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Supersonic flow around flattened bodies and sharp tip wings
G.P. VOSKRESENSKY (MOSCOW)

THe A of this paper is to describe some results of the numerical investigation of the supersonic
inviscid flow around sharp-nosed, flattened bodies with a bow shock attached to the nose-cone
of the bodies and around sharp tip wings with the shock wave attached to the leading edge.
The numerical investigation is based on a finite-difference second-order method. The following
flow fields have been investigated: around elliptic cones with a large semi-axis ratio a/b < 8
at the angle of attack 10° and My = 3.0; around a non-conical flattened body of the type of
delta plane vehicle at the angle of attack 10°: around delta, swept and rhombic-shaped wings
with airfoils at the angles of attack 5°, 8° and M, = 3.0; 4.0.

Celem pracy jest przedstawienie kilku wynikoéw obliczeri numerycznych dla naddiwieckowego
nielepkiego przeplywu wokot ostro zakoriczonych splaszczonych kadlubbw, z falg uderzeniowa
wystepujaca na stozkowym nosku kadtuba oraz woko6kostrego korica skrzydel, z fala uderzeniowa
umiejscowiong na krawedzi natarcia. Obliczenia numeryczne przeprowadzono metodg rdiznic
skoniczonych, przyjmujac aproksymacje drugiego rzedu. Zbadano nastepujace pola przeplywow:
wokot stozkow eliptycznych przy duzym stosunku pétosi a/b < 8 przy kacie natarcia 10° i My =
= 3,0; wokol niestozkowego splaszczonego kadtuba typu delta przy kacie natarcia rownym 10°;
wokol delty, skrzydia typu strzaly i rombu z powierzchniami no$nymi na katach natarcia 5°,
8% i My = 3,0; 4.0.

IlpencraBiieHBl HEKOTOPbIE Pe3yJBTATHI UHC/IEHHOIO MCCHIEHOBaHWs CBEPX3BYKOBOIO HeBA3-
KOro o0TeKaHMsA OCTPLIX CIUIIOCHYTBIX TeJI C YAapHOH BOJHON, NPHCOeHHeHHON K BepLIMHE,
a TaK)Ke OCTPOKOHEYHBIX KPBLILEB C BOJIHOM, IpHCcOequHeHHON K mepemHeit kpomre. Hecne-
[OBaHHE MPOBOJAMIIOCH C MOMOIIBI0 KOHEUHO-PASHOCTHOTO METO/Ia BTOPOTO NOPAMAKA TOUHOCTH.
HccnenoBaiock TeueHHe OKOJIO I/UITHINTHUECKHX KOHYCOB C GOMBILMM OTHOLIEHHEM MOJIyOCeH
alb < 8 npu yrne ataxm 10° 1 My = 3,0; HEKOHMYECKOrO CHJIBHO CIUTIOCHYTOIO TeJia THIIA
JenbTaluiaHa npH yrie ataku 10°, a TaioKe OKOJIO TPEYTONBHBLIX, CTPENOBHOHOTO ¥ pomGo-
BHIHOTO NMPOoHIHPOBAHHLIX KPBUIEEB NPH yriax araxkd 5°, 8° u M, = 3,0; 4,0.

1.

THE DETERMINATION of the aerodynamic characteristics and detailed description of the
three-dimensional flow around supersonic vehicles is of great practical importance but
at the same time it is mathematically complicated. The best results in this field during the
past decade have been achieved with the help of numerical methods.

This paper deals with some numerical results of two problems. The first problem is
concerned with the computation of the supersonic flow field around sharp-nosed heavily
flattened conical and non-conical bodies, such as a delta plane vehicle with a detached
shock wave from the leading edge.

The second problem is concerned with the computation of the supersonic flow around
delta, swept or rhombic-shaped sharp tip wings. The wing airfoil may be arbitrary. The
shock wave is attached to the leading edge of the wings.

The solution of both problems is based on the numerical method of the computation
of three-dimensional supersonic flows developed by K.I. BABeENKO and G.P. VOSKRES-
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ENSKY in 1961 [1]. This method in application to these problems has been modified. But
general features of the method remain the same.

The method is concerned with the problem in some physical domain with initial data
and boundary conditions for the system of gasdynamical equations of the stationary in-
viscid flow. The gas may be chemically-reactive at high temperature.

The flow equations are as follows:

av 1
—‘F+?gradp =0,
do o
(11) _dt_ +QdIVV = 0,
i ‘]:/-‘2 _|.._.____’c i)_ 0
dt\2 " %=1 o]

The flow is assumed to be supersonic everywhere with respect to the x-axes and therefore
the system (1.1) is x-hyperbolical.

As a result of the chemically-reactive gas, the system equations must be completed at
each grid point by the calculation of the velocity of sound and the ratio of specific heats.

