6, what is the chance of drawing at least 2 prizes in 5 trials?24. If four cards be drawn from a pack, what is the proba­bility that there will be one of each kind?25. If four cards be drawn from a pack, λvhat is the proba­bility that they will be marked one, two, three, four, of the same suit?26. If 4’s skill at any game be double that of 7>, the odds against √Γs winning 4 games before B wins 2 are 131 to 112.27. Two persons Λ and B engage at a game in which √fs skill is to B’a as 2 to 3. Find the chance of 4’s winning at least 2 games out of 5.
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458 EXAMPLES ON PROBABILITY. CHAPTER LIII.28. Three white balls and five black are placed in a bag, and three persons draw a ball in succession (the balls not being re­placed) until a white ball is drawn. Shew that their respective chances are as 27, 18 and 11.29. In each game that is played it is 2 to 1 in favour of the winner of the game before. What is the chance that he who wins the first game shall win three or more of the next four?30. A certain stake is to be won by the first person who throws ace with a die of n faces. If there be p persons, find the chance of the person.31. There are 3 parcels of books in anotheι∙ room and a parti­cular book is in one of them. The odds that it is in one particular jiarcel are 3 to 2; but if not in that parcel it is equally likely to be in either of the others. If I send for this parcel giving a description of it, and the odds I get the one ,I describe are 2 to 1, what is my chance of getting the book I want ?32. In a purse are ten coins, all shillings except one which is a sovereign; in another are ten coins all shillings. Nine coins are taken out of the former purse and put into the latter, and then nine coins are taken from the latter and put into the former. A person is now permitted to take whichever purse he pleases; which should he choose?33. One urn contained 5 white balls and 5 black balls; a second urn contained 10 white balls and 10 black balls; a ball, of which colour is not known, was removed from one urn, but which is not known, into the other. A drawing being now made from one of the urns chosen at random, what is the chance that it will give a white ball?34. What is the chance of throwing 15 in one throw with 3 dice?35. What is the chance of throwing 17 in one throw with 3 dice?
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EXAMPLES ON PROBABILITY. CHAPTER LIII. 45936. What is the probability of throwing not more than 10 with 3 dice Ί

37. When 2» dice are thrown, prove that the sum of the numbers turned up is more likely to be 7n than any other number.38. When 2//,+ 1 dice are thrown, prove that the chance that the sum of the numbers turned up is 7n + 4 equals the chance that the sum of the numbers turned up is 7w + 3, and that the chance is greater than the chance that the sum is any other number.39. Out of a set of cards numbered from 1 to 10 a card is drawn and replaced; after ten such drawings what is the proba­bility that the sum of the numbers drawn is 24 140. Counters numbered 0, 1, 2, ..........n, are placed in a box;after one is drawn it is put back, and the process is repeated. What is the probability that m drawings will give the counter marked s ?41. There are 10 tickets 5 of which are blanks and the others are marked 1, 2, 3, 4, 5; what is the probability of drawing 10 in three trials, the tickets being replaced ?42. Required the probability in the preceding question if the tickets are not replaced.43. From a bag containing n balls p balls are drawn out and replaced, and then q balls are drawn out. Shew that the proba­bility of exactly r balls being common to the two drawings is
44. Eight persons of equal skill at chess draw lots for part­ners and play four games; the four winners draw lots again for partners and play two games; and the two winners in these play a final game; find the chance that two assigned persons will have played together.
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460 EXAMPLES ON PROBABILITY. CHAPTER LIII.45. In a bag are m white and n black balls. Shew that the chance of drawing first a white, then a black ball, and so on alternately until the balls remaining are all of one colour is
If m balls are drawn at once, what is the chance of drawing all the white balls at the first trial ?46. In a bag are n balls of m colours, being of the first colour, of the second colour, ∙∙∙p^ of the colour. If the balls be drawn one by one, what is the chance that all the balls of the first colour will be first drawn, then all the balls of the second colour, and so on, and lastly all the balls of the n⅛*'' colour ?47. A bag contains n balls; a person takes out one and puts it in again; he does this n times; what is the probability of his having had in his hand every ball in the bag ?48. Two players of equal skill, A and B, are playing a set of games. A wants 2 games to complete the set, and B wants 3 games. Compare the chances of A and B for winning the set.49. If three persons dine together, in how many different ways can they be seated ? When they have dined together exactly so many times, taking their places by chance, what is the proba­bility that they will have sat in every possible arrangement ?50. A is a given number; a lower number is selected'at ran­dom, find the chance that it will divide A.51. A handful of shot is taken at random out of a bag; what is the chance that the number of shot in the handful is prime to the number of shot in the bag 1 For example, suppose the number of shot in the bag to be 105.52. If n = a'', and any number not greater than n be taken at random, the chance that it contains α as a factor s times and no. 1 1more is ---------rτ.

a' a’
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EXAMPLES ON PROBABILITY. CHAPTER LIII. 46153. Two persons play at a game which cannot be drawn, and agree to continue to play until one or other of them wins two games in succession; given the chance that one of them wins a single game, find the chance that he wins the match described. For example, if the odds on a single game be 2 to 1, the odds on the match will be 16 to 5.54. A person has a pair of dice, one a regular tetrahedron, the other a regular octahedron; what is the chance that in a single throw the sum of the marks is greater than 6 1

55. There are three independent events of which the pro­babilities are respectively /),, p.∕, find the probability of thehappening of one of the events at least; also of the happening of two of the events at least.56. A certain sum of money is to be given to one of three persons A, B, C, who first throws 10 with three dice; supposing them to throw successively in the order named until the event has happened, shew that their chances are respectively
57. The decimal parts of the logarithms of two numbers taken at random are found from a table to 7 places; what is the probability that the second can be subtracted from the first with­out borrowing at all ?58. A undertakes with a pair of dice to throw 6 before B throws 7; they throw alternately, A commencing. Compare their chances.59. A person is allowed to draw two coins from a bag con­taining 4 sovereigns and 4 shillings. What is the value of his expectation 160. If six guineas, six soA’ereigns, and six shillings be put into a bag, and three be drawn out at random, what is the value of the expectation ?
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462 EXAMPLES ON PROBABILITY. CHAPTER LIII.61. Ten Russian ships, twelve French, and fourteen English are expected in port. What is the value of the expectation of a merchant who will gain .£2100 if one of the first two which arrive is a Russian and the other a French ship ?62. From a bag containing 3 guineas, 2 sovereigns, and 4 shillings, a person draws 3 coins indiscriminately; what is the value of his expectation ?63. What is the worth of a lottery-ticket in a lottery of 100 tickets, having four prizes of .£100, ten of £50, and twenty of £5Ί64. A bag contains 9 coins, 5 are sovereigns, the other four are equal to each other in value; find what this value must be in order that the expectation of receiving two coins out of the bag may be worth 24 shillings 165. From a bag containing 4 shilling pieces, 3 unknown sil­ver coins of the same value, and one unknown gold coin, four are to be drawn. If the value of the drawer’s chance be 15 shillings, what are the coins t66. A and B subscribe a sum of money for which they toss alternately beginning with A, and the first who throws a head is to win the whole. In what propoition ought they to subscribe 1 If they subscribe equally, how much should either of them give the other for the first throw?67. There are a number of counters in a bag of which one is marked 1, two 2, &c. up to r marked r; a person draws a number at random for which he is to receive as many shillings as the num­ber marked on it; find the value of his expectation.68. A bag contains a number of tickets of which one is marked 1, four marked 2, nine marked 3, ... up to marked n; a person draws a ticket at random for which he is to receive as many shillings as the number marked on it; required the value of his expectation.69. A man is to receive a certain number of shillings, he knows that the digits of the number are 1, 2, 3, 4, 5, but he is ignorant of the order in which they stand; determine the value of his expectation.
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EXAMPLES ON PROBABILITY. CHAPTER LIII. 46370. From a bag containing α counters some of which are marked with numbers, h counters are to be drawn, and the drawer is to receive a number of shillings equal to the sum of the num­bers on the counters which he draws; if the sum of the numbers on all the counters be n, what will be the value of his chance ?71. There are two urns, and it is known that one contains 8 white balls and 4 black balls, and that the other contains 12 black balls and 4 white balls; from one of these, but it is not known from which, a ball is taken and is found to be white; find the chance that it was drawn from the urn containing 8 white balls.72. Five balls, any one of which may be either white or black, are in a bag, and two being drawn are both white; find the pro­bability that all are white.73. A puι∙se contains n coins which are either sovereigns orshillings; a coin drawn is a sovereign, what is the probability that this is the only sovereign 1 »74. A bag contains 4 white and 4 red balls; two are taken out at random, and without being seen are placed in a smaller bag; one is taken out and proves to be white, and replaced in the smaller bag; one is again taken out and proves to be again white, what is now the probability that both balls in the smaller bag are white ?75. Of two purses one originally contained 25 sovereigns, and the other 10 sovereigns and 15 shillings. One purse is taken by chance and 4 coins drawn out which prove to be all sovereigns; what is the probability that this puι*se contains only sovereigns, and what is the value of the expectation of the next coin that will be drawn from it ?76. A bag contains three bank notes, and it is known that each of them is either a £,5, a <£10, or a £20 note; at three successive dips in the bag (the note being replaced after each dip) a £5 note was drawn. What is the probable value of the con­tents of the bag ?
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464 EXAMPLES ON PROBABILITY. CHAPTER LI 11.77. It is 3 to 1 that Λ speaks the truth, 4 to 1 that B does, and 6 to 1 that G does; what is the probability that an event took place which Λ and £ assert to have happened and which G denies ?78. Λ speaks truth 3 times out of 4, B 4 times out of 5; they agree in asserting that from a bag containing 9 balls, all of dif­ferent colours, a white ball has been drawn; shew that the proba-• . 96bility that this is true is .79. Suppose thirteen witnesses, each of whom makes but one false statement in eleven, to assert that a certain event took place; shew that the odds are ten to one in favour of the truth of their statement, even although the a priori probability of the event be as small as vτ∏τ—v ∙10 + 180. One of a pack of 52 cards has been removed; from the remainder of the pack two cards are drawn and are found to be spades; find the chance that the missing card is a spade.81. If two persons walk on the same road in opposite direc­tions during the same interval of time a + b + c, the one completing, the distance in a time a, and the other in a time b, what is the chance of their meeting 1
82. Find how many odd numbers taken at random must be multiplied together, that there may be at least an even chance of the last figure being 5.Given log,θ2 =∙30103.

LIV. MISCELLANEOUS EQUATIONS.747. Equations may be proposed which require peculiar arti­fices for their solution; in the following collection the student will find ample exercise; he should himself try to solve the equations, and afterwards consult the solution here given.1.
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MISCELLANEOUS EQUATIONS. 4Q5

.∙. x=Q.

2.
or

3.

T. A. 30
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466 MISCELLANEOUS EQUATIONS.

4.
adding and subtracting the numerator and denominator of each fraction,

5.Since divide both sides by 3ic + 2, which gives x — — for one value of 
x; and we have

G.
31
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MISCELLANEOUS EQUATIONS. 467

31

7.It is clear that the numerator and denominator of each fraction involves the expression x^-2x, put therefore (ic—l)≡ = yj then the equation becomes
NowSubtracting corresponding terms, we have

30—2
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MISCELLANEOUS EQUATIONS.468

8.

adding and subtracting, we have

2,
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MISCELLANEOUS EQUATIONS. 46-910.or
let

11.
or

Letthen
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470 MISCELLANEOUS EQUATIONS.

12.

. ∙. £c = 0 is one value, and 

these quadratics can now be solved in the ordinary way.
13.
Let 

or

: α suppose,
www.rcin.org.pl



MISCELLANEOUS EQUATIONS. 471

14. 2
or Let

From (a)
.∙ (a),∙∙(^)∙'

.∙. {β) becomes

15.Let 
let

...(1).
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472 MISCELLANEOUS EQUATIONS.Hence by assuming x +a = y, (1) may be put into tlie shape
oror ....... (2),which is a common quadratic equation.If(2) takes the form 5β^β^}

or 16.
adding and subtracting,

..... (4multiplying together, 
or

Substituting in (a), 
.'. (neglecting the impossible root), x — b = a

www.rcin.org.pl



MISCELLANEOUS EQUATIONS. 47317. •(1).∙(2).Since ( and from (2) ···(«);
.∙. (1) becomes from (a);
but

18.
Multiplying (1) by 2 it becomes

Similarly from (2)Subtracting,
From (3)
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474 MISCELLANEOUS EQUATIONS.

where

19. ∙∙ (1),∙∙(2),
(3). 

∙∙ H 
∙∙ {β), 
∙∙ (y);

From (1)From (2)
From (3)then multiplying (a) and (yS) together and subtracting (γ), we have

From (1)
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MUSCELLANEOUS EQUATIONS. 475

20. (1),
(2).
(«)’From (1)

From (2)
Subtracting denominators from numerators, we have -(^)i

. ∙. using the first value and calling
we have

Now from (a)
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476 ' MISCELLANEOUS EQUATIONS.

Similarly, if we use the negative sign in (/3), we have the cor­responding values of x and y.

or

21.

From
-(1),... (2).
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MISCELLANEOUS EQUATIONS. 477

... W∙orNowif
Hence (a) assumes the form 

where 

adding and subtracting numerator and denominator,

Substituting the value y = x in (2), we have
Again, if then

, and
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478 MISCELLANEOUS EXAMPLES. CHAPTER LIV.Hence equation (2) becomes

MISCELLANEOUS EXAMPLES.1. Solve2. Solve
3. If

prove that
and shew how to solve the equations.4. Solve

5. Determine c so that 5x + 2y = c may have ten positive in­tegral solutions excluding zero values, and c may be as great as possible.6. If ■ and X, y, z be unequal, then eachmember of this equation will be equal toand to
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MISCELLANEOUS EXAMPLES. CHAPTER LIV. 4797. Shew that if n and 2∖7are very nearly equal,very nearly,and that the error is approximately8. A man’s income consists partly of a salary of .£200 a year, and partly of the interest at 3 per cent, of capital, to which he each year adds hi.s savings; his annual expenditure is less by £95 than five-fourths of his income; shew that whatever be the origi­nal capital its accumulated value will approximate to £6000. If the original capital be £1000, shew that it will be doubled in about thirty years : having given
9. If n be a positive integer, shew that

10. If £c be any prime number, except 2, the integral part of (1 + diminished by 2, is divisible by 4x.11. If any number of integers taken at random be multi­plied together, shew that the chance of the last figure of their product being 5 continually diminishes as the number of integers multiplied together increases.12. Two purses contain sovereigns and shillings; shew that if either the total numbers of coins in the two purses are equal, or if the number of sovereigns is to the number of shillings in the same ratio in both, then the chance of drawing out a sove­reign is the same when one purse is taken at random and a coin drawn out as it is when the coins are all put in one purse and a coin drawn out. If neither of these conditions holds, the chance is in favour of the purse taken at random whenever the purse with the 
greater number of coins has the smaller proportion of sovereigns.

www.rcin.org.pl



480 MISCELLANEOUS PKOBLEMS.

LV. MISCELLANEOUS PROBLEMS.748. We have already given in previous chapters collections s of problems which lead to simple or quadratic equations; we add here a few examples of somewhat greater difficulty with their solutions.1. Each of three cubical vessels Λ, £, C, whose capacities are as 1 : 8 : 27 respectively, is partially filled with water, the quantities of water in them being as 1 : 2 : 3 respectively. So much water is now poured from Λ into A and so much from A into C as to make the depth of water the same in each vessel. After this 128f cubic feet of water is poured from C into A, and then so much from R into Λ as to leave the depth of water in Λ twice as great as the depth of water in R. The quantity of water in Λ is now less by 100 cubic feet than it was originally. How much water did each of the vessels originally contain ?Let X = number of cubic feet in Λ originally;.∙. 2ic=......................................................R ............... .  . .3ic =...................................................... C......................Now when the depth of the fluid is the same in all, it is clear that the quantities vary as the areas of the bases of the vessels, that Is, are as 1 : 4 ; 9.. ∙. (since 6x is the total quantity) the quantity in Λ =

and the quantities in β and C areAgain, when the depth in A is twice that in B, A contains half as much as B.Now A contains a: —100; .∙. B contains 2(x-100), and C contains — 128|;
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MISCELLANEOUS PROBLEMS. 481

.∙. the quantities in A, B, C at fiι∙st were500, 1000, 1500 cubic feet respectively.2. Three horses .4, B, G start for a race on a course a mile and a half long. When B has gone half a mile, he is three times as for ahead of A as he is of G. The horses now going at uniform speeds till B is within a quarter of a mile of the winning post, G is at that time as much behind A as A is behind B, but 1the distance between A and 7? is only — of what it was after B 11 1 had gone the first half mile. G now increases his pace by -- of 
00, what it was before, and passes -δ 176 yards from the winning post, the respective speeds of A and B remaining unaltered. What Λvas the distance between A and 6’ at the end of the race ?Let·llic = distance (in yards) between B and (7 at end of first mile, 33a; =............................................................ B and .4 ..............................................When B has gone 1^ miles7) is 3x ahead of 4,and Ga; ahead of G.∙. while 7? went ∣ mile or 1320 yards,√i went .................... 1320 + 30a; yards,

G went .................... 1320 + 5a; yards.Hence, aftei' G increases his pace, the speeds of .4, B, G will be 54proportional to 1320 + 30a;, 1320, and (1320 + 5a;) respectively.
T. A.
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482 MISCELLANEOUS PEOBLEMS.Now since C passes B when he is 176 yards from the post;.∙. while B was going 4∙40- 176 = 264 yards.

also it will be found that C’s increased pace is equal to d’s; therefore there will be the same distance betλveen them at the end of the race as there is when B is ∣ mile from winning post, viz. 3ic or 3 yards.3. A fraudulent tradesman contrives to employ his false balance both in buying and selling a certain article, thereby gaining at the rate of 11 per cent, more on his outlay than he would gain w’ere the balance true. If, however, the scale-pans in which the article is weighed when bought and sold respectively, were interchanged, he would neither gain nor lose by the article. Determine the legitimate gain per cent, on the article.Let w and be the apparent weights of the same article when bought and when sold.. Let p = prime cost of a unit of weight,
X = legitimate gain per cent.;then an article which cost pw is sold for (p + 5

/ px∖ (x + l'l.')pw.∙. by the question [p + - top = ........ ..................(1).Again in the supposed case cost of article =pw^ and selling price =2>w (1 + J ;.∙. ;?ΐϋ,=^ιζ;(1+ --θ-θ)............................................(f}.

• ■
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MISCELLANEOUS PEOBLEMS. 483

From (1),
from (2),

.∙. α≡ + 100x = Π00,
(x + 50/ = 3600;.∙. x + 50 = ± 60;.∙. ic = 10 per cent.

