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Pressure wave pattern in a liquid filling an elastic pipe 

A. SZUMOWSKI (WARSZAWA) 

A SHOCK wave generated in a liquid produces a tensile wave in the wall of a pipe. Due to the 
tensile wave, which usually propagates faster than the shock, there emerges in the liquid a pressure 
wave preceding the shock. Moreover, in certain circumstances, cav;tation zones appear in 
front of the shock. As a result, the complex pressure wave composed of the preceding wave, 
cavitation zones and the shock wave is formed. The shock front is gradually attenuated along 
the pipe. This complex pressure wave in an inviscid liquid filling a semi-infinite pipe of circular 
cross-section is considered theoretically in the paper. One-dimensional motion of the liquid is 
assumed. The influence of this assumption and of some simplifications performed in the equations 
of pipe motion on the calculation results are shown. 

Fala uderzeniowa wytworzona w cieczy powoduje oscylacje 8cianki rury. Oscylacje te rozprze­
strzeniaj'l si~ wzdhiz rury zwykle z pr((dko8ci<! wi~ksz'l niz wynosi pr~dkosc fali w cieczy. 
Na skutek tego przeplyw przed czolem fali uderzeniowej zostaje wst~pnie zaburzony. W pew­
nych przypadkach, w przeplywie tym mog'l wystC!PiC strefy kawitacji. W wyniku dzialania 
wymienionych czynnik6w fala uderzeniowa w 'cieczy ulega stopniowemu tlumieniu, W pracy, 
na drodze teoretycznej, badano opisane zjawiska w przypadku cieczy nielepkiej wypelniaj'lcej 
p61nieskonczoflCl rur~ o przekroju kolowym, zakladaj<ic przy tym jednowymiarowy ruch cieczy. 
Zbadano wplyw tego zalozenia oraz wpJyw pewnych uproszczen w r6wnaniach ruchu rury 
na wyniki obliczen. 

Y;:(apHaH: aoJIHa, reHepHpoBaHHa.R: a »<ll,ltt<OCTH, Bbi3biBaeT Kone6aHH.R: CTeHKR Tpy6bi. 3TH 
KOJie6aHH.R: pacrrpOCTpaiDilOTC.R: ItO Tpy6e CO CKOpOCTlO, KOTOpaH: rrpeHMJIUeCTBeHHO 60JibillaH: 
'tleM CKOpOCTb BOJIHbl B »<ll,ltt<OCTH. B CJie;:(CTBe TOro Te'tleHHe rrepe;:( y;:(apHOH BOJUIOH cpa3y 
B03MymeHo. B HeHOTOpbiX CJiy'tlaH:X, a 3TOM Te'tleHHH MOryT B03HHKHYTb KaBHTaiUfOHHbie 
30Hbi. B pe3yJibTaTe ,l:(eHCTBHTeJibHOCTH BblllleitpHBeAeHHbiX ~aJ<Topoa y;:(apHaH: BOJIHa rro­
CTerreHHo 3aTyXaeTc.R:. B craTHH TeopeTH'tleCKOM rryTeM HCCJieAOBaHo 3TH .R:BJieHH.R: B HeB.R:CKoii 
»<ll,ltt<OCTH BbmoJIIDiro~eH: rron-6eCKoHe'tJHYIO Tpy6y KPyrnoro ce'tleHH.R:. Ilpll 3TOM rrpe;:(IIo­
no>KeHo o;:(HoMepHoe ;:(Bil>KeHile >Kil.ZU<OCTH. HcCJie;:(OBaHO BJIIDIHH:e 3Toro rrpe;:(IIoJio>KeHWI 
H HeKOTOpbiX yrrpo~emdi IlpHIDITbiX B ypaBHeHII.R:X ;:(Bil>KeHWI TpyObl Ha pe3yJibTaTbi Bbl­
'tJHCJieHllH. 