The boundary conditions are set on the surface of the body and on the shock wave.
The surface of the shock wave is the unknown function and it is determined by the solu-
tion process. The initial data surface is set near the vertex of the bodies. The physical do-
main of the solution is transformed into a simple rectangle by normalizing the distance
between the body and the outer shock wave.

The method uses a second-order finite-difference implicit scheme. The solution is march-
ed downstream from the initial data surface x = x, by the iteration process.

The initial data were obtained by the stationing principle in the case of a sharp nose,
because the nose is supposed to be conical with the auto-modelling flow along the coordi-
nate X. The basic algorithm is also used for this purpose.

The first problem is concerned with the supersonic flow field around sharp-nosed flat-
‘tened bodies, with the bow shock attached to the nose. The algorithm of its numerical
solution'is described in the paper [2]. The cylindrical coordinates (x, r, ¢) are used. The
bodies have elliptical cross-sections and their surfaces were governed by the following
equation:

G(x, 9) = ay H*+ H2,
H = }/Q%cos?y +siny,
H, = dH|dy,
Q = 1/2[1 —sign(cosy)]Qu+1/2[1 +sign(cosy)]1Q.,
@ = y+arctg(H,/H),
where Q, and Q, are the ratio of the semi-axis of the cross-section ellipse (major/minor)
for upper and lower parts of the cross-section a = a(x), Q, = Qu(x), Q. = Q.(x).

@.1)
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The initial data for the conical flows are represented by gas-dynamical functions around
a circular cone with the given M,, number and the angle of attack equal zero. The angle
of the circular cone is equal to the angle of a conical body with respect to the major axis
symmetry plane. In the solution process, the cross-section of the body and the angle of
attack are modified “step-by-step” and the exact solution is obtained by the stationing prin-
ciple along the coordinate x. The mesh grids are also modified in this solution process
and clustered near the minor radius of the curvature.

The surface of the non-conical bodies near the vertex is assumed to be conical. At first
the flow field around this cone was obtained and then, the initial data were used in compu-
ting the flow for a non-conical body.

Some results of the calculation [2] of the supersonic flow field around elliptic cones
are shown in Figs. 1 and 2, and the results around a non-conical body such as a delta plane
vehicle are shown in Figs. 3 and 4. The pressure p in these figures and everywhere is made
dimensionless with respect to the free stream pressure p,, and the velocity — with to
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VP/0w, Where g is the free stream density. The linear dimensions of the bodies are made
dimensionless with respect to their length. The pressure on the surface of the elliptic cone
as a function of the meridional angle ¢ is shown in Fig. 1. The half-angle of the cone
with respect to the major semi-axis symmetry plane is 22°30’, the ratio of the semi-axis of
the cross-section ellipse a/b = 2.0, M, = 3.0 and the angle of attack a = 15°. The cross-
section of the shock wave surface is also shown here. The points on this curve are mesh
grid points. The pressure on the surface of the same cone obtained experimentally [3]
is shown by minor squares.

On the lower, windward side of the cone, experimental pressure agrees exactly with
the computed one. On the upper, leeward side we do not obtain such good agreement
between numerical and experimental pressure. Experimental pressure is higher. This
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higher pressure indicates, it seems, an apparent thickening of the body in this region due
to boundary-layer displacement effects. A certain numerical experiment was made to esti-
mate this effect. The real “thickness” of the upper part of the cone is increased (a/b = 1.78)
by the “displacement thickness” of the boundary layer on the cone. This causes the increase
of the pressure on the upper side of the cone and leads to better agreement with the exper-
iment.

Figure 2 illustrates the results of the calculation of the flow around an elliptic cone
with a large ratio of the semi-axis a/b = 8. The half-angle of the cone with respect to the
major semi-axis is 35°. The pressure distribution is shown on the cone surface and behind
the shock wave. The highest pressure gradients are in those places where the curvature
of the cross-section is large. Also are shown: the shock wave (the circles on the cumve cor-
respond to the mesh grid points) and the projection of the velocity vector on the X = const
plane for the upper side of the cone.

The pressure along the wing span on the lower and upper surfaces of the flat delta wing
(from the paper [4]) is given for comparison. The shock wave is attached to the leading
edge of this wing, but M, and the angle of attack are the same, as those of the cone. It can
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be seen that the pressure on the lower and upper halves of the cone with a large ratio of
the semi-axis approaches the pressure on the delta wing.

The characteristics and the flow around a non-conical flattened body of the delta plane
type are shown in Figs. 3 and 4. The cross-section of the body are different ellipses in the
upper and lower halves. The shock wave, as well as the coefficients C, and C,, as the



SUPERSONIC FLOW AROUND FLATTENED BODIES AND SHARP TIP WINGS 669

functions of the coordinate x, are shown. C, and C, are coefficients of the normal and
tangent forces. The coefficient C, for a similar flat delta wing is given there too, to which C,
of the body is approaching.