4. A person buys a quantity of corn, which he intends to sell at a certain price; after he has sold half his stock the price of corn suddenly falls 20 per cent., and by selling the remainder at this reduced price, his gain on the whole is diminished 30 per cent.; if he had sold ^ths of his stock before the price fell, and the diminution in the price had been in the proportion of .£20 on the prime cost of what he before sold for .£100, he would have gained by the whole as many shillings as he had bushels of corn at first. Find what the corn cost him per bushel, and what he hoped to gain per cent.Let X = cost price (in pounds) per bushel,
y = gain per cent, he expected;

.∙. X + = price per bushel for which he sold half his c,orn;
.∙. ⅛ic^l + = price................................................................ the other half;

.∙. average price per bushel = — ∩ + )',
f 7/ ∖.∙. his gain per bushel = - ~ (1 + - ) - x.® 10 ∖ 100/

31—2
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484 MISCELLANEOUS PROBLEMS.Now had he sold the whole as he sold the first half, the gain per bushel would have been ;
.∙. by the question

Now the prime cost of what he at first sold for 100 = , and
oif he were to lose £20 on this, the loss per cent, would be

Now in the supposed case the average selling price of a bushel is

. ∙. gain on a busheland this by the question equals one shilling;
5. Λ and J? having a single horse travel between two mile­stones, distant an even number of miles, in 2⅜f hours, riding alternately mile and mile, and each leaving the horse tied to a mile-stone until the other comes up. The horse’s rate is twice that of B', B rides first, and they come together to the seventh mile-stone. Finding it necessary to increase their speed, each man after this walks half a mile per hour faster than before, and the horse’s rate is now twice that of Λ, and B again rides first 
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MISCELLANEOUS PROBLEMS. 485Find the rates of travelling, and the distance between the extreme mile-stones.Let 2ic = distance they travelled in miles.Now at first Λ walks 4 and rides 3 miles') while £ walks 3 and rides _4 miles) ’ or Λ walks 4 while B walks 3 and rides 1;that is (since horse’s rate is double of B’s), while B walks 3∣ miles ;.∙. J.’s and B’s rate at first may be represented by 8y and ↑y respectively.Again, Λ walks £C — 3 and rides £C — 4,while B walks a? — 4 and rides a: — 3;
.∙. Λ walks x — 3 while B walks £c — 4 and rides 1,that is, while B walks a; — 4 and 4 walks ⅜;

.'. Λ walks ic — θ while B walks a; — 4,
but Λ walks 8y + while B walks 7y+ ;

from which y
Now the total time Λ took is
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486 MISCELLANEOUS PROBLEMS.

from Λvlιiclι x.∙. distance =16 miles; rates of travelling at first = 4 and 3∣ miles per hour respectively.6. Λ and J5 set out to walk together in the same direction round a field, which is a mile in circumference, Λ Λvalking faster than -δ. Twelve minutes after √i has passed B for the third time, 
Λ turns and walks in the opposite direction until six minutes after he has met him for the third time, when he returns to his original direction and overtakes £ four times more. The whole time since they started is three hours, and Λ has walked eight miles more than £. A and £ diminish their rate of walking by one mile an hour, at the end of one and two houι∙s respectively. Determine the velocities with which they began to walk.Let X = number of miles per hour of Λ at the first,

y= ...........................................................   of B........................In 3 hours Λ has gone x + 2 (^x-l') = 3x-2 miles.
.∙. by the question that is, the relative speed of Λ and B is 3 miles per hour; therefore 

A will gain a circumference on B in ⅜ of an hour, and will therefore be passing j5 for the third time at the end of the first hour.Also since the relative speed of A and B is the same in the last hour as in the first, and since A passes B for the fourth time at the end of the third hour, therefore he will pass him all the 
four times within the last hour; the first time being exactly at the commencement of the third hour.Now in 12 minutes after the first hour the distance between 1 2
A and B is -(aj-2/-1)=^ miles; .∙. time of first meeting5 5

www.rcin.org.pl



MISCELLANEOUS EXAMPLES. CHAPTER LV. 4872= -÷(x + y-1); and time of meeting twice mo)∙e = 2÷(x + y-1). 0Ill 6 minutes the distance between them = (a; + ?/ _ 1) j .∙. if Λnow turns, the time of overtaking

that is,

749. The equations in the preceding chapter and their solu­tions, and the solutions in the present chapter, are due to the Rev. A. Bower, late Fellow of St John’s College. Should any student desire more exercises of this kind, he is referred to the collection of algebraical equations and problems edited by Mr W. Rotherham of St John’s College.
MISCELLANEOUS EXAMPLES.1. Exhibit {∕i >∕(α^'+ δ^) - α + as a square.2. Extract the square root of G + JG + J14 + ^21.3. Find the scale of notation in which the number 16G40 of the common scale appears as 40400.4. Shew that ad inf. = 2.

5. At a contested election the number of candidates was one more than twice the number of persons to be elected, and each elector by voting for one, or two, or three, ... or as many persons ns were to be elected, could disjiose of his vote in 15 ways; required the number of candidates.
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488 MISCELLANEOUS EXAMPLES. CHAPTER LV.6. In. how many ways may the sum of <£24. 15s. be paid in shillings and francs, supposing 26 francs to be equal to 21 shillings Ϊ7. Find the sum of n terms of the series

8. Shew that 1 + 2x'* is never less than 2λ;’.9. If an equal number of arithmetic and geometric means be inserted between any two quantities, shew that the arithmetic mean is always greater than the corresponding geometric mean.10. If ic be any prime number, except 2, the integral part of(2 + + 1 is divisible by 12ic.11. Shew that if n = ∕>7, where p and q are positive integers,is an integer.
12. Shew that v + w + w..........+ -— lo" n is finite when n12 3 n °is infinite.13. If ∕> be the probability ^priori that a theory is true, 5- the probability that an experiment would turn out as indicated by the theory even if the theory were false, shew that after the experiment has been performed, supposing it to have turned out as expected, the probability of the truth of the theory becomes
P

p + q-pq'14. Of two bags one (it is not known which) is known to contain two sovereigns and a shilling, and the other to contain one sovereign and a shilling; a person draws a coin from one of the bags, and it is a sovereign, which is not replaced. Shew that the chance of now drawing a sovereign from the same bag is half the chance of doing so from the other. Supposing the drawer might keep the coin he draws, what is the value of the expecta­tion?
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MISCELLANEOUS EXAMPLES. -CHAPTER LV. 48915. All that is known of two bags, one white and one red, is that one of them, but it is not known which, contains one sove­reign and four shilling pieces, and that the other contains two sovereigns and three shilling pieces; but a coin being drawn from each the event is a sovereign out of the white bag and a shilling from the other. These coins are now put back, one into one bag, and the other into the other, but it is not known into which one the sovereign was put. Shew that the probability of now draw­ing a sovereign is in favour of the red bag as compared with the white in the ratio of 13 to 9.16. If n be the number of years which any individual wants of 86, find the value of an annuity of ≈T1 to be paid during his life; adopting De Moivre’s supposition that out of 86 persons born, one dies every year, until they are all extinct.LVI. MISCELLANEOUS THEOREMS.750. The present chapter consists of some miscellaneous theorems on the following subjects; abbreviation of algebraical multiplication and division, vanishing fractions, permutations and combinations, convergency and divergency of series, and probability.751. In multiplying together two algebraical expressions it is sometimes convenient to abridge the written work by expressing only the coeflGicients. For example, suppose it required to multiply 2aj* + 3x + 1 by x‘+3x — 2; we may proceed thus:

Thus the required result isA similar abridgement of the written work may be made in division.This mode of operation has been sometimes called the method 
of detacked co^cients.
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490 MISCELLANEOUS THEOREMS.

752. Synthetic Division. The operation of division may how­ever be still more abridged by a method which is due to the late Mr Horner, and which is called synthetic division.Suppose it required to divide
let the quotient be denoted by 
then it is our object to shew how AA^,... may be deter­mined.If Λve multiply the quotient by the divisor we obtain the divi- (lend; this operation may be indicated as follows, expressing only the coefficients.

here the last line is supposed to be obtained in the usual way by adding the vertical columns between the horizontal lines. Now 
A, B, C, ... are known, and Λve have to find A^, A^, A^,...; for this purpose we reverse the above operation and perform the folio wins:
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MISCELLANEOUS THEOREMS. 491Here each vertical column expresses' the same result as the cor­responding vertical column of the former operation, but expresses it in a form more convenient for our object. For example, the fourth vertical column of the former operation gave 
and the fourth vertical column in the present operation givesThe method then may be described as follows:(1) If the first term of the divisor have a numerical coeffi­cient, divide every coefficient of the dividend and divisor by this coefiicient; the resulting coefficients are those intended in the following rules.(2) Write the coefficients of the dividend in a horizontal line, with their projier signs, putting 0 when any term is wanting. This gives the horizontal row A + B + C + D + E + ...(3) Draw a vertical line to the left of this series of coefficients,and write in a vertical column the coefficients of the divisor with their signs changed, putting 0 when any term is wanting. This gives the vertical column — α,, — a^, no notice being takenof unity^ which is the coefficient of the first term of the diλdsor.(4) Multiply each term of this vertiβal column by the first coefficient of the quotient, and arrange the results in the first 
oblique column. This gives the oblique column — a^Λ — a^A—.... the first term of which is to be placed under B.(5) Add the terms in the second vertical column to the right of the Λ*ertical line; this gives the coefficient of the 'second term of the quotient. That is, B — A = A^.(6) With the coefficient thus obtained form the next obliquecolumn. This gives — a^A^ — a^A^ — a^A .......... the first term ofwhich is placed under G.(7) Add the terms in the third vertical column : this gives the coefiicient of the third term of the quotient. That is,

(8) . Continue these operations until the work terminates, or as many terms are found as are required.
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492 MISCELLANEOUS THEOREMS.'753. For example, divide

Thus the quotient is
Or if we wish to stop at 4,Qx ~, we have
If we wish to stop at —13a; ', the oblique column —92 + 138 must be suppressed, and the result is
If we wish to stop at 7, the oblique column — 26 + 39 must also be suppressed, and the result is

751. We may observe that the principle exemplified in Art.332 is often of use in effecting algebraical reductions. For example, suppose it required to prove the following identity:
We see that if α = 0, the expression which forms the left-hand member of the proposed identity vanishes; we therefore infer that this expression is divisible by a. In the same manner we infer that the expression is divisible by b and by c. Thus abc is a factor of the expression. And since the expression is of the 
fourth degree, there must be another factor which is of the first degree; and since the expression is symmetrical with respect to 
a, b, and c, this factor must be α + δ + c.
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MISCELLANEOUS THEOREMS. 493Hence the expression must he equal to 7cαδc(α + δ + c), where 
k denotes some numerical coefficient which retains the same value for all values of α, δ, and c. To determine k we may ascribe to δ, and c any values we find convenient; for example, we may suppose b = a and c = a, and we find that k = 12.Thus the proposed identity is proved.755. Fractions. A fraction in which the nume­rator and denominator are both zero on some supposition as to the value of the quantities involved, is then called a vanishing 
fraction. For example, the numerator and denominator of the fraction 
vanish λvhen x = a; the fraction then takes the form , and we cannot strictly say that it has any definite value. But we can find the value of the fraction when x has any value different from a ∙, and we can shew that the more nearly x approaches to a the more nearly does the value of the fraction approach to a certain definite value. For put x = a + h∙, then by the Binomial Theorem the fraction becomes 

that is.
Now as h diminishes the numerator and denominator of the last1 _l 1fraction approach to the values a ® and ξ α * respectively; and by taking h small enough, the numerator and denominator may be ‘ 
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494 MISCELLANEOUS THEOREMS.
Xmade to differ from these values by as small a quantity as we please. Thus the fraction can be made to approach as near as we please to

4 i . , 4 ithat is, to 2 α**. This result is expressed by saying that is the limit to which the fraction approaches as x approaches to a.We may also arrive at this result without using the Binomial Theorem. For suppose x = y'^ and a = b^^∙, then the proposed fraction becomes 
so long as y is not absolutely equal to b we may divide both numerator and denominator by y — b, and so put the fraction in the form
As 2/ approaches to b this fraction approaches to , and the ό 4δ fraction may be made to differ as little as we please from -y by making y — b small enough. Thus the limit oi the fraction as y . 4δ .approaches to ό is -θ ; that is, the limit of the fraction as x ap-4 1 proaches to α is α'*.Questions respecting vanishing fractions and limits belong properly to the Differential Calculus, to which the student is therefore referred for more information.756. We will now give two articles, which form a supple­ment to the chapter on Permutations and Combinations. They are due to H. M. Jeffery, Esq. of Cheltenham.
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MISCELLANEOUS THEOREMS. 495757. To find the number of combinations of n things taken 1, 2, 3,  n at a time, wlien tiiere are p of one sort, q another,
Ϊ of another, and so on.Let there be n letters, and suppose p oi them to be a, q oi them to be b, r oi them to be c, and so on. The product
contains the combinations of the n letters taken 1, 2, 3, ..........w ata time, namely in the coefficients of x, xS, ..........x” respectively.The number of the combinations in each case is found by equating 
a, b, G,   to unity. Thus the number of combinations of the 
n letters taken k at a time, is the coefficient of χ∙*-' in the ex­pansion of

The number of combinations when the Ietteι*s are taken k at a time, is the same as the number when they are taken n — k at a time; this may be shewn as in Art. 496.The total number of possible combinations is found by equating 
X to unity in the above expression, and subtracting one from the result, since the first term in the expansion of the expression does not contain x, and therefore does not denote the number of any combination. Thus the total number is

The expression to be expanded may be written thus.
that is, where ∕χ is the number of different sorts of letters.For example, take the letters in the word notation. It will be found that the numbers of the combinations when the letters are taken 1, 2,............8 at a time, are respectively 5, 13, 23, 26, 22,13, 5, 1.
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486 MISCELLANEOUS THEOREMS.758. To find the number of permutations of n tilings taken 1, 2, 3,   u at a time, when there are p o∕" one sort, q of
another, r of another, and so on.I.et  there he w letters, and suppose p όϊ them to he a, q oi them to he b, r of them to he c, and so on.Form the product of the following series;

&c. <tc.
Jfter the product has been formed and arranged according to powers of Px, change P into 1, change P'^ into [2, change 7” into [3, and so on; then the coefficient of a?" in the result will consist of the permutations of the n letters taken ∕j at a time. The truth of this conclusion may he seen hy examining the mode of formation of each coefficient in particular cases; for example, suppose n = 4, and p, q, .......... each ---1; or suppose w = 4, ∕> = 2,¢=1, r=l. The number of the permutations will he found hy making a, b, c, .......... each equal to unity; this may he donebefore the product of the above series is formed.For example, take the letters in the word notation. It will he found that the numbers of the permutations when the letters are taken 1, 2,..........8 at a time, are respectively, 5, 23, 96, 354, 1110,2790, 5040, 5040.759. Convergency and Divergency of Series.We shall give some additional theorems on this subject, in order to supply a test which may he applied when the ordinary tests fail to determine whether a proposed series is convergent or 

www.rcin.org.pl



MISCELLANEOUS THEOREMS. 497divergent. (See Art. 561.) We shall adopt the following nota­tion for abbreviation; let logic be denoted by λ(x), let log (logic) be denoted by λ’(«), let log {log (log ic)} be denoted by λ≡(ic), and so on.760. 77tc series of which tJie general term is ∙(1)
is convergent ifγ be greater than unity, and divergent if}) be equcd 
to unity or less than unity.We suppose n so large that λ'^^^(n) is possible and positive.The truth of this theorem, when r = 0 has been shewn in Art. 563; we shall prove it generally by Induction.By Art. 563 the series of which (1) is the general term is convergent or divergent simultaneously with the series of which the general term is ∙∙(2),where m is any positive integer.1. buppose p greater than unity. Let m be any positive in­teger greater than the base of the Napierian logarithms; then λ (w") is greater than n. Hence it follows that the general term (2) is less than -(3);thus if the series of which the general term is (3) is convergent, so also is that of which the general term is (2), and so also is that of which the general term is (1). Therefore if the series of which (3) is the general term is convergent when r has any speci6c value, it is convergent when r is changed into r + 1. But since p is greater than unity, by Art. 563 the series of which (3) is the general term is convergent when r=l, and therefore when r = 2, and therefore when r = 3, and so on. Thus the series of which (1) is the general term is convergent.τ. A. 32
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498 __ MISCELLANEOUS THEOREMS.II. Suppose p equal to unity. Let m = 2 which is a positive integer Zess than the base of the Napierian logarithms; then λ (τn'*) is Zess than n. Hence it follows that the general term (2) is greater than
Hence by proceeding as in I. we can shew that the series of which (1) is the general term is divergent.III. Suppose p less than unity. Then the general term (1) is greater than it would be if p vf&Ye equal to unity, at least when 
n is large enough, and therefore d fortiori the series is divergent.A simple demonstration of this theorem by means of the 
Integral Calculus is given in De Morgan’s Differential and Inte­
gral Calculus, p. 325.761. Let denote the general term of any proposed series. If from and after any value of n the value of 
is always finite, p being any fixed quantity greater than unity, the proposed series is convergent. For in this case the series has a finite ratio to a series which has been proved to be convergent. If the proposed series have its terms all of the same sign, and from and after any value of n the value of 
is always finite or infinite, the proposed series is divergent. For in this case the terms of the proposed series have at least a finite ratio to the terms of a series which has been proved to be divergent.762. The following theorem relating to continued fractions was communicated to the present writer by Mr Rickard of Bir­mingham. The theorem will furnish high convergents to the square root of a number, with little labour.
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MISCELLANEOUS THEOREMS. 499Let y be a positive integer which is not an exact square, and let the convergents to be supposed formed in the usual way; let c l>e the number of recurring quotients in one com- plete cycle, or any multiple of that number; let — be the
Qe convergent, and the (2c)*^** convergent; then will

Let a be the greatest integer in JN, and let the quotients obtained by converting JN^ into a continued fraction in the usual way, be denoted by
Then from Chapter xlv. we have ....(1);....(2).alsoLet and — be the convergents immediately preceding 9'c-l ^c + land following — ; then

<lc

Now differs from Ls+l i∏ this respect; instead of using ?7c+ithe quotient we must use the corresponding complete, quotient, which is a + JN, by Art. 621.Thereforemultiply up, and equate the rational and the irrational parts ; thus ........... (3).Again, — differs from in this respect; instead of using 
‰ 5'c + lthe quotient yre must use the continued fraction 32—2
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500 MISCELLANEOUS THEOREMS.

and this continued fraction by (1) and (2) is equal to 
that is, it is equal toTherefore

Suppose for example that A = α + 1; then the quotients are 
a, 2α, 2α, 2α, ; that is, the cycle of recurring quotients re­duces to the single quotient 2α. In this case then c may be any whole number whatever.If N=a^- 1, the quotients areα-l, 1, ⅞(α-l), 1, 2(α-l), ...;thus the cycle of recurring quotients consists of the two quo­tients 1 and 2 (a — 1). Thus in the above theorem c may be any even whole number. In this case however the theorem will also be true if c be any odd whole number, as we will now shew.Suppose c an odd whole number. Since the (c + 1)“* quotient is unity we have

And, in the same manner as equations (3) were proved, wβ have
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MISCELLANEOUS THEOREMS. 501