Nomenclature 

A bore area of pipe, 
1 

a velocity of sound in liquid, a= (K/(!L)Z, 
1 

c velocity of sound in pipe wall, c = [E/(1-v2)ewf2 , 
D Eh3 /12(1-v2), 

E Youngs modulus of pipe wall material, 
Ep Eh/(1-v2), 

G E/2(1+v), 
h thickness of pipe wall, 
I Jri /12, 

Io, It Bess~l's functions, 
K bulk modulus of liquid, 
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Suffixes 

1. Introduction 

M bending moment, 
N", No longitudinal and circumferential forces, 

p · pressure, 
Ps (!La{}o, 

p, pressure of saturated vapour, 
Q shear force, 
r radial coordinate, 
R mean radius of pipe, 
t time, 
-
I I cfR, 
u longitudinal displacement of pipe wall element, 
w radial diplacement of pipe wall element, 

Wa PsR2 /Eh, 
x coordinate along the pipe, 
qJ angular deformation of pipe wall element, 
v Poisson's ratio, 
e density, 
{} liquid velocity, 

{}o initial liquid velocity. 

L liquid, 
W wall material, 

r , radial direction, 
x longitudinal direction. 

A. SZUMOWSKI 

THE FIRST significant constribution to the solution of water hammer problems include 
those of KORTEWEG [1], JOUKOWSKI [2], LAMB [3] and ALLIEVI [4]. 

The most common and practically applied theory is Joukovski's. This theory predicts 
that pressure waves travel without change of shape and velocity 

(1.1) 
a 

aL=-----1. 

(I+ 2: :r 
According to this theory, the pressure rise due to the rapid flow stopping is 

(1.2) LJp = (!La{}o. 

In Joukowski's theory it is assumed that the flow properties are uniform across any section 
of the pipe and that the deflection of the pipe is proportional to the instantaneous pressure 
in the liquid. 

In fact, the wave phenomenon resulting from the rapid stopping of the flow is much 
more complicated. Let us take into consideration an extreme case, when as an effect of 
this stopping a· shock wave emerges (Fig. la). The pressure jump in this shock caus~s, 
among other things, radial oscillations of the pipe wall. Because of these oscillations at 
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PRESSURE WAVE PATI'ERN IN A LIQUID FILLING AN ELASTIC PIPE 647 

the surface of the fluid, waves are generated and then are propagated inside the pipe (Fig. 
lb). Finally, the flow across any section becomes non-uniform. Moreover, the oscillations 
of the pipe propagate along the pipe wall with the velocity of sound specific for a material 
of the wall. In most cases this velocity is greater than the velocity of sound for the liquid. 

FIG. 1. Physical model of the investigated waves 
motion. 

a 

b 

c 

I 
v; 

- --------

Thus the wave in the pipe wall moves ahead of the shock front and disturbes the initial 
flow properties. Eventually, the shock wave is preceded by a weak cone wave (Fig. le). 

One can expect that due to the wall oscillations, the pressure distribution along the 
pipe becomes non-uniform and varies in time. 

When the initial pressure is sufficiently low, the pressure ahead of the shock front can 
locally decrease to the saturated vapour pressure. 

Of particular significance to this problem is a theoretical study by SKALAK [5], whose 
model of a transient water-hammer phenomenon includes axi-symmetric motion of the 
liquid as well as the inertia of the pipe wall. 

By means of Fourier and Laplace transforms of the equations of motion for the pipe 
wall and for the liquid, Skalak obtained an asymptotic solution, which is valid after a suffi­
ciently long time from the moment of the flow stopping. 

An example of Skalak's results is shown in Fig. 2 where pressure, longitudinal stress 
and radial displacement distributions along a pipe are given. 

It is specific in Skalak's solution tbat these distributions are uniform between the pre­
ceding and the main waves as well as behind the main wave. 
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648 A. SZUMOWSKI 

Further investigations of this problem made by KINo and FRIEDERIC [6] concerned 
the preliminary phase of the wave formation when the shock front travels a distance up 
to 3 radii. 

t 0.0071p5 

~ 0.162~Ep hR a I t o.o37~; /,tension 

XIL---...L. r~1 * -

Ps R R 
r0.0046y ~ 

r------=-- -- m 

- ----
FIG. 2. Example of Skalak's results [5]. 