The pressure and circular velocity component w on the surface of the body in its two
cross-sections x = 0.45; x = 0.65 and also the shock wave are shown in Fig. 4. The
computational points are indicated by circles. There are high pressure gradients in places
where the curvature of the body cross-section is large.

The second problem is concerned with the supersonic flow field around delta, swept
and rhombic-shaped sharp tip wings. The wing airfoils may be arbitrary and the shock
wave is attached to the leading edge of the wings. The algorithm of the lution of this
problem is described in the papers [4-7]. Here we shall deal with some calculation re-
sults [7].

The Cartesian coordinates (x, y, z) are used. The domain of the solution is transformed
into a rectangle by introducing the auxiliary variables
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The surface of the wings is represented by the function G = G(x, z), the shock wave —
F = F(x, z), and the leading edge of the wings — H = H(?).

The initial data both on the upper and lower sides of the wings were received on the
assumption that the nose of the wing is conical. The flow around the nose of the wing
is determined by the stationing principle along the auto-modelling coordinate x.

The upper and lower surfaces of the wing were governed by the equation

y = G(t,0) = 4Cu,s(1-0"*") 1" **[1 —t— (1-6"*)u(0)],

1+d
to ‘_to
= ) ={-——>—) ,
¢ 11—t #@) ( I—po—to )

to — the length of the conical nose, the coefficients: b = 0.5, e = d = 0.25, Cy g — rel-
ative thickness of the airfoils, the indexes H and B correspond to the lower and upper
surfaces of the wing. With u, = 0 is the delta wing, u, > 0 is the swept wing, uo, < 0
is the rhombic-shaped wing.

In Fig. 5 calculation results of the supersonic flow around the delta wing are given.
My;=30, a= 8°, angle of sweep y = 45° and the airfoil is flat-convex with Cz = 0.05,
Cg = 0. The shape of the wing in the plane y = 0, the cross-sections of the wing and the
shape of the shock wave are shown in this figure.
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The distribution of the aerodynamical loading 4p = p;—p, (where p;, — the pressure
on the lower surface and p, — the pressure on the upper surface) along the coordinate z
for each cross-section, including the trailing edge, is given. The pressure behind the shock
wave for the upper surface is given there too. This pressure in some region is equal to
the pressure in the free stream. Here the outer shock wave is transformed into the outer
characteristic surface and at the end of the wing near the leading edge there is an expan-
sion region. That transition is shown with the crosses on the shock wave.

The character of the supersonic flow for flat wings depends on the angle of attack only
and as soon as the angle of attack is positive and not equal to zero, there is an expansion
region above the upper surface of the wing. But for the wings with airfoils the flow is de-
termined not only by the angle of attack, but also by the incidence of the tangent plane
to the surface of the wing. That is why at the given angle of attack, depending on the airfoil,
there may be both compression and expansion flows above the wing. Besides, there may
be transition from the compression region to the expansion region, as in Fig. 5. In the
examples given below it takes place as well.

The loading distribution Ap along the chord of the wing at z = 0.5 is shown in the
small plot. Here the loading along the chord increases. In Fig. 6 the results of the calcula-
tion of the flow around the wing of the same type but with the biconvex airfoil at Cy = 0.03
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and Cy = 0.05 are shown. The loading distribution is given along the span and the chord
of the wing at z = 0.5. Here the loading along the chord drops.

The character of the loading distribution 4p along the chord for the wing with flat-
convex airfoil differs from the one for the wing with biconvex airfoil. This difference,
it seems, cannot be explained by the influence of the curve of the midsurface only. For
example, the wing Wwith the flat-convex airfoil at Cp = 0.02 has in the plane of symmetry
the same increase 4p along the chord as in Fig. 5, while the wing with the biconvex airfoil
in Fig. 6 and the same curve of the midsurface has the decrease of 4p along the chord.

From here it follows, that in the loading distribution the behaviour of the upper-and,
particularly, lower surfaces plays a great role. Therefore, the conclusions concerning the
aerodynamical characteristics of the delta wings at M,, > 1 made only on the basis of the
behaviour of the midsurface may be groundless.

Figure 7 shows the same characteristics as those in Figs. 5 and 6 but for the delta wing
with the sweep angle ¥ = 60° and Figs. 8 and 9 — for the swept and rhombic-shaped
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wings with biconvex airfoil. Here, the transition of the shock wave into the characteristic
surface is indicated with the crosses on the shock wave.

In all figures the aerodynamical coefficients of the wings Cy, C,, mz in velocity coordi-
nate systems and the aerodynamical coefficient K = C,/C, are shown.
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