Now differs from in this respect; instead of using the quotient unity we must use the continued fraction
and this continued fraction is equal to that is, to

by the second of equations (5).
Thus
From equations (5) since N= a* — 1, it may be deduced that
Substitute these values in the last expression for -- and we obtain
763. We will now give some further remarks on the subject of Probability.It is observed by Dr Wood in his Algebra, that there is no subject in which the learner is so liable to mistake as in the calcu­lation of probabilities. Dr Wood proceeds thus: “A single in­stance will shew the danger of forming a hasty judgment, even in the most simple case. The probability of throwing an ace with one die is and since there is an equal probability of throwing an ace in the second trial, it might be supposed that the 2probability of throwing an ace in two trials is g. This is not
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502 MISCELLANEOUS THEOREMS.a just conclusion; for it would follow by the same mode of reasoning, that in six trials a person could not fail to throw an ace. The error, which is not easily seen, arises from a tacit sup­position that there must necessarily be a second trial, which is not the case if an ace be thrown in the first.”The above extract is introduced for the sake of the import­ant remarks Λvhich it contains, and also for the purpose of draw­ing attention to the last sentence, which students have often found difficult. It should be observed, to prevent any ambiguity, that the problem under discussion is the following; Required the pro­bability of throwing one ace at least in two trials with a single die. Dr Wood’s last sentence indicates the following as his method of solution. The chance of an ace in the first trial is; if an ace is obtained in this trial there will be no need of a second trial. But suppose we fail to throw ace the first time;5 the chance of this failure is θ , and then the chance of success in the next trial is . Thus the chance of obtaining one ace at leastin two trials is + . ; that is, . And the error of a per-6 o o 36son who estimates the chance at + may be ascribed to the 6 65 5 1 . . ’circumstance that he changes the θ in the product . θ into unity, thus assuming that there will be always a second trial, although the second trial may be rendered unnecessary by reason of the first trial having been successful.This solution is of course quite correct, but it would probably be considered by the person who estimated the chance at + that it does not shew him his error, but substitutes a different solution altogether; and he might say tlierQ is no uncertainly 
abovΛ tlie occurrence of the second trials for two trials are guaranteed 
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MISCELLANEOUS THEOREMS. 503

in the enunciation of tJbβ problem, or at least are allowed to us if 
we please to make them.The error really arises from, neglect of the following consi­deration; when events are mutually exclusive, so that the suppo­sition that one takes place is incompatible with the supposition that any other takes place, then and not otherwise the chance of one or another of the events is the sum of the chances of the ^separate events.In the present problem success in the first trial is not incom­patible with success in the second trial, and therefore we cannot take the sum of the chances as the chance of success in one or other of the trials.It is easy to present the correct solution of the problem in dif­ferent ways. Thus besides Dr Wood’s solution, another has been given in Art. 723. We may also proceed thus. The desired event may be considered as one of the following three; suc­cess in the first trial and failure in the second, failure in the first trial and success in the second, success in the first trial and success in the second. The chances of these events are respectively |∙ > ’ V’ events are mutually ex­clusive, so that the chance of one or another of them is

764. This discussion naturally leads us to investigate the probability of the happening of one or more events out of events which are or which are not mutually exclusive. We shall now give some theorems on this subject.I. Let there be any number of independent events of which the respective probabilities are α, β, γ, ........... ; required the proba­bility of the happening of one at least.The probability of all failing is(l-α)(l-∕J)(l-γ)............;
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504 MISCELLANEOUS THEOREMS.therefore the probability of the happening of one at least is
l-(l-α)(l-^)(l-γ)........This may be written thus,

or suppose,where is the sum of the probabilities of the single events, 7ζ is the sum of the probabilities of pairs of events, the sum of the__ probabilities of triads of events, and so on.II. The theorem just proved is true even when the events are not independent; that is, the probability of the happening of one at least of the events is + ..........where 7^, 7^, 7^,..........have the meanings already stated.For consider only two events Λ and P; let w denote the whole number of equally probable cases, the number in which Λ occurs, nβ the number in which P occurs, Wαβ the number in which both Λ and P occur. To find the number of cases in which neither Λ nor P occurs we proceed as follows; from n take away «α and nβ; we have thus taken away too many cases, because the cases, in number naβ, in which both A and P occur have been taken away twice; restore then naβ. Thus the whole number of cases in which neither A nor P occurs isw-(^α + ⅜) + ⅝β∙Thus the number of cases in which one at least of the events occurs is «α + ^β - Ηαβ.Therefore the probability of the occurrence of one at least
_ ng + Hβ - ngβ

n

__ n„,s p
n u
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MISCELLANEOUS THEOREMS. 505Similarly any other case may be treated; the process and result are similar to those ∙which occur in finding how many integers are less than a given integer and prime to it (Art. 709).III. Supposing that there are n events, required the proba­bility that an assigned m of them will happen, and no more.Suppose that the events of which the probabilities are α, β, γ,..........are to happen, and the events of which the proba­bilities are λ, p,, v,.......... are not to happen. Then if the eventsare independent the required probability is......... (l-λ)(l-At)(l-r)............. ;that is, aβγ..........to m factors — ≤λ + +..........j .This we may denote by
Qm ~ ^m + l ÷ + i ~ ^m+3 ÷.............»where is the probability of the occurrence of the m assigned events, is the sum of the probabilities of the occurrence of every collection of τzi + 1 events which includes the τzι assigned events, is the sum of the probabilities of the occurrence of every collection of w⅛ + 2 events which includes the m, assigned events, and so on.IV. As before we may shew that the theorem in III. is true even when the events are not independent.V. Required the probability of the occurrence of any τn, of the events and no more.ΛVith the previous notation this will be ≡e.-‰,+‰-se...+..........It may happen that in some cases

2<2 =----- -------- QJ^∣n-m ‘

Ί0 I-? n+ 11 n - 7⅛ - 1and so on; this will be the case when the events are all similar.
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506 MISCELLANEOUS EXAMPLES. CHAPTER LVI.VI. In. II. we have found the probability that at least one event shall happen, and in V. the probability that just one event shall happen; by subtracting the second result from the first we obtain the probability that two events at least shall happen. Then again we know from V. the probability that just two events shall happen; by subtracting this from the probability that two events 
at least shall happen we obtain the probability that three events 
at least shall happen. And so on.

z

MISCELLANEOUS EXAMPLES.1. Having given 

shew that
X, y, z, u being supposed all unequal.

2.find the relation between a, b and c; and shew that
3. Find the relation between a, b and c, having given 

and4. Find the relation between a, b and c, having given
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MISCELLANEOUS EXAMPLES. CHAPTER LVI. 5θ75, Eliminate x, y, z between the equations(y + z) = a^, 'if + = b^, z^ {x + y)- c^, xyz = abc.6. Eliminate a and δ from the equationsαθ-£c® 2ic + 3y ≡ ,3 , ×3 » τ ∙'
Ta----- ⅛ = τ------ a∕-b'^ = (x- yγ, a'i + δb^-i/ ix + 2y'

'Ι. Eliminate x and y from the equations£c + y = α, x^ + y^=b^, + y^ = c^.8. Eliminate x from the equations32i = M+10- + 5f-V,
a ∖a∕ a ∖xj32« = ^÷5f^y.
c ∖x∕ X ∖a∕9. Eliminate £c, y, z from the equations

X y 2: X y z' - + -+ - = α, --Y~ + - = β,
y z X z X y

∖y zj ∖z X) \a; y)10. Eliminate x and y from the equations
ax + by = 0, x + y + xy = f}, x^ + 2/ -l~0.11. Eliminate x and y from the equationsy^ — x^ = ay — βx, \:xy = αic + βy, x~ + y^ = 1.12. Having given(ic + yY ic^xy, {y + z^ = \^a?yz^ {z + x'f = 4δ⅛shew that a’’ + δ^ + c’ ± 2abc = 1.13. Eliminate α from

X 2y \:Z
a^ +a^~ a^ + y^ ~ a® + iS^ *
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508 MISCELLANEOUS EXAMPLES. CHAPTER LYI.14. Eliminate x and y from4 (as* + y*) = aa: + by, 2 (x’ — y®) = ax- by, xy = c*.15. Shew that the equations
a = xx', 2a = yz' + zy',

— Vi/ i + t
c = zsi, 2c' = xy' + yx', cannot be simultaneously true unless2αδc + a'b'c' = aa!^ + bb'^ + cc^.16. Find the number of permutations which can be formed with the letters composing the word examination taken 3 at a time.17. Find the chance of a one, a two, and a three, of thesame suit, lying together in a pack of cards which consists of m suits, and has n cards numbered 1, 2, 3, .......... in each suit.18. A rectangular garden is surrounded by a walk and is divided into mn rectangular beds by m — 1 walks parallel to two sides and n — 1 parallel to the other two. Find the number of ways no two of which are exactly alike in which a person can walk from one corner to the opposite so as to make the distance equal to half the perimeter of the rectangle.19. If a; be a proper fraction, shew that

20. If a; be a proper fraction, shew that
21. Eliminate x, y, z from the equations
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MISCELLANEOUS EXAMPLES. CHAPTER LVI. 50922. Shew that if
where
then

23. If α , ...a,, and δ,, ... be two series of posi­tive numbers, arranged in order of magnitude, of which and are respectively the greatest, shew thatis less,
is gi’eater,andthan if the denominators b^, b^, ...b^ were arranged in any other order under a24. If α be less than δ, shew that the logarithm of i 1can be expanded in a series of which the general term isZ2 1 ∖∖zi n+1/ b"25. If a be less than δ, shew that iis increased byadding the same quantity to a and b.
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( 510 )
ANSWERS. I. IL III.I. 1. 23. 2. 35. 3. 63. 4. 88. 5. 92.6. 26. 7. 15. 8. 6. 9. 5. 10. 2.11. 9. 12. 10. 13. 0. 14. 26. 15. 43.16. 38. 17. 76. 536. 18. 9.II. 1. 9α-7δ + 4c. 2. lOx® —4x +13.3. 12ic’ + Qxy -y^ + 2>x + 4y. 4. 4x^ + a^x.

5. 2ab + 2aj’ + 2ax + 2bx. 6. 3α — δ + c — 6<∕.
7. 2aj≡ + ic. 8. 2a^-ax. 9. a — b + c — d.10. 2bx + 2by. 11. a — b + c — d. 12. a —δ + c + <∕.13. α-7δ. 14. 5α. 15.' 2a-b-d.16. 12x-82∕. 17. 3α. 18. a.19. 2α +ic—2δ+y = 9. 20. 3x®.III. 1. Zpq + 2p^-2q∖ 2. 7α≡ + 16α¾-αδ≡-10δ≡.3. α*-αW + 2αδ≡-δ∖ 4. - aψ + 4ab^ - 4b∖

5. a* + 4α⅛ + 4α⅛≡ — x*. 6. α* — 8a^x^ + 16x*.
1. d‘b + (a—b'fx—2a3d~x^. 8. 60x*+42x⅜- 107a;W+10a;aV14fl’A9. 6aj*-96. 10. 4a:® —22ic*y + 42xy≡-27y^11. 12x®-17a:®2/ + 3a;/ + 2y®. 12. x^-x^ + x^-y^13. x^ — 4ι∕ + 12yz — 9«®. 14. Oa:"* + a^y + 2ady'^ - 18xy^ + 4τ∕'*.15. x^ + x^(y + 2;) + x^(tf + yz + z^} + xyz(y + «) + y^^.16. α≡ + δ≡ + c≡-3αδc. 17. a:® + / + 3a;y - 1.18. a;® + 151a:-264. 19. a:’-41a;-120.20. 4x®-5a:® + 8a:*-10a;®-8a;®-5a:-4. 21. a:®+10a:-33.22. £c’ - Ιx^ + 21a:® - 17a:* - 25x^ + Oa:’ - 2a; - 4.23. α≡ + 2α≡+3α* + 2rt≡+l. 24. a*-x∖

25. a:* —10a:®+ 9. 26. a:® + a;* + l.
27. x^-x^a^+ 2x^^ab-(b^+ 2ac}x*+2x^{bcΛ-ad')-{c^+ 2bd)x^+ 2xcd-d'.30. ahc + {ab + δc + co)x +{a+ b + c)x^ + x^.31. a;* — a:® (α + δ + c + c?) + a:® (pιb + ac -l· ad Λ- be + bd + cd}

— X (l)cd + acd + abd + abc) + abed.
82. 2b∖- + 2c^a^+2aΨ-a*-b^-c∖ 33. δ®-ίΖ®.
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ANSWERS. III. IV. V. VI. 51134. 4(α≡ + δ≡ + c≡ + eZ≡). 36. 2(α≡ + δ≈ + c≡). ’ 37. 8χ∙≡.38. 2((√ + δ* + c"). 39. 4(δV + cV + α¾≡).43. as® — 22x* + 60x® — 55ic’+ 12x + 4.44. ic® — + 2x®a® - 2x*a* + — 2xa^ + a“.45. a^-a^h-2aΨ+2a^h^ + ab^-b∖IV. 1. x+l. 2. — 6icy + 4y®.3. + ab — b^. 4. — ^ab.
5. 32χ5 + 1 (jχ^y + 8ic®2/® + ^iX^y^ + ^xy'^ + y®.'6. db^ — c^b + a^b^ — ah^ + b*. 1. χ^ + y^. ' 8. x® + 3ic + 2.9. 1 Gx^ — Qx^y + ∖^y^y^ — '^xy^ + y*∙ ∖^. a? — xy + y^.11. x≡-x+l. 12. α≡-2αδ + 3δ≡. 13. α≡-2α¾+2αδ≡-δ’.14. 16α≡-24α≡δ + 36αδ≡-27δ≡. 15. x"+2x≡ + 3x≡ + 2x + 1.16. x"-5x≡ + 4. 17. α≡-2αδ + 3δi 18. x" - 8x∙≡+16.19. (x“ + X— l)(ic + 2). 20. (2x®+3)(ic-4).21. α + x. 22. {x-a}(x + a). 23. α + δ + c.24. 3x≡-2αδx-2α¾≡. 25. (x-l)≡. 26. 3α≡+4αδ + δ'.

21. x^— xy + y^ + X + y+ 28. a® + b^ + c®+ be + ca — ab.29. b + ^a^b — cdf + 30. ab — ac + bc. 31. b + c-a∙32. (δ + β)(ο + α). 33. — 4α^δc + 7δV. 34. + ax + x^∙35. (x + 2z) y^ + (x≡ - 2z^) y -xz {x + z). 36. αδ + δc + ca.
Zl. -{a^b'}x + ab. 38. x-b. 39. αδ-αc + δ^-ci 40. a^ + b^+c^. 41. a + x. 42. (α + δ-c-<∕)(α-δ + c-i∕}.43. x® — αx + a®. 45. The quotient is Ixy (x + y}.46. Each is αδc — aι^ — bq^ — cr^ + 2pqr.
il. (α - x) {(i + ab){a^ + {a* + x''} {a^ + χ").48. (α + δ + c) (δ + c - a')(a -b + c}{a÷b- c).49. (δ + c + cZ -α)(ii + c + (∕ -δ)(α + δ + tZ -c)(α + δ + c-(Z).V. 2. 9. 3. 70. , 4. 6.

5. y^+λ∖y'' + ^ly^ + ^^y + ^^'.VI. 1. a: —2. 2. x + 3. 3. a3^ + 2aj+3. 4. aj + l∙5. 3.r + 4a. 6. x-y- 1∙ ^x-l. 8. x-l. 9. aj-2.10. x≡+x+l. 11. x + 2. 12. aj-3. 13. 2x-l∙14. x~ + {a + y}x + y^. 15. x' + 2.'c + 3. 16. a{2a-2>x∖ '17. 2x-9. 18. ax-by. 19. x-y. 20. (x+lf∙21. 2x≡-4χ∙≡ + x^l. 22. a:-2a.
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512 ANSWERS. VII. VIII.VII. 1. (2a;’-t-3a:-2)(3a; + l). 2. (3a;-2)(4aJ≡-4x*-aj + 1).3. (a;’-l)(a; + 2). 4. (a:” - 9a;’+ 23a;-15)(a;-7).5. (a; + 1)’ (a;® - 1). {x? - iy^).
Ί. 16x*-l. 8. a;(a;'’-l). 9.10. (a;-l)(a;-2)(a;-3)(a;-4). 11. a:*-16a\12. {x-a)(x-b)(x-c). 13. (a; + c)(2a: - 3δ)(a:’+ aa;- ό®).14. 36(α*-δ^)(α’-δ®)®(α’-δ’). _ 1νπΐ. l..a;-3. 2.a + b. 3. a; + l. 4.;^----- -.2a; — 13a;+ 2 2a;+ 3 _________3a; + 9________■ £c + 1 * * 3a; — 4 ’ . ' a;* — a:® + 6a:® — 6a: + 6 ’
« Ω + + 10■ a: + 5 * ' x^ - 2x - 3 ' ' a:® - 2a; + 2'11. 12. 13.a; — 3x + 1 α b — 2x14. numerator will be found to be5equal to 5(1 +a;®)^, and the denominator to (1 +a;®)®, so that the fraction . 16. 1 + αδc. 17. ——-r^. 18. 4.lθ∙ Z4 » 20. --. 21. ----- θ ■ .(4a:® - 1) a; n (x - 1) (a: + 2)®""∙ (a;®-l)(2a; + 3)· x^-b^' ' x + 2' ' θ'2C. 42⅞. i↑. 28. 29. >" .

a — b {x — y} {a-bγ a + xgθ 4j 3j θ θ2. 0. 33. 0.
84:

a^b + b’^c + c^a — Wa — c^b — a^c ., „„ 1 oe> r∖
≡^∙ ------(b-c)(c-a)(a-b)------ = -’· ≡'∙ ∞∙ θ∙
3T. 0. 38. ⅛⅛. 39. ' f Γ4,∙ iθ. ⅛.

x{a + b} y{^ +y} 4y43. 43. M. 45. 2.a; a —x a
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ANSWERS. VIII. IX. 513, . α’ - ab + , _ x* x’‘ , .» » , 14θ∙ -V----- j—■ ^7. -4 + -2+ 1. 48. x’^ + 1 + -2.a + ab+ b a a xα(2α + 5ic)(2α^+19αx + 42ic*) (a-x}^4^· —1--------λV^3—5^θ∙ ----- -\'x(a — X) (a + 2αx + 2,x^) x \a.+ x)
ei.l^ 52.^^^. S3.-‰,.

ύύ [a+ b) X —x^ + ^ x +y y
' 11 3*^+155.1. 56.1. 57. χ^-χ + -- ±. 58.-------.

XX X
ic''+iC + l 2 7.2 a {, PT ® +59. -------------. 60. α — ό + c + 2αc. 61. ---- .

X — y
a 72 2 n po ic’+ 3aa; - 2α≡ x^-2a^62. a^-b +c - 2ac. 63. ---------- -------- . 64.---------- .X + ba ax

ac — bd + x^ bc + ca Λ-ab
-------ΓΊ· θθ∙ -fi · θ<∙ i-------------- 7- ■ ac + bd 2ax----------------------------bc + ca — ab

ai. - . C9. -
ab {a — b) b + c + b c x + y

72. n,. 73. ⅛. 74.
2it*0 X - a^ 2bc

f.~ adf-\-ae
3(aj + l)' ‘ ‘ bdf+be + cf’IX. 1. 1. 2. 20. 3. 3. 4. 11. 5. θ. 6. 13.

7. 9. 8. 4. 9. 7. 10. A. n. 13. 12. 3.
i o13. 5. 14. 28. 15. 2. 16. 2. 17. 3. 18. 10.19. 1⅜. 20. 2|. 21 5. 22. j. 23. 13. 24. 8.25. 4. 26. 4. 27. 9. 28. 4. 29. 1. 30. ?.31. 56. 32. 7. 33. 7. 34. 8|. 35. ii. 36. 2⅛

37. y. 38. 3. 39. 2. 40. 12. 41. 12. 42. 2.43. 3. 44. -2. 45. 1. 46. 1. 47. 5. 48. 'y
49. 3^. 50. 51. 52.2o a + b — c — d ■ 0 (0 + a)

T. A. 33
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514 ANSWERS. IX. X. XI. XII.α(l-δ®) . a~G + b" a + c~b — a — b — c
‘ b{a‘—iy ’ acbc + ab — 156.^. i7. 58,i^-≠.

a + b — ac — bc b a + b 259. 2. 60. 20. 61. 5.