-
The authors gave pressure distributions in the case where longitudinal and shear 

forces as well as momentum in the wall were neglected. 
Naturally, in this case, the existence of the precursor wave and the attenuation of the 

shock wave were not predicted. 
In all of the previous investigations continuous flow of the liquid was assumed; that 

means cavitation was neglected. The aim of this work is to investigate the formation of 
the wave pattern generated by sudden termination of a uniform flow at the end of a semi­
infinite tube including all internal forces and inertia of the pipe wall as well as the possible 
discontinuities of the liquid. 

2. Governing equations 

In the case of axi-symmetricloading of the pipe, one can distinguish four internal for­
ces shown in Fig. 3. A pipe element is displaced and deformed as a results of the action 
of these forces (Fig. 4). 

Using the notation shown in Figs. 3 and 4 and designating a comma as the x-derivative 
and a point as the t-derivativ.e, one can write the equations of pipe motion as follows: . 

Equation of motion in the axial direction 

(2.1) N I h(•• h2 ••) 
" = (!w u + 12R qJ ' 
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PREssURE WAVE PATTERN IN A UQUID FILUNG AN ELASTIC PIPE 

in the radial direction 

(2.2) 

and the equation of rotary motion 

(2.3) M ' Q - ewh
3 

( ii ··) - - ----u- 7i +qJ . 

FIG. 3. Internal forces in the pipe element. 

u 
L 

FIG. 4. Displacements and deformation of the pipe element. 

649 

Moreover, we have the following four equations which describe the relations between 
forces and deformations for the case of an elastic pipe: 

(2.4) . 

N E ( ' w h
2 

') x = P u +vR+ 12R cp ' 

N, = e.[•u'+ ~(I+ ,~:. ). 
M= n(~ +p'), 
Q = k 2Gh(cp+w'), 

where k 2 = 0.91 for v = 0.3 [7). 
Eliminating forces from the equations of motion by means of Eqs. (2.4), one obtain 

the following [7]: 

(2.5) [e.:;. -ewh-:1
2
2 ]u+[E, ~ :x]w+[~ :;2 -ew ~ a;• ]P = 0, 
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650 A. SZUMOWSKI 

(2.6) [E.~! lu+[!~ +%. -k2Gh ::2 +ewha':: ]w-[k2 Gh !]9' =p(I- 2~). 
(2.7) [ ~ 0~2 -ew ~ : 1: lu-[ k2Gh 0~ ]w+ [ D 0~2 -k'Gh-ewl :r: ]9' = o. 

When one includes only circumferential forces and radial inertia which seem to be the most . 
important factors of the pipe motion, Eqs. (2.5), (2.6) and (2. 7) reduce to the following= 

(2.8) d
2
w w h ( h ) he,w-+E- ---=p I--dt2 R R 2R . 

The axi-symmetric motion of inviscid fluid is governed by the following equations. 
Equation of continuity 

{2.9) 

and two momentum equations 

(2.10) 
(}{}x {) (}{)x {) (}{)x _I Op _ 

0 ot + X ox + r or + r!.L OX - ' 

(2.11) (}{}, +{}x!!!!:__+(), (}{},+-I op_ = 0. 
Ot OX Or r!.L or 

Linearizing and neglecting terms with {}, {}" one can reduce Eqs. (2.9), (2.10) and (2.11) 
to the axi-symmetric wave equation with respect to the velocity potential cjJ 

(2.12) 

On the other hand, when one-dimensional flow is assumed one obtains the following~ 
Equation of continuity 

(2.13) 

and momentum equation 

(2.14) a{}+{}!!__+ _1 ap = o. 
at ax r!.L ax 

In these equations the radial deformation of the pipe is taken into account. 
The equations governing the motion of the pipe wall are of the hyperbolic type and 

have the following characteristics: 

(2.15) 

(2.16) 

(2.I7) 

~~ +ckV ~ (1-•
2

) = 0, 

dx = O. 
dt 
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Physically, the characteristics given by Eq. (2.15) correspond to the propagation of 
axial forces and momenta, the characteristics given by Eq. (2.16) to the shear forces and 
the characteristic given by Eq. (2.17) corresponds to the path line. 