X. 1. £1290, £2580. 2. £120, £300. 3. £5.4. £140. 5. 28, 18. 6. 38 children, 76 women, 152 men.7. £720. 8. £144, £240, £210. 9. £350, £450, £720.10. A £162, J? £118, C£104. 11. 3456, 2304.12. 126 quarts. 13. £2. 15«. 14. £3. 10β.15. £600, £250. 16. 400 inches. 17. 30.18. 6 shillings. 19. 3. 20. 8, 6, 3, 2; 24 kings in all.21. 42. 22. £3600. 23. 7,8. 24. 11 oxen, 24 sheep.25. 5 shillings taken by each; there were 20 shillings in the purse.26. 240. 27. 90 by 180, and 100 by 230. 28. 48 minutes.29. £8750. 30. 20. 31. 60 oranges and 240 apples.32. 10 from A, 4 from £. 33. 11, 22, 33. 34. £420. 10«.35. 6ι⅞ or 4τ⅛- past one. 36. . 37. 2s. 8d. 38. 40.XI. 1. x=5, y=7. 2. iB = ll, y=^. 3. a:=16, y = ^.4. flj=60, y=36. 5. a;=12, y = 20. 6. ic=18, y=6.7. x=2, y=13. 8. ic=8, y=l. 9. ic = — 6, y= 12.10. a; =10, 2/=20. 11. a: = 7, 2∕ = H∙ 12. a; = 18, 2/= 12.13. a; = ‘4, 2∕ = '1∙ 1^∙ = 1^∙ ic = y = «i + w-16. a:=3a, y = -2b. 17. □J = 4, 2∕ = l∙ 18∙ ® = y = ^∙
nc + bd me-ad

mb + na mb-∖-na21. a: = 2, 2/ = -1∙ 22. x≈8, y =2. 23. a; =3, 2/ = 4.24. aj = 12, y=3. 25. x=2, y = l. 26. a: = 2, y=Q.
21. x=8, y = 5. 28. a: = 4, 2/= 3.XII. 1. aj= 7, 2/ = 5, is = 4. 2. £c = 2, 2/= 3, 2 = 4.4 43. a;=^, y = i, z≈-^. 4. x=2, y≈8, z = 5.
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ANSWERS. XII. XIII. 515
5. X = 2, y = 3, 2=4. 6. ic = 8, y = 4, 2 = 2.
7. a; =10, y = 2, 2=3. 8. a;= 4, y = 3, 2 = 5.Q 9 4 p in 7 219. α = 3, y = 4, 2 = 6. 10. = 2∕ = ~2> ^ = ιθ∙11. x=2, y='i, 2=1. 12. ic=4, y = 9, 2 = I6, u = 25.13. w = 4, ic = 12, y = 5, z=l. 14. a; =3, y = l, u = 9,,z = 5.15. a; = 3, y=2, u = 5, z = -i. 16. x=2, y=^^ z=Z, u~Z, t=∖.17. a; = 2, y = l, 2 = 3, w =-1, v = -2.TO a b c b^+c*-a^= 19.2c^(c-a —δ) 2cb 2ac2>9. x= - -------- 4—---- ----- -, y =------------, z =----------- =-.

(c + a-b)(c + b-a) c+b — a c + a —b21. J 23.
(a -b}{a-c} a {a — b) {a — c)23. ? = _f^+iy 24. aj=δ + c-α.

X ∖o cjXIII. 1. ∣. 2. 250, 320. 3. 4. 5,6.5. 42s., 265. 6. 75s. and 35s. 7. 5 and 7.8. 7, 10. 9. 300, 140, 218. 10. 1, 3, 5.11. Tea, 5s. per pound; sugar 4c?. 12. 50.13. £3000, £4000, £4500, at 4, 5, 6 per cent, respectively.14. 100 miles; original rate 25 miles per hour.15. 8 and 12. 16. £540; 17 pence.17. £70. An ox costs £10 and a lamb 18⅛. 9d.18. -4 26, A14, CS. 19. Λ wins 21 games, .5 13 games.20. .dlls., B 38s., (733s., 7) 32s., E33s. 21. 90 miles.22. Λ could do the work alone in 80 days, B in 48 days; Λ must11 21receive — of the money, and B of the money.
a J oj

23. .4 in five minutes, 5 in six minutes.24. 2∣, 2; distance 5 miles. 25. 600 yards.27. √1 in —---- davs, B in days.j9 + n- 7>i ∙ m—n
33—2
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516 ANSWERS. XIII. XIV. XV. XVI. XVII.

28. miles per hour. 29. 4 yards and 5 yards,
a—€30. 27. 31. 36.32. ∙Coach goes 10 miles an hour; train goes 30 miles. From A to .5 is 16∣ miles; from Λ to C is 20 miles; from (7 to 7i is 40 miles.XIV. 1. a. 2. 3. -.

23 + 3 a
1 n a + b + c θ .4. 0. 6. ----------- . 8. x = a, 1/ = b, z = c.

Δ ■9. (23 + 1) (a3 + 2) (x + 3) (ic + 4).XV. 1.⅛⅛÷,≡. 3. < = x23+23+1
A. x = b-c, y = c-a, z = a-b. 5. Clear the given rela­tion of fractions. 6. Each child obtains .£1920. 12s., and each brother £960. 6s. 7. 23 = —3α.XVI. 1. 1 + 423 + 1023≡+ 1223≡+ 923∖2. 1 — 223 + 323" — 423"''+ 323^- 223®+ X^.4. «”+ 0≡ + c≡+ d^+ 8a∖b + c + d} + 8b∖a-vc + c?) + 8c∖a + b + d}+ 3iZ*(α + δ + c) + 8bcd + 8acd + 8abd + ^abc.XVII. 1. 23≡-23+l. 2. 23≡- 223-2. 3. 2x≡ + 3x-l.
4. 223*— 23 + 1. 5. 223*— 3α23 + 4α*. 6. 623*—3α23+4α*.7. {x-d↑. 8. a^+b∖ (α*+δ*)(c*+<Z≡). 10. α≡-δ*+c*-i∕*.m ol io2∞2 ,„«*»2311. 23- 2 --. 12. 23*--+-. 13. -- +--------.

23 2 23 2 X a11. α*+(2δ-c)α+c®. 15. (α-2δ)23*-α23 + 2δ-3. 16. 1∙14.17. 2a3*- 323+ 1. 18. 2χ*+4c23-3c®. 19. 2a3*-3c23 + 4c*.20. 5∙δl. 21. 9009. 22. 22∙22.23. 111111111. 24. 23-i.
2326. The given expression = (23®—2/5;) {(23*—2/«)*—(2/’—≈∞)+ two similar expressions

= (x*- yz) 23 {23® + 2/’ + — 3232∕s} + two similar expressions
= {≈'^+ — 3232/2} *.
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ANSWERS. XVI1I. XIX. XX. 517χνΐΐΐ. 1. 2. a~'i 3. 4. 1. 5. .
{bxy6. ^+a^b^+a~'^b^. 7. + xy^ — y^. 8. α*-1,9. α + α^-1 + α~^+α~*. 10. —4α^^δ~* +9α~®δ. 11. x + y.12. x^α^+αl 13. α"+l+α~". 14. 2a;®—3icy+27/^.

,r- ∖ιi 7 ■./. ic + α y15. a-∖-a^b~-b. 16. —5--------2· 17∙ i+y ------ r∙a;®+3a;a + a® g∣,h ^y^18. 2α^-3δ^ + 4c^. 19. 16x^-16x⅛+12 — 4a;''^+a;"^.XIX. 1. a^+a^b^^a^b^+ab^+a^b^Λ-b∖2. 2^+2≡.3V2^.3≡+2.3 + 2⅛^+3<3. 3'^-3.5^ + 3"5^-δl 5. ∙2679492.8.3 ^^-4 + 3 a-2ah^-b. 10. 1 + √3.11. 2-√3. 12. J^+J2, 13. √(10) + 2√2.14. 3√7-2√3, 15.16. + I”· ^^√√V72)∙ 'θ∙ v(⅛{√CiO÷√CiO}∙19. ∣√3-2. 20.1. 21.1+72 + 73.22. ι+y∣-y∣. 23.7θ+√3-75-1.24. 1 + J2. 25. 1 + J5. 2Q. 73 - 72. 27. 7θ - J5.1.1,4. 2. ∣, ∣. 3.05=1,3. 4∙5.3,1. θ∙17, ∣. 7.-4,-6. 8. 5,
9311 10--1 11 ’*5 — — i2l-l»· <>, IE ^^-2’ 2* ^^*3’ 2' 2’ 2'
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518 ANSWERS. XX. XXI.⅜ sΓό’ Γι’ 13’ GO’ X 317. 4, 18. 6,-1. 19. 5, -^. 20. 8,'∙19 1 121∙ 2>2∙ 22∙ ≡-"25∙ 23. 10,-2. 24. -g. -ζQ'≡≡∙l'⅛∙ 27. -1,∣. 28.7,-5-24 er29. 3,-γθ. 30. 2,16. 31. -2,-16. 32. 3,-^∙433. 5,-3. 34. 29,-10. 35. 10,-29. 36. 8,-5-37. 1, ∣. 38. 24, ~. 39. 8,-8. 40. 10,-lθ∙0 041.2,-3. 42. 2, j. 43.3,-^. 44.8,-3-45. 3,-∣. 46.pl. Y’ 7· 48. θ3∙49. 0, ∣. 50. 1, -∣. 51. 2 + J3, +

52. α ± &. 53. ----- £, ----- ψ. 54. a ÷ J(a -b)∙
a — b a + 0

55. ⅜ {α + δ + c ± + 5’ + c’ — αδ — δc — cα)}. 56. a +
-a, -b. 58. -∙÷^--√iK7^V-÷4<.M.2αo
. 2ab-ac-bc 2a —b 5a + 2b59. 0, -------γ—5—. 60. --------,------- 7------a + b-2c ac be61. -py— [«δ + δc + cα ± J{a%^ + b^c^ + c^a^ — abe (a + b + <^)}]-C2 -α V>’ c(2c + 3)In the following chapters the irrational roots and the impos­sible roots have not always been given; and some of the roots given are not applicable; see Arts. 329, 330.XXI. 1. 1, i. 2. 1,-2. 3. (-41)?, 9.
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ANSWERS. XXI. 5194. 14≡", (-l)*. 5.2,3. 6. 2∙,(-l)∙.7. {-√α*√(α-c)i'. 8. ill. 9. 2⅛, (-1)⅛
10. 11. 8, (-y√2)*. 12. i 2,^710.
13∙ T∙ ∣∙ W∙ <. Ϊ· W∙ 1⅛ (-⅛)'

16. (-l)S,(i)* 17.4.-1. 18. 2∙. i. 19. 9,-i?.
20. ±5. 21. 22. 16, 0. 23. 18, 3.

Ji24. 2'=8 or -10; .∙. a; = 3. 25. 0,26. 0, a. x^=-^’2 π-2 π + i28. χ^=z-ab^^ + 3δ*-29. {√(a3 + 2) + √(x^ + 2ic)}"''=(α-ic-^αy, a quadratic in ^ic,, , c≡-2“ Γ+2^ * ’ {c + 2↑‘
i31. Multiply up and arrange

X {√(α -x)- J (a + x}∖=Ja - α},
Cbsquare, <tc. a; = 0, ÷ . 32. 2α, — 2α.

2ι
95 133. 1, -y. 34. 1, 35. ±2α,4c⅛ 1 25 136. a; -0 or ^7. ^,-θ· 38. ±σ, ÷^.39. tfc⅞, 40. ÷√2. 41. 5, -8.

o «5
O' . n 9 fn* — ^'ni* ., an43. 44. χ∙ = 9.45. 47. {≈i√(√-l)i*.48. 0, i∣. 49. i2α, 60. ∣, ∣.
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520 ANSWERS, xxr.51. 0, -i⅛±g⅛l⅛. 52. 5. 53. 8, -⅞.3rt +3ό +10α& ’ 554. 55. 1, 23 ' Qa-Jbγ-V

57. Proceed thus, = | &c.4 4ic-14∖8∕
58, 0,-1. 59. 0, {α + δ + c÷^(α^ + + c® — 2δc-2cα — 2αό)}60. 0, -ιg. 61. 0, +
62. 0, ^J{mn + a (τn-w)}, 63. 0, α ^1 ± 264. Transpose and square; we get

2x (2ic + 1) J(x^ + 2) = 2 (x≡ + 1) {2x + 1).The only solution is x = — ^.65. 1. 66. 4, -9. Q7. 0, 2. 68. 0, -5, O ό69. 1, -4, - 70. 1,1. 71. 2, -5, i{-3±√241).72. α + 2, 73. 2,-∣. '74. 1,-2.75. ic’ + 5ax = — 5a^ ± + c^); whence x,1 976. iB® + 3a; = V or — v 5 whence x.4 4
+ x^ a® + x^ . Ci, .,-- ----- ■=-,-5,&c.; α = ^(-l±√5).ax a — X 2^ '/ 1 1∖* / 1 1∖* . f 1∖'

78. ^≈(^~2^*^2√^∖~2~2∕' V ^~ 27 '
79. {x^ — 3i^'‘ — {x^ — x) = a. 80. 4, — 3. ∕29∖*81. {Jx + J{x + 7)f + Jx + √(α + 7) = 42. a: =9 or ∙82. (x — 4Jx'f + 2(x — 4Jx} + 1 = 0. a; = 7±4,^3.83. {2 J{x) + 1} {,Jx + J{a + a;)} = δ; multiply both sides by

J{a + x}-Jx', .∙. α{2√(x)+l} = 5{7(a + a;)-^a;}, (fee.84. (a;* + x)* + 4 (a;’ + a:) + 4 = 16«’. 85. («’ + = 2a^ (x — a)*.86. fa: + + a(x + —+ δ — = 0.∖ ax) ∖ ax) a
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ANSWERS. XXI. XX∏. XXI∏. 52187. ('≡-2V-2f≡-5') + l = 0. 88. ≈+i = i^ or-l®.∖α £c/ ∖α xj X Z Z89. — 2 + 1 = 0 after expunging ^{x — 1).90. 1+√3÷√(3 + 2√3), 1-√3÷√(3-2√3).91. {x + l)(x≡-χ + 1) = 0. 92. (a: + l){l + ?i(a;’-a; + l)}=0.93. £c = 5 is obviously one solution. 94. a; = 6 is obviously one solution. 95. a; = 5 is obviously one solution.96. a; = 0 is obviously one solution. 97. {a? — 4)(a; + 1) = 0.98. X = a is obviously one solution.99. 8a;^—1 + 8 (2a: - 1) = 0 ; .∙. a: = ⅜ is one solution.100. + .∙. a? = — I is one solution.101. X = — m is obviously a solution. 102. x = a^ b, or — (α + ύ).103. a: + 2? — 1 is a factor. 104. x (^p - 1) + 1 is a factor.105. a:® = 1 is obviously a solution.XXII. 1. 3 (a; - 5} (a: +2. {x + 60)(a: + 13).
3. 2 {x + 2) . 4. {x-Q2'){x-2Q'). a. x^-lix + i8=0.6. a;" — 9x + 20 = 0., a;® + a; —2 = 0. 8. a:’ —2a; —4 = 0.9. 42, 36, 117. 10. m = 8. 11.

12. cx^ + bx + a = Q.XXIII. 1. a; = ±3; y = ±4. 2.∙ ic = 60, 40; y = 40, 60.
16 5

8. x = ^∙, y="2^. 4. a; = 4, y; y = 3,5. a; = 7, 5; y = — 5, - 7. Q. x = 2, 5 ∙, y = Q, 8.
7. x = = 8. a: = -l, |; 3,= -l, ∣.
9. a; = l;y=l· 10. aj = ±3, =f8^2∕=÷5.Il∙ 2: —1), , y ∙ I2∙ 25 — =fc 3, ÷36, y.

5 113. a; = ± 3, ÷ —; y = ± 2, ± .
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522 ANSWERS. XXIII.14. p: = *2,:ty|;y==.l, J∖.1- , 8 , 110. aj-÷3, .
16. ic = ±4, ±3^3; y = ÷5, J3. 17. ^ = "^^21’o 53 , 227 ,. lb fb20. £c = =fc6, y = ^3y =F 3. 21. x = -^3∣J2∣'^ y~'^>J^ι1222. aj = 0, -1; y = (),-^ . 23. a; = 0, 4; y = 0, b.

o24. ic = 0, 15; y = Q, ib. 2b. x = Q, 2, ^J2∙, τ∕ = 0, 2, 2=^ J2.21 726. i«=0, 4,-2; y=0,2,-4. 27. x = b, y = 3,28. « = 4, 2; y = 2, 4. 29. a:= 2, 0; y = 0, -2.30. ic = l, 4; y = 4, 1. 31. a;= 1, 10; y = 10, 1.
32. x = 3,2∙, y^2,3. 33. a;= 8, 4; y = 4, 8.34. «=17, 1; 2/ = 1, 17. 35. « = 4, 2; y = 2, 4.36. « = 4; 2∕=1∙ aj=l, 4; y = 1.38. aj = 2, 3; 2/ = 3, 2. 39. « = ±2, 2/ = ±2; or x^=i=2, y = =p2.
40. « = 3, y=l; «=1, y^3. 41. x = b,-2-, y = 2,-b.
42. x = ±2, ±1; y = =bl, ±2. 43. « = ⅛(9÷√73), y = ⅜(9=f√73).44. ic = ÷3, ±2; y = ^i^2, ^3. 45. x = =i=b, ±3; ⅛∕ = =fc3, ^=5,46. ic = ÷3, ±2; ^ = ±2, ±3.47. x = 0, ^J3∙, y = Q, 3^J{-3∖ ^2J3.The first equation may be written thus,«2/ (2/ + ® — 3) = 3 (4x + y — xy}.48. a; = 8, 2; 2/= 2, 8. 49. ic = 9, 4; 2/ = 4, 9.50. ∞ = 8, 64; y = 64, 8. 51. ic = 5, 13; y = ^, 12.52. « = 4, 9; y = 9, 4. 53. x = 2, 8; 2/ = 8, 2.
51. = φj = -2^=JS,i{^J(∖S) + S}.55. x = b,y = 3. 56. cc = ± 1,2/ = 3. bl. x = ^,y=^.

58. x^ = {a® =fc + 4δ*)}, 2/® = ^ {- a® ± √(α* + 4δ*)}.59. xy = ^ {2b^ + 2α*)}; whence we may proceed.
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ANSWERS. XXIII. 523GO. y = 2{^^√3}'
5a^ 4α^62. a∕ = ÷ -g-,±α*j y* = -^,0. 63. aι = O, 2{a + b}∖ y = ^, 2ab.64. 4oicy = (l ~xyγ∙, this gives a quadratic in xy.

x — y c ay— c
a^^b(2h^-a^) ≡ a’‘0δ∙ -Ha'-t,'}

67. √=6*∣2≡√3)j y∙ = α∙(2=F√31.68. Add; thus x^(«—l)≡ + 2∕*(2∕-l∕ = α + δj alsoa:(x- 1) + y (2∕-l) =a,',
.∙. x{x-∖)-^^{a^J{2a + 2b-ayi∙, y{y-∖} = ^{a=ej(2a + 2b-ay^. 

x = (i, 2a∙, y = b,- b∙, z = c,—c.^.A 1 5 1 15 1 15^θ∙ ®~2’ 26^ 13^ "^“4’ 44'71. Three simple equations for finding ajy, yz., zx.

72. Three simple equations for finding —, —, —;* also X, y^ and « may each = 0.73. From the 1st and 2nd by subtraction x = y orx + y = «; then use the third to complete the solution. We shall obtain
X = y = ÷ I {2c + α ± J{a^ + 4αc — 4c®)}^,2 = {2c — α =F J{a^ + 4αc — 4c®)} ÷ 4a;;or X 2J2 = √(a + c) + √(5c- ^a}, y 2^2 = J{a +c}-J{5c-3a}, ^√2=√(α + c).74. Form a quadratic in z∙, then 2 = 6 or — ; with the first value

355 190we get a; = 4 and y = 5; with the second x = , y = .. . 1 7 , x + y 7
75. By eliminating z we get ÷~ = 2 ~ 2 ’

f 1 ∖ ” 1.’. (x+ 2/) ( 1------)= --- ------- , «fee. 2, 1, I are the values of∖ ^y∕
X, y^^', which values may be arranged in 6 ways.
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524 ANSWERS. XXI∏. XXIV. XXV.76. Form a quadratic in x + which gives 9 for one value, this leads to a cubic in £cy, of which the roots may be seen to be 6, 8, 12; hence for the values of x, y, z we get 2, 3, 4, which may be arranged in 6 ways.77. We may deduce x^z = 0; thus one or more of the three x, y, zmust be zero. The results are 0, 0, 1, which may be ar­ranged in three ways. 78. x = ÷ ÷ + ό’ + c*}.

7∂. = or else 9a:®(a-aj)=α^ Similarly for the other quantities,
oXXTV. 1.15 and 24. 2. 3.4.5; that is, 60. 3.120and 121 yards. 4. Five miles per hour. 5. 66 on one side, 22 on the other. 6. 28 acres. 7. 14. 8. ^(1 +,^/5) isthe produced part; a being the given line. 9. 50 and 15.10. 18. 11. Ninepence. 12. 30 Austrian; 36 Bavarian.13. 5 and 4. 14. The first worked 24 days at 4s. per day;the second 18 days at 3s. per day. 15. 15 persons; each spent 5 shillings. 16. 100 shares at £15 each. 17. a;® + a;® = 9(a:+1); .∙. a:’ = 9 ; the number is 3. 18. 7 per cent, and 6 per cent.719. Rate of train is that of coach. 20. Λ 40 hours; H 60 hours.21. 70 miles. 22. 150 miles. 23. 5 hours and 3 hours.24. 15 hours and 10 hours. 25. 36 workmen, and each carried 77 lbs. at a time; or 28 workmen, and each carried 45 lbs. at a time.„„„ , , r, mi ∙ αδc(3αδc-a®—XXV. 1. 1. 2. The expression = „ ι~wo7⅛----- U7Γ2^^¼∖ 5(2a® + hc){2h^ + + αά)then see Art. 70. 6. 1 + x^ + ic^ — x*. 7. {,y(α + 5) + J{a - 5)}.

+ + + 9. ic=10. 13. £30.14.2.5.9. 16. aj=0or⅞. 17. x= 1 ± √2 or 1 ± √(-1).. 18. £c = l, 2, 3, or i{-ll÷√(-23)}. 19. x = 3±√5 or 1 ÷√5.20. ,y(2x-l)-,y(5a:—4) = √(4ic-3)-,^(3ic-2); then square; £c=l.
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ANSWERS. XXV. XXVI. XXVII. XXVIII. 52521. 03 —α + 4c^(o3-α) +4c’ = O3 + a —4δ^(θ3 + α) + 4δ’; then extractthe square root; 03 = (c ± ό)’ + ρ ■
t ∖ Λ∙ -Λ Λ U ∖ I Λ 4<l7l(l-22. nx=n[x +a —a); divide by √(x + α} - ; 03 = 0, —ϊ a ∙23. ≈ = α, -^(a + b}-, y^b, r^(a + b). 24. x=^, y-- ∣̂,∙25. x = 3 or y=2 or —“.

t) 026. 2x = α + c-δ±^(a’+ δ’+ c’-2δc-2cα-2αδ); x->ry = c.Also x = J(αc), y=zj(^bc}. 21. x = 2, 1∙
o28. Add the four equations; thus we get(-υ + X + y + = 4 {a, + b + c∖and from this result and the first given equation(v + 03 — 2/ — 2;)^ = 8α;213 = ÷ J{a + δ + c) ± ∖∕(2α) ± ∣J{^2∣b') ∖∕{2c).XXVI. 1. 4 : 9; 10 : 12. 2. 7 : 15. 3. 18 and 27.

5. Short road from Λ to B is 26 miles; from .5 to (7 52 miles.
, 2abc6. Either xα = yb = zc = -.--------------τ ;

be + ca + abor else αα + yδ + x:c = 0 and x + y + z = - 1.XXVIL 1. 3. 2. 6400. 3. 51. i. ‘ θ' .ay9. Suppose α<Z = δβ; then2 /2 ∖ Ί f (α-δ)(α-c)a + d — (J) -∖- c) = a — b — [c — = --------.10. In the first the wine is ⅜ of the whole; in the second ∣.11. A has £72 and B has £96; each stakes τ¾- of his money.12. Female criminals ⅜ of the male.XXVIΠ. 1. 4. 2. a = 5b. 3. 4. 4. 1. 6. ∣. 1. 10.8. 27a:’= 4/. 2. y = 2x + ^. 10. 16. 13. 10. 14. (r≡ + √≡)⅛.
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52β ANSWERS. XXVIΠ. XXIX. XXX.15. We have y-∖∙z-x = Λ, (x + y — z)(x + z — y)=Jiyz; thus x*-{y-«)’ = Byz, therefore a;* - (y + z'f = {B-i') yz,
.∖ {x-y-z}{x + y + z} = {B- i}yz, ov-A{x + y+ z}^{B-i')yz.16. 2(n-l) hours. 18. 4 hours.XXIX. 1. 450, 1214 product 613260. 2. 321420111.3. 15il. 4. 209. 5. 1105i. 6. 624. 7. 2223.8. 1022634. 9. 17∙6., 10. 1341∙111. 11. 3015333.12. 1099∙39. 13. 124∙96. 14. 75346∙1. 15. 1589∙349609375.16. 588; 1114. 17. 22441; 20846i. 18. 152. 19. 11111.20. 44’4, in scale 3 it is 1001∙2. 21. 62444261, sq. root is 7071.

120 1 222. 1101111. 23. . 24. -. 25. ∙02, that is, ⅛-.222 4 12“26. Eight. 27. Six. 28. Eleven. 29. Five. 30. Six.31. Five. 35. 2‘“ + 2≡ + 2’+ 2≡ + 2^ +2“ + 2 + 1.36. 3”+3®+3*-3’+1. 37. 3≡-3*-3-l. 38. 3≡-3≡-3≡-3 + l.39. Three feet eleven inches. 40. Twenty-three inches and a third.43. r" — 1 and r"~*; r being the radix and n the given number.XXX. 1. 800. 2. 4. 3. -333. 4. -26∣. 5. -2.6. 61∣. 7. 5. 8. 425. 9. 0. 10. w(8+n).11. ~n(13-w). 12. Common difference — 3. 13. 9.
12t14. 4 or —11. 15. 2n — 1. 16. Number of terms is 10 or12; last term 3 or — 1. 17. Common difference 7.18. The number of terms is w + n—1 or mΛ-n∙, in the former case the last term is 1; in the latter case it is zero.20. n∖ J{2 + 4(n-l)} orn(2w-l). 21. 1111. 22. 20.23. ⅜ (n- 1) n (2n- 1) yards. 24. 1, 1334. 25. Niuemeans, 3, 5, 7, .......... 19. 26. Number of terms 19 or — 2.27. 5 or-10. 28. 4 or 7. 31. 4 or 9. 32. p + q-^{nι-l}2q.36. 5, 9, 13, 17, 21, 25. 37. 17. 38. 100 or - 10739. Number of terms 7; middle term 11. 41. 42. —n(- 1)".43. i{l-(2n+l)(-l)"}. 46. 9. 47. ⅛n(n +l)(n + 2).

I
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ANSWERS. XXX. XXXI. XXXII. 52750. J(19-η). ®1· ⅛> ⅛' ⅞. ⅛∙ «2· 25 months,
pecks, calculated to last weeka

2 254. hours. 55. 432 guineas.Τ' + 1χχχι∙ '∙ ⅛{(D-4 2∙-∣i≡"-ι>∙ ≡∙’{’-(!)'}· ^∙∣H)}∙ ^∙⅛∙ θ∙S∙ ^∙l∙ ≡∙≡∙9. 10. 9. 11. 10. 12. 1. 13. 4 + 3√2.., . 4 ,^1 -_1 2o f2 3∖3· 3’ θ∙ 6’ ^'’24 (5·^ 57'18—21. See Art. 473. 19. 4 -(n + 2) 2-*÷∖20. 6-(2n + 3)2~"÷∖ 21. 1.^2 + (-1)-’θ"ιr j.23. 81. 24. £108, £144, £192, £256.25. -J—■, {α^"(-1)"-1}. 28. £3. 4s. 32. Common ratio —?— .α +1 jυ + l' «« αr(r"-1) na ^,α ∏ «.pi·.33. -7-^^—TTo-'------- τ ∙ 38. r = 2, α = 3 ; r IS found by an(r-l)≡ r-l,. τ^(4√-l) 50„^„ ,, 57zeasy cubic. 39. ——5---- '-. 40. ^ (10 -1)—ol 9
25 15 9 342. 2,4,8,12; or∣∙ 43. 2,5,8.CT(l-6r+¾r=^)'*''∙ (l-r)(l-0r)'XXXII. 1. A ⅛. 2.1,1.1................................. 3. Letpdenote it, then - = - + (n — 1) fl — 1∖ . 4. .

' p a '∖b aj pQ-qP6. The common difference in the arithmetical progression formed2by the reciprocals is-----1 . 8. 2 and 4. 11. 2, 3, G.
www.rcin.org.pl



528 ANSWERS. XXX11. ΧΧΧίΙΙ. XXXIV.2 112. The terms are γ-j and „ ; then the series can be continued. i√5 o11. We may shew that Λ = and G' = , and as A and
2a-b 2a-b

C are known, we can find the two quantities. 19. α^ + αδ,
— b'^, — ab.XXXIΠ. 1. 1311∙1323. 7. 36 miles. 8. 61 gallons.9. .l£100; ^.£80.XXXIV. 1. 1120. 2. 453600. 3. 454053600.

A . . p L^θ 20.19 19.18L2U[5 1.2 ' 1.2195 195 160 158 ι Q __ L _ 10 9r 11
L^L^’ ιi2L^' [121^48' 212. Su}>pose one person to remain fixed, and all possible permu­tations formed of the other n — 1 persons. This gives [n — 1 as the number of ways. But this counts as difiereut ways a pair of ctises in which each person has the same neighbours, but the right-hand neighbour of one case becomes the left-hand neigh­bour of the other, and vice versa. If such a pair of cases is counted as only one case, we must divide our former result by 2. For example, if there are three persons, there is only one way of arranging them, in the latter view. 13. [9, [10 —[9.,, 12.11.10 16.15.14.13 , ,, . ,14. ---- —---- ×-------- j-ξ------- . 15. li there is only one thing,it may be given away in n ways; then as a second thing may be given away in n ways, there are w® ways of giving away two things; and so on. 16. n = 2r + 1; r = 8.17. ;—;-------- × -i—i------- × I s + r. Or if the m things are exactly[r[τn-r [s[a⅛-s ι-----  ®Ti 11 n. xr∙ ■, o + 1) + 2)alike, and also the n things, 18. —------- -,

IzL· L?20. 4080. 21. 86400. 22. [5 × [3; if the threeletters are to retain an invariable order, the answer is [5.
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ANSWERS. 3ζXXIV. XXXV. 52924. 90. 25. 36. 26. 3 × [4 × [4. 27. η··.

(⅛∙ 2≡'∙ '≡θ∙ ∞∙ ⅛-⅛⅛^÷l∙

g,. «(«-p(n-2)_p(p-p(p-2)_ 32. Increase th.U LΞ 124 preceding result by unity. 34. j∣3jτj^^∣5∙ 35. [7; ifhowever each set may be in order, either from left to right, or from right to left, the answer is 8 × [7. 36. I. 8.7.6.5 caseswithout repetition. II. × != cases in which a occui-s twice; also as many in which i occurs twice; and as many in which n 14 .occurs twice. III. —. cases in which a and ⅛ each occur twice; Lf Lfalso as many in which i and w each occur twice; and as many in which a and n each occur twice. Total 2454.38. [4x11111 X 15.
XXXV. 1. 2.1 ∙ 1 ∙

5. 625 - 2000a: + 2100a;·- 1280a;"+ 256x*.
e. °∙y∕∙°3⅛u∙,∙.∖A - L?≡∙ 1^»·»·· ’«· ⅛('*'≈*+≈'≈≈')∙

11. 64α≡-96√ + 36α≡-2. 12. 10c’.14. This follows directly; or thus, (1 + «)"*’(1 -α)=(l +ic)"(l-x*).

12w+l16. From 2nd to 5th terms of (3+2)*. 18. —- ^- —1)"^∖' ' In—rln+r+1 ' '
τ. A. 34
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530 ANSλVERS. XΛXV. XXXVI.ί 2n+ 1 (- iy-* [2n + 1 (- 1/”■ ^~171l∣2n-r÷2~' ~∣r-the middle(-l)"[2n+l^terms are ------ ;---- τ;— I « — ∙[n I i⅛ + 1 ∖ x)20. (x®+α≡)"= {x + α √(-1)}" {«-α √(-1)}”
= + s∕{-1)} √(-l)} = + B∖

XXXVL 13.(»-l) (2n-l)(3n-l)..........j(r-1) 1)^,^w’· [r13 _ ..........{(r-l>p-ι⅜[r1.3.5 (2.-1)[τ2" ' ’ [r3'18. 7,9.11. ...(2r÷5)^, 1^.9........... (4r-3)[r Γ[r
21. 2nd and 3rd terms γ ×∣=^. 28. 3rd term = =i >> o 1.2 5 2529. 5thand6th terms = —flY=l^ni∙∣4 ∖7∕ 240130. 3rd term = (/2)’terms are the greatest; if w = 2 the 2nd term is the greatest; and for all other values of n the first term is the greatest.32. 33. Sixth term. 36. (2n* + 4n + 3).
37. Coefi5cient of x^' is -' ' coefficient of a;’'** is2 α [robtained by dividing this expression by a.

M. (l~ly,tUti3,J2, 0.
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ANSWERS. XXXVIΓ. 531XXXVII. 1. 6. 2. + 20a^a^a^^+5a,*.3. 3" + 2≡.3≡+2^3 + 2≡. 3≡=1905. 4. 3.5. -2≡3^5 + 2≡. 3≡.5-2≡5.fl 2 2’ 2’ 2* 1
θ∙ ι-ιUi4'"L]W"i⅛^BΕ''LH31i*W'
1. 2.5^-2∖3.5∖7+ 2*.5.7∖ 8. -64. 9. -20.lθ∙ -y-T- 8 =-γ∙ ^4∙ 12. 6 + 15 + -g -3.

f3.7 7.11.19∖ 1 14 κΛ 1 ft- w*+θϊϊθ—13n^+6w
16. The expression is {(1 + a;) (1 — Hence the requiredcoefficient is7.6.5.4 7.6.5 7.6 14.15 7 14.15.16 14.15.16.17ΙΪ L? '∙^^^1.2' 1.2 ^*^1' [3 ■*■ ∣4 '17. r+l., o iz(n-l)(n-2)(w-3), w(n-l)...(n-4) n(n-l)...(w-5)-----------[4 La-'L·’ ■■ 14 [2— ^n(,,-iμ.(n-6)^.3^⅛^) (^-7) ]j∙ θ

23. —ΓT^~—— -l· 7fi (m - 1) + nw^. 24. 20.
∣225. -210. 26. 1260. 27. 12600.no π n-1/1 ∖ „-3 ∕r ∖z w(n-l)(n-2) ,,28. α+nα (δ+c)+--α ’(δ + c) H------ -a!^ (δ+c) .29. υ , , , ,γ. 30.

36, May be proved by Induction. 37. For the firstpart put aj= 1. For the second part, let >S' denote the series, so that <S'= ¢1, + 2a^ + 3tx, + ...
34—a
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532 ANSWERS. XXXVII. XXXVIII. XXXIX.and as the coefficients of terms equidistant from the begin­ning and the end are equal, by Ex. 36,♦ S = + +...+ wrαθ.Then, by addition,
2∕S=nr {a^ + ... + =nr (r+ 1)".38. (1 + a? + a:’)" =

a^ + a^x+ + + ... + + a,„_,a;’""’ + a,„a:^;change the sign of x, and, since the coefficients of terms equi­distant from the beginning and the end are equal, we have(1—ic + icΥ = α —a ,ic + α. ...Multiply together, and select the coefficient of x^”; this will therefore be equal to the coefficient of x‘‘" in(1 + £B + ic^)"(l — a: + a;’)", that is, in (1 + x^ + x*}”. XXXVIII. I. 4. 2. 2. 3. 1; - I. 4. 5.
5. 3;-2. 6. *698970-2; *732393. 7. *778151-3.10. ∣{log 10 — 3 log 2}. 15. 20. 20. About 125 years.XXXIX. 1. This is an example of equation (1), Art. 545, 

m = (x+ 1) {x- 1) and n = x?.2. log {x + 2h') X — log (x + 1if = log 1 ~ + /
5. log (3 + 3a; + a:’) a; - 3 log (1 + a;) = log ^1 - *6. We have to find a series for⅛ <≈ + ’“8 ÷ ⅛-≡l '“8 (≈≈ - ^)∙that is. for log (1 +1) + log (1 -1),

that is, for log (1 -⅛) +θ∙ .... )∙
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ANSWERS. XL. XLI. XLII. XLIII. 533XL. 1. Divergent if α> 1, convergent if α< 1. If α = l we may suppose m = np', then compare with γ + -∣∙ + +..........and wesee it is divergent. 2. Series = - f------------ +----- a— <fec.l,'≡ α(aja3 + αaj + 2α Jconvergent. 3. Divergent if x > 1, convergent if x<l. Ifa;=l the general term is f which >~> and series is divergent.4. Convergent if a> 1; divergent if α< 1. If α = 1 the series is obviously divergent. 5. Divergent if x> 1, convergent if £c < 1. If £c = 1 the series is obviously divergent. 6. Same result as Ex. 5.
7. Series > 1 + . + v~w + √ ;, &c., and .∙. divergent.1+2 1+3 1+4 ®8. Divergent if a3>l, convergent if ic<l; if £C = 1, obviously di­vergent. 10. Divergent if a;> 1, convergent ific<lj if ic=lit is a series discussed in the text.

XLT. 2. £900. 3∙6. Between 48 and 49. 7. Nearly 32.XLII. 1. 7 years. 2. 120 days., x y 2: Ilιθ given sum r. τ-< . n~= = ∙ 8∙ *'≈θ "*cients of in (1 + ic)" = (1+ x}^ (1 + χ)"“ί 9. Equate thecoefficients of x" in (1 + x)" = (1 + {x + 1)*"^'.XLIII. 1. <£24. 10s. 2. Cent, per cent. 3. 4 per cent.4. £6400. 5. 3^. 6. £7297-98. 7. £225i^^V.log 15—log 2 ...
8. -5-—i---- -  = a little more than 9.log 5 — log 4yj 19. -ϊς—i∙vι------1 where Λ is the first payment: τn must be less72''~* R-m^ ’than 7?. 10. e~*. 11. P . 12. P(l-r)".13. A × 2-617238.
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534 ANSWEKS. XLIV. XLV.XLIV. 1. 1 + lljLJ. 2. -L - ί—.3 + 5+ / + 9 i + 2 + 1+1+1 + 551111111^2 + 4 + 3 + 2 + 1 + 2 + 170 ’∖^*^4+ 1 + 1 + 1 + 2 + 3 + 1 + 3’3 22 355 Γ 1 2 θϊ’ ^1' 113' θ∙ 4’ 29’ 33’ 16T’...........VTV 1 £ P 9 IP? A A P P 4 33 ^ 2m1’ 1’ 3 ’ 4 ■ ^'1’ 8 ’ 65 ’ 528 ’
1’ 2’ 3 ’ 11’ 1’ 10’ 101’ Γθ⅞∙5 26 1351 8 £ I P PΪ’ IT’ w 1’ 1’ T’ y7 22 W 202 iθp δθS01Ϊ’ T’ T’ y 1 ’ 20 ’ 40f’ ^8040∙Illa 2a® + 1 4αθ + 3a 8a^ + 8a® + 1 ^y+···!’ yy’ 4^ΤΓ’ ~8α≡ + 4α ’1 1 1 1 α-l α 2α≡-α-l 2α≡-lK. "-l + f7 2(α-l)+ y 2(α-l)+ 1’ 2α-l ’1111 a 2α + l 4α’ + 3α 8α≡+8α + l®^2+2iΓ+2+2a··· 1’ 2 ’ 4a+f’ 8α + 4 ‘V 1 . 2+ 2(α-l)+ 2+ 2(α-l)+'"α — 1 2α — 1 4α’ — 5α + 1 8a’ — 8α + 1~r~’ “2~’ iα'-3 ’ 8α-4 '_ 256 _ 1520 1 ,1■ 71 ’ '273 ' (44)’ 2(49)’·2θ∙ (240)’ 2(2111)’· 2^∙ (Tiy Γ(1W06 A ≡ 98 PA*^ 2’ 7’ 30’ 97 ' 396 ' 80 ’29 PA ZQ Pi 31360 ’ 360 ■ ^ · 41 · ^1∙ ΪΓ4 ’
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ANSWERS. XLλ∖ XLVI. 53533. Positive root of ic’ + 2x — 2 = 0.34. That of 7√-8x-3 = 0. ∙ 35. That of 7x* + 8x- 3 = 0.36. Thatof 59«’-319x +431 = 0.
XLVI. 1. x=2, y=l. 2. x = i, y= 5.3. £c = 1 or 6, y = 20 or 1. 4. y = 1 + 7i, « = 41 - 10<.5. x = 25-'tt, y = 25 + 3<. 6. aj=90-19i, y = 13i.7. «=8, y=3. 9∣. x = 7, y = b. 9. «=11, y=18.10. x = Z7, y=13. 11. 4 or 5. 12. 19 or 20.13. 4, or 5. 14. 16. 15. 2. 16. 5.17. 3 guineas, 21 half-crowns. 18. 3 sovereigns, 20 francs.19. 185, 15; 119, 81; 53, 147. 20. 28 crowns, 20 half-crowns.21. when n is even, the common difference is 2; when n is odd, the common difference may be 1 or 2. 22. 245.23. 104 + 3.5.7.i. 24. 97. 25. Ascribe to y succes­sively the values 1, 2,...8; and in each case find the correspond­ing values of « and s. 26. «=1+3ί, y = 51-7<, 2! = 03 + 13t 27. allowing a zero, there are 15 solutions; excluding it, there are 14. The solutions are found from 100 — t half-crowns, 6i shillings, and 100— It sixpences. 28. allowing zeros,4 solutions; excluding them, 2. The solutions are found from 4 — t guineas, 5i crowns, and 12 — 4< shillings. 29. 6 crowns, 4 half-crowns, 2 florins. 30. allowing zeros, £,2. 1 Is. 6<∕.;excluding them, £2. 15s. 31. 100. 32. 205, 502.33. 974. 34. 5567. 35. 80 ducks, 19 oxen,1 sheep; or 100 sheep. 36. -∣∣.49, 43, 38. 38. The 107“* and 104“* divisionsreckoned from either of the common ends.39. We must solve 5« + 4y + 3« = 20: the accompanying table   exhibits the solutions of this « I 0 0 j 1 1 I 2 4___________ equation. Then we can use

ΞZ∣Z» I 4 0 I 5 1 2 i 0 θr (3), (4), (4).(1) (2) (4) (5) (6)
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536 ANSWERS. XLVII. XLVIII. XLIX. L.XLVII. 1. x=2, x=Z, y=∖.2. ic=4, 2/ = 21; a; = 5, y = 1. 3. ic=18, y = b.4. aj=10, 2/= 1∙ 2θθ∙ θ∙ 1684 square yards.7. 10 and 7. 9. a3 = 0, y = 3; ic=2, 2∕=1∙10. ic = l, y = 3; x = 53, y=15.XLVm. 1. j(⅜)'∙ . 2. {3(-ΐ)·-|;.}^·.
5. (n+l)a!". 6. {Ιn+5}{3xγ. 7. (w + l)≡iκ".8. l + £c — x^-x*.......... 9. 1 + 2a: +ec’ —4ic® —Ila;*..........1 a; 3√ a;® 7a:* 1 a? a:^ a;*'θ∙ 2÷2÷ΙΓ ÷2 +^Γ.......... "∙α∙-o≡÷√-≈'..........12. l+px+p{p-l}x’‘+{p^-2p^+l)x’‘+p(p^-^p^+p + 2)x^..........

13. 2 /α-l∖l+a3 l+a x∕1 / 1_________ 1______L_ A(1—a/V+a; 1 + aa; 1 + α"aj 1 + α"*"*a)∕ lδ. α = l, δ=ll, c=ll, <7=1, e = 0.4- 11j∙ XLIX. 1. ----- ------ general term (3a;)" + 3 {‘̂ ,χ'}".X ““ uX τ∙ ∖)X1. Λi2∙ 1- 10a; + 21a;* general term 2 {lx}” - (3x)".1 — 2a∙I - 5a;'+ 4~? ⅛ ÷ 2≡"÷>".4. a; less than 5. 2"~'(5n+6). 6. 3"-n—1.64 54 _ 2 + 5cι + 5λ^ / ι∖∏ ∏∕ 2 0 o∖7∙ y-gr; 47. 8. -(17^; (-∖γo,'(n'-2n^2),

L. 3. 1-,—; 1.1 +7tII 1 3 . 11■ 96 2(n + 2)(ii + 3) 4(n + 1) (w + 2) (zi + 3) (n+4)96*
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ANSWERS. L. LI. 5371/1 1 1 J_________1________ ∖ 11
3V'*'2'^3 n+1 to + 2 n+3j' 18’1 ).1 37¾ + 5 58(4 “27?m)(n + 2)j^ 32’ ’6 (τ⅛ + 2) (w + 3) 6 ’θ w(τi + l)(w+2) ,τ ic"{n(ic-l)-If + fl3"**-(a3+1)—6—’ *12. ^{ra + h')^~∖

, _ -r, ,, , £C f, ex C*X* - )13. Expand and we get ∣1 + + +..........j.14. δ√l +∞ + "⅛y a·-,..........

15. (1-∣) " = 2"(1-∣) "∙ 1S∙ lθ5. 19. 460.
22. Proceed thus; suppose(1 + xv) (1 + x*v) (1 + x⅜}..........(1 + x^v)= 1 + Λ^v + +............+-4p√',where .4^, ..........-4p do not contain v.
Now cJiMnge v into xv; thus we can infer that(1 + A^v + A^v^ +..........+ (1 += (1 + A^xv + A^x*v^ +..........+ Apθfυ^) (1 + xυ).Now equate the coefficients of the same powers of v on the two sides.25. } = τ---- ------⅛ ; thereforel+ic'* l-a; + x®(l + ic){l-aj≡+x"-x≡ +...........}1 x^ X* x^~ ^ ^^ (1 - a;)’ ^ (1 - a:)* ..........Expand each terra of the last line by the Binomial Theorem and then equate the coefficients of a:" on the two sides.LI. 8. 2ajθ is > or < a; + 1 according as a; is > or < 1.16. This dβ[)ends on the sign of (α — b)(b — c^) (c — a∖22 and 24 depend on Art. 676. 23. As many of the fol­lowing inequalities as may be required will be found to hold;
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538 ANSWERS. LI. L1I. LIII.2 (n — 1) > n, 3 {n-2')>n, .......... ; then by multiplication theresult is obtained, 25. may be deduced from Ex. 23.29. See Ex. 3 of Chap. xxv. 31. Multiply up; then useArt, 676, 32, Put 1— a = b, and expand (1 — δ)' by theBinomial Theorem; the series will be convergent. We shall then have to shew that
, (x-∖)b , (x≈-l)(,τ-2)δ"

IT" ΰand this is obvious, since ic is < 1,LIL 2, 66, 3, 3,5MP. 4. 2≡,3∖5i5, 2^(823)'', 12, suppose w to lie between ni® and (w + 1)*;then n — ab = m — nf. 19, n*- n + 1 is greater than(n- 1)’ and less than 20, Suppose, if possible, τ⅛θ+ 1 =m^ ■,then w’= (τre — 1) (w⅛ + 1), Now no factor, except 2, can divide both «i — 1 and tn + 1, and 2 cannot here divide them, for n is odd. Hence m — 1 and τn + 1 must both be perfect cubes; but this is impossible; for the difference of two cubes cannot be so small a.s 2. 35, 36, 37, 38. These all depend on Fermat’sTheorem. 43. 22680. 44. 2"÷*5'-*. 45. 12.46. 12. 47. 160 divisors. 48. 6. 51. (tι + 1)*.53 and 54 must be solved by trial; the answer to 53 is 2∖3*.5, and the answer to 54 is 2®. 3’. 5.7. 57. x= 2.5^ V.f,
y = 2.5.7 .t.

29LIΠ. 1. 27 to 8 against. 2. 4. 5. 1.6. '^∙ 8. 7 to 2. 10. J.’s chance of losing
18 3υis §, and of neither winning nor losing is ⅜; D’s chance of win­ning is f, and of neither winning nor losing is J; B and C have each the chance ⅜ of winning, 1 of losing, ∣ of neither. Or more simply, A’s chance of winning is ⅜, B's and C’s and 71’s ⅞, if 5 2we suppose that one of the boats must win. g ∙ J45 ∙_ 1 .. n 18586 3103114. 15. 2∙ 1C. 2.. 18. -(3^ ■ W∙ ∙

www.rcin.org.pl



ANSWERS. LUI. 539-111· «·>< -1-(3<24 _13·ϊί5_ 25 ι⅛∙-^ 27 , lθ∞δl× 50 x 49' 62.51.50.49' 5’ '≡θ∙IC-i^Γ÷{-(^7}∙32. The first; odds 10 to 9 in favour of it. 33. ⅛∙,, 10 35 3 1 fl23 IOLlj⅜≡*∙ 6'' 6·· ≡°' 10'"L9([U (4 ∫'“· ι-(s÷τ)"∙ ^∙≡ *2.θ'g.4 1 1 6 111 6 2/IV7 ^^7'2'2'3 Ή2Λ 45. The same result.46. ≡lfc. 47. ⅛. 48. 11 to 5.[n nIG 1649. 6: 51. . 53. Let Ji’s chance of winningG 35a single game be x, and 7?’s chance 1 — x; then √4's chance iZ∕^ (2 — ζcj 9of winning the set is 2----------- 2· T7 ∙° 1 —a; + a; 1655. P,+P,+P^-P,P2-P2P3-P3PΛP,P2P3i Ρ,Ρ^-^Ρ^Ρ^+ΡζΡχ-"^PxPiPz·30 3157. (∙55y. 58. 2j√ and -—. 59. 21 shillings.' 61 6160. 42 shillings. 61. ^400. 62. 35s. 8d. 63. ^10.64. A∙florin. 65. 3 florins, 1 sovereign. 66. 2 to 1;p , 1,1 p- 2r + l 3zi(n+l)⅜ of what each stakes. 67. —x— ∙ 68. -r-tγ------ .3 2(2n + l)69. 33333 shillings. 70. -n shillings. 71. 2?-. 72. i.
a 11 2-Q 2 3 1265 5087 _ ,910n(n+l)' 5' 1286 ’ 5144' 'θ∙'^46'77. ∣. 80. ⅛. 81.3 e)0 ((Xf -{- cJ {b ∙^-
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540 ANSWERS. LIV. LV.LIV. 1. √(1-√) = -l±√3. 2. Substitute for a;*from the first equation, in the second; thus we shall obtain either y* = bn or 4. Square; and put the equation inthe form (x’ — 4®)*= 24 (® — 1)’. 5. c = 110.6. Multiply up in the given relation.
f(jr+TO)* (y-n)η-i“1 4JV'" ^ 4J∖^≡ j '9. Equate the coefficient of x" in the expansion of ————j—,l-≈+ 71---(l+m) and in the expansion of the partial fractions into which this expression may be decomposed.LV. 1. {√(w*+w≡)√(α≡+δ≡)-nα}i 2. 1 + + .3. The radix is 8. 5. 5. 6. ® = 26i; y = 495-21i.

8. (1 — x^f + x^ (1 — χ'f is always positive.12. — logn = logi.∣∙.∣..........ι^θgi''Γd thegeneral term of the series as i + log ^1 — ; and by expanding
log ^1 — the general term is found to be numerically less than — i . Then see Art. 562. 14. If he draws again from

nthe same bag, his chance of getting a sovereign is and his chance of getting a shilling is ®; thus his expectation is shil­lings. If he draws from the other bag, his chance of getting a sovereign is ∣, and his chance of getting a shilling is ≡; thus
www.rcin.org.pl



ANSWERS. LV. LVI. 541

his expectation is y shillings. 16.
* n (λ — 1)where Λ is the amount of one pound in one year.LVI. 2. ab + be + co, + 2abc = 1.3. (α^ + δ® + = —S(ab + be Λ- caf.4. α≡ + δ≡ + c≡-αδc = 4.5. a^b'^c∖a^ + b^ + c^ + 2abc} = a^bW6. (tc^ + = z^.

1. 5 (a^ - b^} {2a^ + b^) = 9α - c≡). g ®c\ ⅜ ~ I
' ∖ ac J ∖ ac J '9. α∕3 = l+γ. 10. (α-δ)≡(α≡ + δ*) = α≡δ'.11. (α+ /3)^ +(a-)8)^ = 2.13. a: (y® -z^ + 2y + 4« (a®— y^} = 0.14. (α + δ)^-(α-δ)^ = (8c)l 16. 399.11. This problem can be solved by the aid of the principles I. and II. of Art. 762. Let be the probability of a single event with three cards of a selected suit; let be the probability of a selected pair of events; let be the probability of a selected triad of events; and so on. Then7> = w ∙ P-∞⅛=-Dn ∙ p..m∙{m-l){m-ι} .■^1 "Ψ∖> ~ 2 /'a i P3i..........We have now to find p^, p^, p^,..........Imagine three cards fastened together, so as to form one card; we should then have mn — 2 cards instead of mn. The number of favourable cases would be ∖mn — 2, and the whole number ofI mn — 2cases I mn ; this would give a chance denoted by — ■■ ■— : and toI----  ∙' [z∕mobtain ∕)j we must multiply this result by [3, for the cards imagined to be fastened together could be permuted among them- θselves in 13 ways. Thus υ =----- -,--------rr ∙

∙' mn{mn-V)
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542 ANSWERS. LVI.6’ I mn — 4Similarly = — : and so on. Hence, finally, the re-∙'quired chance is ^θ7n(τn-l)(m-2) 
___  (jm 2 [3 
inn (rnn — 1) win ... (^∩ιn — 3) ..........(mn —5)Im + w18. ⅛=≈.

. X x^19. The expression . —- ------ 5 + ------- ... becomes byexpansion
x + x^ + x^ + x'’ +®®+ ...

+ √ + x'® + + χ≡* + + .,,...
Then, by adding the vertical columns, we obtain

X x^ os’ΐ + a;* 1 + a;® 1 + a:’” ..........20. Let ≈ = (l-i≈) (1 -a;’)(l-a;’)..., ^ = (1 +≈)(l+α≡)(l +√)..., γ = (l-χ≡)(l-√) (1-a:®)..., 8=(l+a:’)(l+^)(l+a:®)...;then α^ = (l-aj≡)(l-χ≡) (l.√θ),,,, γδ = (1_α;*)(1-χ«)(1-χ>»)...;thus aβy8 '=y') therefore aβ8 = 1, and therefore i = β8. α
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This Series of Cambridge Class-Books foe the Use of 
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during the last ten years, is intended to embrace all branches 
of Education, from the most elementary to the most advanced, 
and to keep pace with the latest discoveries in Science.

Of those hitherto published the sale of many thousands is a 
sufficient indication of the manner in which they have been 
appreciated by the public,
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CAMBRIDGE CLASS BOOKS
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SCHOOLS AND COLLEGES.

WORKS by the Rev. BARNARD SMITH, M.A.
Fellow of St. Peter’s College Cambridge.

Arithmetic & Algebra 2. ArithmeticIn, . . . , , . ,. For the Use of Schools.In their Principles and Application.. (18θ2) 348 pp.
With numerous Examples., systemat- Crown 8vo. strongly bound in cloth, 

ically arranged. 4s. f>d. hxx&yirexi to all the Ques­tions.Eighth Edit. 696 pp. (1861). Cr. 8vo. 3. to the above, contain-strongly bound in cloth. 10». 6^. g^j^^ions to aU the Questions
The first edition of this work was pubUshed Edition Crown 8vo.

in 1854. It was primarUy intended for Cloth. <592 pp. Second Edit. 8s. M.
the use of students at the Universities, τθ meet a widely expressed wish, the
and for 8ch∞ls which prepare for the ARITHMETIC was published separately 
Universities. It has however been found from the larger work in 1854, with so 
to meet the requirements of a much much alteration as was necessary to make 
larger class, and is now extensively used it quite independent of the ALGEBRA. It 
in Schools and Colleges both at home and has now a large and increasing sale in all 
in the Colonies. It has also been found classes of Schools at home and in the Colo- 
of great service for students preparing ∏ies. A very copious collection of Ex- 
for the Middle-Class and Civil and amples, under each rule, has been em- Militaby Service Examinations, from bodied in the work in a systematic order, 
the care that has been taken to elucidate and* a Collection of Miscellaneous Papers 
the principles of all the Rules. Testi- in all branches of Arithmetic have been 
mony of its excellence has been borne by appended to the book.
some of the highest practical and theo- . , .
retical authorities; of which the follow- 4. EXΘΓClSeS ID. Arit∏- 
ing from the late DEAN PEACOCK may metic. 104 pp. Cr. 8vθ. (1860) 2s. Or with Answers, 2s. 6λ.
“Mr·.Smithes Work is a most useful Also sold separately in 2 Parts

publication. The Rules are stated with , a t, ο™-;;» cj
great clearness. The Examples are well θaen. Answers, o«.
selected and worked out with just sufli- The EXERCISES have been published 
cient detail without being encumbered by in order to give the pupil examples of 
too minute explanations; and there pre- every rule in Arithmetic, and a great 
vails throughout it that just proportion of number have been carefully compiled 
theory and practice, which is the crown- from the latest University and School 
ing excellence of an elementary work.” Examination Papers.
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4 'CAMBRIDGE CLASS BOOKSWORKS by ISAAC TODHUNTEB, M.A. Γ,R.S.
Fellow and Principal Mathematical Lecturer of St. John’s College, Cambridge.1. Algebra. 3. Trigonometry.

For the Use of Colleges and Schools. For the Use of Colleges and Schools.Third Edition. 542 pp. (1862). . Jpp Crown 8vo (1859)Strongly bound in cloth. Is. Gd. Strongly bound in cloth. 4,.
This work is constructed on the same 

This work contains all the propositions plan as the Treatise on Plane Trigono- 
which are usually included in elementary metry, to which it is intended as a sequel, 
treatises on Algebra, and a large number Considerable labour has been expended 
of Examples for Exercise. The author on the text in order to render it compre- 
has sought to render the work easily in- hensive and accurate, and the Examples, 
telligible to students without impairing the which have been chiefly selected from Uni- 
accuracy of the demonstrations, or con- vβrsity and College Papers, have all been 
tracting the limits of the subject. The carefully verified.
Examples have been selected with a view 
to illustrate every part of;the subject, and Thβ Integral CalCUlUS 
as the number of them is about sixteen θ
Hundred and fifty, it is hoped they will its Applications.
supply ample exercise for the student.
Each set of Examples has been carefully With numerous Examples, 
arranged, commencing with very simple „ , -nj-i· o√.-ι ∕ιoz∙.ι∖
exercises, and proceeding gradually to beconu Edition. o42 pp. (loo2). 
those which are less obvious. Crown 8vo. cloth. 10s. Qd.

In writing the present Treatise on the 
Integral Calculus, the object has been to 

o 131...... Λ 4-produce a work at once elementary and.ώ. X ianθ JLngθnθmθιry complete—adapted for the use of beginners, 
and sufficient for the wants of advanced 

For Schools and Colleges. students. In the selection of the propo­
sitions, and in the mode of establishing 2nd Edit. 279 pp. (1860). Cm. 8vθ. them, the author has endeavoured to ex- Strongly bound in cloth. 5«. ≡* ≡ξ P≡<≈⅛lθs °f≡ ∙l the subject, and to illustrate all their most

The design of this work has been to ren- ⅛Pθrtant results. In order that the stu- 
der the subject intelligible to beginners, dent ≡y find in the volume aU that he 
and at the same time to afford the student reqmres, a large collection of Examples 
the opportunity of obtaining aU the infor- exercise has been appended to the 
mation which he will require on this branch different chapters.
of Mathematics. Each chapter is followed . ι.. leixx·
by a set of Examples; those which are 5. Analytical θtatlCS. 
entitled Miscellaneous Examples, together 
with a few in some of the other sets, may Irtth numerous Examples.
be advantageously reserved by the student __, oq∏ «... ∕icsq∖
for exercise after he has made some pro- Second Edition. 330 pp. (1858). 
gres8 in the subject. As the Text and Ex- Crown 8vo. cloth. 10,S'. &d. 
amples of the present work have been
tested by considerable experience in teach- In this work will be found all the pro- 
ing, the hope is entertained that they will positions which usually appear in treatises 
be suitable for imparting a sound and coni- on Theoretical Statics. To the difl'erent 
prehensive knowledge of Plane Trigo- chapters Examples are appended, which 
nometry, together with readiness in the have been selected principally from the 
application of this knowledge to the so- University and College Examination Pa- 
lution of problems. In the Second Edition pers; these will furnish ample exercise in 
the hints for the solution of the Examples the application of the principles of the 
have been considerably increased. subject.
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FOR SCHOOLS AND COLLEGES. 5

WORKS by ISAAC TODHUNTER, M.A., F.R.S continued.

AN ELEJIENTARY TREATISE ON THE
Differential Calculus, Equations.

JFtth numerozis Examples,Third Edition, 398 pp. (1860). Collection of Examples.Crown 8vo. cloth, 10s. 6<∕. Crown 8vo. cloth. Is. &d.
This work is intended to exhibit a com- This treatise contains all the proposi- 

prehensive new of the Differential Calcu- tions which are usually included in ele- 
lus on the method of Limits. In the more mentarj· treatises on the Theory of Equa- 
elementary portions, explanations have tions, together with a collection of Ex- 
been given in considerable detail, with amples for exercise. This work may in 
the hope that a reader who is without the fact be regarded as a sequel to that on 
assistance of a tutor may be enabled to ac- Algebra by the same writer, and accord- 
quire a competent acquaintance with the ingly the student has occasionally been 
subject. More than one investigation of referred to the treatise on Algebra for pre- 
a theorem has been frequently given, liminary in formation on some topics here 
because it is beUeved that the student de- discussed, 
rives advantage from viewing the same 
proposition under different aspects, and 
that in order to succeed in the examina- „ , » ., _
tions which he may have to undergo, he θ∙ HlStθΓy 01 the Progress 
should be prepared for a considerable va- ∩r -fchf»
riety in the order of arranging the several u u e
branches of the subject, and for a corres- 0alCUlUS Of VariatiθllS pondmg variety in the mode of demonstra- >*∙*-∙∙''***“■» ''∙*∙ ’

During the Nineteenth Century.

7. Plane Co-Ordinate Svo. doth. 532 pp. (i86i). i2λ

θeθmetrV importance that those who wish
" to cultivate any subject may be able to

AS APPLIED TO THE STRAIGHT LINE ascertain what results have already bien 
AND THE CONIC SECTIONS; θ'>⅛⅛ ∞d thus r^rve their strength

for difficulties which have not yet been 
With numerous Examples. conquered. The Author has endeavoured

rrv∙ 1 J PL 17 1 ∙i∙ in this work to ascertain distinctly whatihιrd and Cheaper Rdιtιon. has been effected in the Progress of the
0,.., λ1 QQβ fi0RQ∖ τ,. aei Calculus, and to form some estimate of Cm. 8vo.cL 326 pp. (1862). 7s. 6<f. the manner in which it has been effected.

This 7V∙eαfwe exhibits the subject in a 
simple manner for the benefit of beginners, 
and at the same time includes in one lθ. EXAMPLES OF
volume all that students usually require.
The Examples at the end of each chapter Analytical GβOΠlθtrV 
will, it is hoped, furnish sufficient exercise, " , . "
as they have been carefully selected with of Three Dimensions, 
the view of illustrating the most impor­tant points, and have been tested by re- 76 pp. (1858). Cm. 8vo. doth. 4«. 
peated experience with pupils. In con­
sequence of the demand for the work A collection of examples in illustration 
proving much greater than had been of Analytical Geometrj∙ of Three Dimen- 
ori^nally anticipated, a large number of i sions has long been required both by 
copies of the Third Edition has been ' students and teachers, and the present 
planted, and a considerable reduction 1 work is published with the view of sup- 
effected in the price. I plying the want.
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6 CAMBRIDGE CLASS BOOKS.
By J. H. PRATT, M.A. By GEORGE BOOLE, D.C.L.

Archdea∞n of Calcutta, late Fellow of Professor of Mathematics in the Queen’s 
Gonville and Caius College, Cambridge. University, Ireland.

A Treatise on Differential Equations 
Attractions, 468pp. (1859). Cm. 8vo. doth. 14».

r r>7 J τπ j τ’- ... The Author has endeavoured in this
La Places Functions, ana the Figure treatise to convey as complete an account 

of the Farth. of the present state of knowledge on theSecond Edition. Crown 8vo 126 pp. ≡!.‰°' ""“«“e(1861). doth. 6s. Od, tended, primarily, for elementary instruc-
In the present Treatise the author has tion. The object_has been first of all to 

endeavoured to supply the want of a work ∏jβ6t the wants of those who had no pre- 
on a subject δf great importance and high vious acquaintance with the subject, and 
interest—La Place’s Coefficients and Γunc- disappoint others who
tions and the calculation of the Figure of ntιigrht seek for more advanced mforma- 
the Earth by means of his remarkable ana- tion. The earlier secbons of each chapter 
lvsis. No student of the higher branches contam that kind of matter which has 
of Physical Astronomy should be ignorant usually been thought suitable for the 
of La Place’s analysis and its result—“a beginner, while the latter ones are devoted 
calculus,” says Airy, “the most singular either to an account of recent discovery, 
in its nature and the most powerful in its θj to the discussion of such deeper ques- 
application that has ever appeared.” tions of principle as are likely to present

themselves to the reflective student m con- 
* nection with the methods and processes

By G. B. AIRY, M.A. of his previous course.
Astronomer Royal. « ∙, ∙, n

1. Mathematical Tracts ,Thβ Cuculus of 
On the Lunar and Planetary Theories, Finite Differences.

Figure of the Earth, the Undulatory 248 pp. (1860). Crown 8vo. cloth. 
Theory of Optics, ^c. 10s. Qd.Fourth Edition. 400 pp. (1858). In this work particular attention has 8t7∏ 1 So been paid to the connexion of the methods

ovo. iOS. with those of the Differential Calculus—a
_ ml. n -Cl X» connexion which in some instances in-
∙Λ. XneOry OI Jc^rrors Ol volves far more than a merely formal

Γ⅛Kαckv∙τrQ∙f-iΛ∙nc analogy. The work is in some measureU DSerVailOnS designed as a seq^uel to the Author’s Trea-
A«d,ke CMn,,ion of 0b,er,M>n.. ““103 pp. (1861). Crown 8vo. 6s. &d.

In order to spare astronomers and ob- 
se^ers in natural philosophy the confusion ElθmeiltarV StatiCS.
and loss of tune which are produced by " J
referring to the ordinary treatises em- By the Bev, GEORGE RAWLINSON^

* Professor of Applied Sciences, Elphin- author has thought it desirable to draw stone Coll., Bombay,
up this work, relating only to Errors of . > j
Observation, and to the rules derivable Edited by the Rev. E. STURGES, M.A. 
from the consideration of these Errors, for Rector of Kencott, Oxfordshire, 
the Combination of the Results of Obser- /.-η ∖ i ocn n o ιvations. The Author has thus also the (15θ PP∙) θ™. 8vo. cl. 4s. ^d-
advantage of entering somewhat more This work is published under the au- 
fully into several points of interest to the thority of II. M. Secretary of State for 
observer, than can possibly be done in a India for use in the Government Schools 
General Theory of Probabiħties. and Colleges in India.
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FOR SCHOOLS AND COLLEGES. 7 *
By P. G. TAIT, M.A., and By Bev. S. PABKINSON, B.D.

JΓ. J. STEELE, B.A. Fellow and Praelector of St. John’s Coll.
Late Fellows of St. Peter’s Coll. Camb. Cambridge.

Dyn^ios of a Particle, j Elementary Treatise
TΓιtk numerous Examples,304 pp. (1856). Cr. 8vo. cl. 10s. Qd. MθchaillCS.

In this Treatise ti∙ill be found all the ffT-uh a Collection of Examples. 
ordinary propositions connected with the ∙'
Dynamics of Particles which can be con- ∙j><s ™ fιocι∖
veniently deduced without the use of Second Edition. 345 pp. (1861). 
D’Alembert’s Principles. Throughout the Crown 8vo. cloth. 9«. 6<Z.
book will be found a number of illus­
trative Examples introduced in the text, The Author has endeavoured to render 
and for the most part completely worked the present volume suitable as a Manual 
out; others, with occasional solutions or for the junior classes in Universities and 
hints to assist the student are appended to the higher classes in Schools. With this 
each Chapter. object there have been included in it those

—♦---- portions of theoretical Mechanics which
By tKe Bev. 0 F. CH1LT)E MA. conveniently investigated without

. , . . / , the Differential Calculus, and with one
Mathematical Professor in the South θj∙ gj^ort exceptions the student is not 

African College. presumed to require a knowledge of anyStiτ-ιo∙-∣ιΙc>τ∙ *Pτ∙rk-rkoτ∙f ιαα rx-P branches of Mathematics beyond the ele- Dinguiar irroperuies OI Algebra, Geometry, and Trigo-
the Ellipsoid nometrv. A collection of Problems ^d

∙*^ Examples has been added, chiefly taken
And Associated Surfaces of the Nth from the Senate-House and College Ex- 

Eegree amination Papers—which will, it is trusted,
" ' be found useful as an exercise for the stu-152 pp. (1861). 8vo. boards. 10s. 6d. dent. In the Second Edition several ad-

As the title of this volume indicates, 4itional propositions have been incorpo- 
its object is to develope peculiarities in ’’^ted m the work for the purpose of 
the Ellipsoid; and further, to establish it more complete, and the Col-
analogous properties in uklimited con- Problems has
generic series of which this remarkable largely increased, 
surface is a constituent.

By J. B. PΠEAB, M.A.
Fellow and late Mathematical Lecturer of 2. A Treatise on Optics 

Clare College.Elementary Hydrostatics 304 pp. (1859). Crown 8vo. 10s. 6<f.
With numerous Examples and A collection of Examples and Problems 

Solutions. has been appended to this work which
α__ ™ ∕ιoc>r> are sufficiently numerous and variedSecond Edition. 156 pp. (1857). J∩ character to afford an useful exercise Crown 8vo. cloth, os. Qd. for the student: for the greater part of 
“ An excellent Introductory Book. The them recourse has been had to the Ex­

definitions are very clear; the descriptions amination Papers set m the Umyersιty and 
and explanations are sufficiently full and ^be several Colleges dunng the last twenty 
intellifpble; the investigations are simple yθarβ. 
and scientific. The examples greatly en- Subjoined to the copious Table of Con- 
hance its value.”—English Journal of tents the author has ventured to indicate Education. an elementary course of reading not un-

This Edition contains 147 Examples, and suitable for the requirements of the First 
solutions to all these examples are given Three Days in the Cambridge Senate 
at the end of the book. House Examinations.
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8 CAMBRIDGE CLASS BOOKS.
By R. D. BEASLEY, M.A. By Q. ∏. BUCKLE, M.A.

Head Master of Grantham Sch∞l. Principal of Windermere College.

Plane Trigonometry. Conic Sections and 
AN ELEMENTARY TREATISE. Algobralc Goometry.

r, J, With numerous Easy Examples Pro-
Wvth a num^ous Colleetum of gressively arranged

Examples. s -ainc ∕ιom 1 1 j ∙ Second Edition. 264 pp. (18δ6).106 pp. (1858), strongly bound in Crown 8vo. 7« 6i∕.cloth. 3s. 6rf.
This hook has been written with special 

This Treatise is specially intended for reference to those difficulties and misap- 
use in Schools. The choice of matter has prehensions which commonly beset the 
been chiefly guided hy the requirements student when he commences. With this 
of the three days’ Examinhtion at Cam- object in view, the earlier part of the 
bridge, with the exception of proportional subject has been dwelt on at length, and 
parts in logarithms, which have been geometrical and numerical illustrations of 
omitted. Alwut four hundred Examples the analysis have been introduced. The 
have been added, mainly collected from Examples appended to each section are 
the Examination Papers of the last ten mostly of an elementary description. The 
years, and great pains have been taken work will, it is hoped, be found to con­
to exclude from the body of the work any tain all that is required by the upper 
which might dishearten a beginner by classes of schools and hy the generality 
their difficulty. of students at the Universities.

By EDWARD JOHN ROUTH, M.A.
By J, BROOK SMITH, M.A. Fellow and Assistant Tutor of St. Peter’s 
c. T K , n 11 r. κ a CoUege, Cambridge.St. John’s College, Cambridge.

A ∙χ‰ 4-∙ ∙ mv Dynamics of a SystemArithmetic in Theory *' _. .,
and Practice. Rigid Bodies.
„ , ., With numerous Examples.For Advanced Pupils.■D TP Q 1 ÷κ Q PP∙ (I860). Crown 8vo. cloth.

Part I. Crown 8vo. cloth. 3«. 6<f.
This work forms the first part of a Trea- _ r,v τ r,i ■». . ι∙

tise on Arithmetic, in which the Author . Contents : Chap. I. Of Moments of 
has endeavoured, from very simple prin- P ∙'^Jθ≡'tιert s Prmcιple.
ciples, to explain in a full and satisfactory about a Fixed Axis.—1∖.
manner all the important processes in that . Mθtιθn
subject. r 1- of a Rigid Body m Three Dimensions.—

The proofs have in all cases been given / ®
in a form entirely arithmetical: for the ^^'^dBoffies.--
author does not think that recourse ought ym* Of Impulsive Forces. IX. Mιscel- 
to he had to Algebra until the arithmetical ^^ueous Examples.
proof has become hopelessly long and per- The numerous Examples which will be 
plexing. found at the end of each chapter have

At the end of every chapter several ex- been chiefiy selected from the Examina- 
amples have been worked out at length, tion Papers set in the University and 
in which the best practical methods of Colleges of Cambridge during the last few 
operation have been carefully pointed out. years.
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FOR SCHOOLS AND COLLEGES. 9The By J∙ SNOWBALL, M.A.
Cambridge Year Book Late Fellow of St. John's Coll. Cambridge.

AND UNIVERSITY ALMANACK Plane and Sphorical
For 1862. Trigonometry.Crown 8vo. 228 pp. price 2s. 6iZ. Construction and Use of

The Publication for be ready ∑ooarithms.
on January 1, 1863. ∙'

The specific features of thia annual pub- Ninth Edition. 240 pp. (1857). 
lication will be obvious at a glance, and Crown 8vo. Is. ^d.
its value to teachers engaged in preparing ■, ____ . _______ .... „ _____ -students for and tn narents who ‰ send- preparuιg a new edition, the proofs
ir,,τ +ι,a,∙r iλ ικω t'..i. or, 1 ⅛λ of somcof thcmorcImportaut proposltious mg their sons to, the University, and to . v rpn,iprp,ι m∩rp ,tHpt ∏nd o∙p- ’ the public generally, will be clear. °θθ*¾ rendered more strict and ge

bΛ⅛v'svΛr⅛ι ≡ ~*'t⅛⅛.nτs⅛
a≡.√''θ and Problems for practice.

ner of these examinations, and the specific 
subjects and times for the year 1862, are 
given.

3. A ∞mplθte ac∞unt of all Scholar- DREW, M.A.
ships and Exhibitions at the several Col-
leges, their value, and the means by which Second Master of Blackheath School.

4. A brief summary of all Graces of the Geometrical Treatise
Senate, Degrees ∞nferred during the year Cz^/.>4-4 ov, o
1861, and University news generally are OU v√OUlC MeCUlOUS. 
*^5θ°The Regulations for the Local Ex- copious Collection of Examples.*i*θ≡≡ "® Mt ∞θrobers Second Edition. Crown 8vo. cloth,of the University, to be held this year, .
with the names of the books on which the
Exammation wiU be bωed, and the date ι∏ this work the subject of Conic Sec- 
on which the Examination will be held. tions has been placed before the student 

in such a form that, it is hoped, after 
mastering the elements of Euclid, he may 

By N. M. FERRERS, M A. ^find it an easy and interesting continuation
Fellow and Mathematical Lecturer of ^is ^me^^studi^. a ^ew
G.»«.e „d Ciu. Col⅛, c≡b,l<l,e. £ " T≡1.*⅛S .1 ‰"¾3!
AN ELEMENTARY TREATISE ON versities, there have been either embodied 

into the text, or inserted among the ex- Trilinβar Co-Ordinates amples, every book work question, prob­
lem, and rider, which has been proposed 

The Hethod of Eeciprocal Polars, in the Cambridge examinations up to the 
and the Theory of Projectiles. present time.154 pp. (1861). Cr. 8vo. cl. 6β, Qd.

The object of the Author in writing Solutions to the Pro- 
on this subject has mainly been to place Γ<λ
it on a basis altogether independent of the DiemS in JJΓeΛΛf S vθ∙ 
ordinary Cartesian System, instead of re- ∏iλ Qf^nf-inne 
garding it as only a special form of abridged mc OeCUlOllb.
Notation. A short chapter on Determi- ,
nantβ has been introduced. Grown 8vo. clθtn. 4β. 6w.
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10 CAMBRIDGE CLASS LOOKS
QonQfQ.TTniioo TVΓαfhΛ- All the calculations in the book connected Oenare 2iOUSe IViailie with the strength ofglrders are based upon 

matical Fpoljleixis. their actual application which abounds in 
practical investigations into girder-work 

With Solutions, in all its bearings, and will be welcomed
ιo<Q Cl T>„ ∙c>_________ _ ____ J 0___ as one of the most valuable contributions

H fid ≡^°∙ yet made to this important branch of
1848-51. ■ (Riders). By Jameson. 8vo. «»P<«eeH»V.”-ATHBN.BVM.

Ιs. 6d. ---- ------
Walton and Mackenzie. ¢, jpr ijuderwOOD, Af.√l.

10i. 6α. ...
1857. By Campion and Walton. 8vo. Vice-Principal of the Collegiate Institu- 

8«. fid. tion, Liverpool.

^To. Short Manual of
The above b∞ks contain Problems and Arithmetic.

Examples which have been set in the „ ∕ιocn∖ i o cij
Cambridge Senate-house Examinations at ∙rcp. OVO. wo pp. (loo(l). Cl. 2s, ba. 
various periods during the last twelve The object aimed at by the Compiler of 
years, together with Solutions of the same, tius ]ifanual is to bring before junior 
The Solutions are in aU cases given by students so much of the Theory of Arith- 
the Examiners themselves or under their metic as may be fairly expected of them, 
sanction. and to present it in such a form that the

—*---- study of the Science may become to some
By H. A. MORGAH, Jf.A. extent a mental traintny. It is rather

■n 11 CT zi 11 Λi „1, -.1___ a Grammar of Arithmetic than a treatiseFellow of Jesus College, Cambridge. ^hat subject, and should for the most
A Collection of Mathe- be comπdtted to memory. It will 

found Well adapted for etcd βoce ex­ma final "Pτ∙ΛΗlαmβ αγιH amination, and enable candidates to pre- maticai irrooiems ana themselves for the Local University 
ExanmlθS Examinations. The Definitions are briefly

* and carefully worded. Each rule is stated
With Answers. so as to include the proof of it where this190 pp. (1858). Crown 8vo. 6s. Gd. Pθ≡sible. —___

ie™^Sy“emiv?“^'’?L°Va?^^^^ Cambridge University 
matical subjects usually read at Cam- Examination PapOrS. 
bridge. They have been selected from 
the papers set during late years at Jesus, Crown 8vo. 184 pp. 2s. 6d.

CoUβctiou of all the Papers set at the with in other collections, and by far the E,^aminations for the Degrees, the 
Iwger number are due to some of the most Triposes, and the 'Geological
distinguished Mathematicians m the Um- Certificates ώ the University, with List 
versiiy. of Candidates Examined and of those

* Approved, and an Index to the Subjects.
By J. HEBBERT LATHAM, M.A. 18fi0-fil.

Civil Engineer. Previous Examination, 18fi0—Previous
THE CONSTRUCTION OF Exami-

__  _ . , nation, 1860—B.A. Degree Exammation, Wrougnt-lron Bridges Jan. and May, 1861-Bachelor of Laws Ex­
amination, 1860—Bachelor of Laws Ex- 

Embracing the Practical Application amination, 1861—Bachelor of Medicine Ex- 
of the Principles of Mechanics to aminations, 1861—Classical Tripos, 1861— 

Wr∩nπht- Tr∩n Girder- Worl· Sciences Tripos, 1861—Natural Sci-trrottgnt-iron tjiraer- trorκ. Tripos, 1861 —Smith’s Prizes, 1861
“ The great merit of this book is that —Chancellor’s Medals for Legal and Clas- 

it deals with practice more than theory, sioal Studies, 1861.

www.rcin.org.pl



FOE SCHOOLS AND COLLEGES. 11
By JO TIN Έ. B. MAYOR, M.A. By B. DRAKE, M.A.

Fellow and Classical Lecturer of St. John’s Late FeUow of King’s CoU. Cambridge. 
College, Cambridge. j Denιosthenes on the
1. Juvenal. Crown.IΓifA English Eotes. English Notes.464 pp. (18δ4) Crown 8vo. cloth, Edition. To which is pre-

∙ fixed ^8CHINES AGAINST CTESI-“A School edition of Juvenal, which, PHON. With English Notes.
for really ripe scholarship, extensive ac- 287 pp. (1860). Fean. 8vo. cl. 5s. 
quamtance with Latin literature, and fa- . . „ , , » , ,
miliar knowledge with Continental criti- edition of the late Mr. Drake s
cism, ancient and modern, is unsurpAssed, edition of Demosthenes de Corona having 
we do not say among English School-b∞ks, with considerable acceptance in vari-
but among English editions generally.”— Schools, and a new edition being calledEdinbvrob Review. tor, the Oration of ALschines against Ctesi-

phon, in accordance with the wishes of 
---- *---- many teachers, has been appended with 

useful notes by a competent scholar.2. Cicero’s 2. JEschyli Eumenides
Second Philippic. ΤΕΜ English Verse Translation,

With English Notes. Copious Introduction, and Notes.168 pp. (1861). Fcp. 8vo. cloth. 5s. 8vo. 144. pp. (1853). 7«. ^d.
The Text is that of Halm’s 2nd edition, “ Mr. Drake’s abUity as a critical Scho- 

(Leipsig, ΛVeidmann, 1858), with some lar is known and admitted. In the edition 
corrections from Madvig’s 4th Edition θf the Eumenides before us we meet with 
(Copenhagen, 1858). Halm’s Introduction him also in the capacity of a Poet and 
has been closely translated, with some Historical Essayist. The translation is 
additions. His notes have been curtailed, flowing and melodious, elegant and scho- 
omitted, or enlarged, at discretion; pas- i larlike. The Greek Text is well printed : 
sages to which he gives a bare reference, the notes are clear and useful.”—Guab- 
are for the most part printed at length ; dian.
for the Greek extracts an English version ---- ♦----
has been substituted. A large body of ¢, MERIYALE, B.J).
notes, chiefly grammatical and historical, * . ’
has been added from various sources. A Author of “ A History of Rome,” &c. 
list of books useful to the student of
Cicero, a copious Argument, and an Index iotixxu.»b.
to the introduction and notes, complete the With English Notes.Second Edition. 172 pp. (1858). Fcap. 8vo. 4s. Qd.

By P. FROST, Jun., M.A. « This School edition of Sallust is pre-
Late Fellow of St. John’s CoU. Cambridge, cisely what the School edition of a Latin 
mτ- J ∙ J T» 1 τΥ-v ■ author ought to be. No useless wordslnucyαiαes. a300.K VΣ. ■ are spent mlt, and no words that could 

be of use are spared. The text has been 
With English Notes, Map and Index, carefully collated with the best editions, 

c I .1 ,, f,, With the work is given a full current of
oVO. C10in. is. Ha. extremely well-selected annotations.”—

It hAs been attempted in this work to The Examiner.
facilitate the attainment of accuracy in The “ Catilina” and “ Jugurtha” may 
translation. With this end in view the 6e had separately, price 2s. 6<i. each. 
Text has been treated grammatically. bound in cloth.
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12 CAMBRIDGE CLASS BOOKS
Sy J. WRIGHT, M.A. By EDIT ARD TΠRlNβ, M.A.

Head Master of Sutton Coldfield Sch∞l. Head Master of Uppingham School.

1. Help to Latin Elements of Grammar
Grammar. Taught in English.

With Easy Exercises, and Vocabulary. IVith Questions.Crown 8vo. cloth. 4s. 6(/. Tlιird Edition. 136 pp. (1860).
Never was there a better aid oifered Demy 18mo. 2s.

alike to teacher and scholar in that ardu-
OUS pass. The style is at once familiar ∩ mt i 1 >i.,V.
and strikingly simple and lucid; and the d∣. XUe V*nilCL S Ji∣ngllSn 
explanations precisely hit the difficulties, Γ4∙τ∙QTY⅛τnoτ∙
and thoroughly explain them.”—English kXΓaillinar.
Journal OF Education. New Edition. 86 pp. (1859). Demy

2. Hellenica.
A VTTJC-P i-DT-’E-i.- UE∙ .TATX’r. The Author’s effort in these two booksA FIRST GREEK READING BOOK. been to point out the broad, beaten.Second Edit. Feap. 8vo. cl. 3s. 6d. every-day path, carefully avoiding digres- 
. , , ,, . ,v. sions into the byeways and eccentricities
In the last twenty chapters of this θf language. This Work took its rise 

volume, Thucydides sketches the rise and fj∙θ∏ι questionings in National Schools, 
progress of the Athenian Empire in so whole of the first part is merely
clear a style and in such simple language, j^e writing out in order the answers to 
that the author doubts whether any easier questions which have been used already 
°∖ passages can be with success. The study of Grammar in
selected for the use of the pupil who is Engiigh has been much neglected, nay by 
commencing (ιreek. some put on one side as an impossibility.

, There was perhaps much ground for this3. The Seven Kings of opinion, in the medley of arbitrary rules
_ thrown before the student, which appliedKθIUθ. indeed to a certain number of instances,

. τ ■ τ) j∙ -n 1 but would not work at all in many others,
Λ. First Latin Eeadmg Book. as must always be the case when princi-Second Edit. Pcap.8vo. cloth. 3t. ‰⅛ wo*S

This work is intended to supply the does not, therefore, pretend to be a com- 
pupil with an easy Construing-b∞k, which pendium of idioms, or a philological trea- 
may, at the same time, be made the tise, but a Grammar. Or in other words, 
vehicle for instructing him in the rules of its intention is to teach the learner how to 
grammar and principles of composition, speak and write correctly, and to under- 
Here Livy tefif his own pleasant stories stand and explain the speech and writings 
in his own pleasant words. Let Livy be of others. Its success, not only in National 
the master to teach a boy Latin, not some Sch∞ls, from practical work in which it 
English collector of sentences, and be will took its rise, but also in classical schools, 
not be found a dull one. is full of encouragement.

4. Vocabulary and Ex- 3∙ School Songs,
ercises on “ The Seven ^θ^^^^scHooLs.^θ^θ^ 
Kings of Rome.” with the music arranged for

17 c 1 .T, n a J FOUR VOICES.Fcp. 8vo. cloth. 2s. 6ι∕. Edited by Rev. E. TURING and 
∙,∙ The Vocabulary and Exercises may π∙ p τmτττf!

also be had bound up with “The . '
Seven Kinys of Rome." bs. cloth. Music Size. Is. Qd.
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FOE SCHOOLS AND COLLEGES. 13
By ET)WAT{D TΠBING, M.A. j 2.

Head Master of Uppingham School. Nθtθg fop Lectures On Cθnfir- ‘4. A. First Zjatin Con- mation: With Suitable Prayers, 
struing Book. By c. J. vaughan, d.d. 4th104 pp. (185δ). Fcap. 8vo. 2s. Qd. Edition. 70 pp. (1862).

This Construing Book is drawn up on Pep. 8vo. Is. Qd.
ιthe same sort of graduated scale as the ∣
Author’s English Grammar. Passages ! This work, originally prepared for the 

(θut of the best Latin Poets are gradually of Harrow School, is published in the 
1 built up into their perfect shape. The belief that it may assist the labours of 
few words altered, or inserted as the pass- those who are engaged in preparing can­
ages go on, are printed in Italics. It is dijates for Confirmation, and who find it 
hoped by this plan that the learner, whilst difficult to lay their hand upon any one 
acquiring the rudiments of language, may book of suitable instruction at once sufifi- 
8tore his mind with good poetry and a ciently full to furnish a sj∙nopsis of the 
good vocabulary. subject, and sufficiently elastic to give free

scope to the individual judgment in the 
* use of it.g⅛ious gooks. 3.J The Church Catechism IUus-

By c. J. VAUGSAN, D.B. Crated and Explained. By
Head Master of Harrow School. AETHUK RAMSAY, M.A.

St. Paul’s Epistle to
the Romans. 4.

The Greek Text with English Notes. Hand-Book to Butler’s Ana- Second Edition. Crown 8vo. cloth. logy. By C. A. SWAINSON, (1861). 5s. M.A. 55pp. (1856). Crown 8vo.
By dedicating this work to his elder ∣j,

Pupils at Harrow, the Author hopes that
he sufficiently indicates what is and what r
is not to he looked for in it. He desires “·
to record his impression, derived from the Higtorv of the Christian 
experience of many years, that the Epιs- ∙'
ties of the New Testament, no less than ∣ Church during the First 
the Gospels, are capable of furnishing
useful and solid instruction to the highest Three CentUTieSj and the 
classes of our Public Schools. If they are Reformation in England, 
taught accurately, not controversially; „ nτ,.-nr,Λ*τ ,, , v, ,
positively, not negatively; authorita- By W. SIMPSOA, M.A. Fourth 
tively, yet not dogmatically; taught with Edition. Fcp. 8vo. cloth. 3s. 6d. 
close and constant reference to their literal
meaning, to the connexion of their parts,
to the sequence of their ar^ιmβnt, as well 6.
as to their moral and spiritual instrue- . .
tion ; they will interest, they will inform, Analysis of Palcy’S Evidcn- 
thβy will elevate; they will inspire a re- -j∙ τι,,verence for Scripture never to be dis- θθS Christianity. By 
carded, they will awaken a desire to drink CHARLES H. CROSSE, M.A. 
more deeply of the Word of Goιl, certain , , „ n e i
hereafter to be gratified and fulfilled. 115 pp. (1855). 18mo. os. Qd.
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CAMBRIDGE MANUALS

FOR THEOLOGICAL STUDENTS.

UNIFORMLY PRINTED ΛND BOUND.This Series of Theological Manuals has been published with the aim of supplying Books concise, comprehensive, and accurate; convenient for the Student, and yet interesting to the general reader.1. History of the Christian been reopened with ^eat learning and Church during the Middle ≡f<≈"ratθ research, and it fa mainly with , τ,* ° ∙tTAτ>n *bθ view of epitomizing their extensive
Ages. By Archdeacon HAKU- publications, and ∞rrecting by their help WICK. Second Edition. 482 pp. the errors and misconceptions which had (1861). With Maps. Crown 8vθ. obtained currency, that the present cloth ' 10s Gd volume has been put together.

This Volume claims to be regarded as 4. History of the Ca∏θ∏ Of 
independent treatise on Testament during

the Mediaeval Church. The History com- ., x χa n x ∙ °
mences with the time of Gregory the Great, ±irst Bour Centuries,
to the year 1520,—the year when Luther, By BROOKE FOSS WEST-
having been extruded from those Churches COTT M.A. 594 pp. (1855).
that adhered to the Communion of the ιοί oj ‘Pope, established a provisional form of ^rown 8vo. cloth. 12s. 6<i. 
government and opened a fresh era in the The Author has endeavoured to connect 
history of Europe. the history of the New Testament Canon

with the growth and consolidation of the 
9 TTia+nrx7 n∙f +Vιo iThrio+io-n Church, and to point out the relation ° . ϊΐΐθ ^JlξlStian e^igting between the amount of evidenceCnurcn during tne xvβlθr- for the authenticity of its component parts mation. By Archdn. HARD- and the whole mass of Christian literature. WICK. 459 pp. (1856). Crown Such a method of inquiry will ∞nvey both 

c 1 +b TO «J ' ^be truest notion of the connexion of the»vo. C10t∩. iυβ. bα. written Word with the living Body of
This Work forms a Sequel to the Au- Christ, and the surest ∞nviction of its 

thor’s Book on The Middle Ages. The divine authority.
Author's wish has been to give the reader cτχjχ∙ xxi.oxj· 
a trust-worthy version of those stirring O∙ Introduction tO the Study 
incidents which mark the Keformation of the GOSPELS. BvBROOKE
period. ∙'FOSS WESTCOTT, M.A. 458 3. History of the Book of Com- pp. (i860). Crown 8vo. cloth,mon Prayer. With a Rationale 10«. Gd.of its Offices. By FRANCIS This book fa intended to be an Intro- PROCTER, M.A. Fifth Edition, duction to the Study of the Gospels. In 464 pp. (1860). Crown 8vo. cloth, a subject which involves so vast a literature 1∩ βS ' ' much must have been overlooked; but the

10«. oα. Author lias made it a point at least to
In the course of the last twenty years study the researches of the great writers, 

the whole question of liturgical knowledge and consciously to neglect none.
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FORTHCOMING BOOKS.1.

An Elementary Treatise on the Planetary Theory. By C. II. II. CHEYNE, B.A., Scholar of St John’s College. Crown 8VO. cloth. 6s. 6Λ [Jms< ready.2.
A Treatise on Geometry of Three Dimensions.By PEBCIVAL FROST, M.A., St. John’s College, and JOSEPH WOLSTENHOLME, M.A., Christ’s College, Cambridge. 8vo. 18s.

*** The First Portion has been issued for the convenience of Cambridge 
Students: the concluding portion will appear about Christmas, 1862.3.
An Elementary Treatise on Natural Philosophy.By WILLIAM THOMSON, LI.. I)., Γ.R∙S., late Fellow of St Peter’s College, Cambridge, Professor of Natural Philosophy in the University of Glasgow; and PETER GUTHRIE TAIT, M.A., late FeUow of St. Peter’s College, Cambridge, Professor of Natural Philosophy in the University of Edinburgh. With numerous Illus­trations. [Jn the Press.4.
An Elementary Treatise on Quaternions.With numerous Examples. By P. G. <ΓAIT, M.A., Professor of Natural Philosophy in the University of Edinburgh. [Preparing.5.
First Book of Algebra. For Schools.By J. C. W. ELLIS, M.A., and P. M. CLARKE, M.A., Sidney Sussex College, Cambridge. [Preparing.6.
Aristotelis de Rhetorica.With Notes and Introduction. By E. M. COPE, M.A., Fellow and Assistant Tutor of Trinity College, Cambridge.7.
The Nev) Testament in the Original Greek.Text revised by B. F. WESTCOTT, M.A., and F. J. HORT, M.A , formerly Fellows of Trinity College.
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MACMILLAN AND CO.’S

CAMBRIDGE SCHOOL CLASS BOOKS.
I.

Euclid for Colleges and Schools.By I. TODHUNTER, M.A., F.R-S., Fellow and Principal Mathe­matical Lecturer of St John’s College, Cambridge. 18mo. 3β. 6d.
II.

An Elementary Latin Grammar.By H. J. ROBY, M.A., Under Master of Dulwich College Upper School, late Fellow and Classical Lecturer of St John’s College, Cambridge. 18mo. 2s. 6d. πι.
An Elementary History of the Booh of Common 

Prayer.By FRANCIS PROCTER, M.A., Vicar of Witton, Norfolk, late Fellow of St. Catharine’s College, Cambridge 18mo. 2«. 6rf.
·»* These volumes, forming the first portion of Macmillan and Co.'s 

Elementary School Class Books, are handsomely printed and 
bound. All the volumes of the series will be published at a low price 
to ensure an extensive sale in the Schools of the United Kingdom and 
the Colonies, «The following wιU shortly be published:

The School Class Book of Arithmetic.By BARNARD SMITH, M.A., late Fellow of St. Peter’s College, Cambridge.
Algebra for Beginners.By 1. TODHUNTER, M.A., F.R.S.
The Bible Word-Book.A Glossary of old English Bible Words with Illustrations.By J. EASTWOOD, M.A., St. John’s College, Cambridge, and Incumbent of Hope, near Sheffield, and W. ALDIS WRIGHT, M.A., Trinity College, Cambridge.

*** Other Volumes will be announced in due course.^rinttb ⅛ ^onatjjan ^ulιnεr, Sibntπ Stmt, (Eainbribgt.
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