Neglecting the convection derivative in the momentum equation (Eq. 2.14), we have 
the following characteristics for equations of one-dimensional flow of the liquid: 

(2.18) 
dx 
dt+a = 0. 

Along these characteristics we have 

(2.19) 

where bw / bt is derivative along path line. 
In the present investigation the case is studied when c > a; the velocity of sound in 

a steel pipe is about 4 times greater than in water. The characteristics corresponding to 
this case for the positive x-direction are drawn in Fig. 5. 

t 

FIG. 5. Model of numerical calculations. X 

3. Numerical calculations and results 

The disturbed region in the x, t plane due to the rapid stopping of the flow is determined 
by the angle between the t-axis and the characteristic dxfdt = c. Numerical calculations 
of the flow properties and wall displacements in this region are carried out by the method 
of characteristics for the equation of motion of the liquid Eqs. (2.13), (2.14) and by the 
method of finite defferences for the equations of motion of the pipe wall Eqs. (2.5), (2.6) 
and (2.7). For this purpose the rectangular net is built in which the ratio of the t-step to 
the x-step is limited by the characteristic dxfdt = c. In these calculations it is taken that 
L1t = .dxfa · n, where n = entier (cfa)+ 1. This formula fulfills the limitation mentioned 
above and simultaneously secures the sharp shock wave in the calculations. In order to 
achieve this purpose each x-step (.dx) is devided into n equal segments. At the ends of the~e 
segments flow properties are calculated. 

In the case when the pressure of the liquid at any section of the pipe decreases below 
the pressure of the saturated vapour (p"), it is assumed at this section that p = Pv· 
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The following initial conditions for fluid motion are assumed: 

1J(O, 0) = 0, D(x > 0, 0) = -1J0 , 

p(O, 0) = p8 , p(x > 0, 0) = 0, 
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FIG. 6. Pressure and radial displacement distributions along the pipe _ I unsteady motion of the pipe, 
---} pressur··.e. quasi-steady motion of the pipe (e), 
- - - - ~.-·~ Joukowski's theory; 

;;;-:-_-:-.;;. } radial {unsteady motion, 
- ·- • - displacement quasi-steady motion, 

aft= 3.63, b[i = 7.26, c/i = 10.9, d{i = 21.79, e(i = 39.96. 

A. SzUMOWSKI 

16 17x/R 
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which corresponds to rapid stopping of the flow. Moreover, it is assumed that wall displace­
ments and their first derivatives are initially equal to 0. 

A semi-infinite pipe whose end is rigid and motionless is considered. At this end we have 
the following boundary conditions: 

w(O, t) = u(O, t) = cp(O, t) = 0, 

aw au acp ox (0, t) = --gx(O, t) = --gx(O, t) = 0. 

The results of calculations carried out with the data h/R = 0.06598, afc = 0.2753, 
(1La

2 /(ewc 2
) = 0.009596 are shown in Figs. 6-9. Figure 6 indicates the successive stages 

of the wave motion. One can observe that the pressure distribution before the shock 
front as well as behind it is non-uniform. 

FIG. 7. Shock wave attenuation along the pipe ( ) unsteady and (-·-·-) quasi-steady motion 
ofthe pipe. 

Immediately behind the shock, pressure decreases because the wall in this region has 
the highest outward radial velocity. After the shock wave is passed, the wall returns and 
the pressure increases again. 

It can also be seen that the strength of a shock wave is gradually diminished. At the 
stage when the shock front reaches a position equal to .11 radii (Fig. 6e), the shock is 
practically no longer visible. 

When the shock wave is sufficiently strong, regions of cavitation emerge ahead of the 
shock front. 

In Fig. 6e the pressure and the radial displacement of the wall in the case of quasi­
steady deformation of the pipe are also shown. One can observe that both the pressures 
and the radial displacements corresponding to the quasi-steady and the unsteady motion 
of the pipe are very close to one another at a sufficient distance behind the main wave. 

A good approximation of the pressure distribution in the main wave could be obtained 
from Joukowski's theory. 

21 Arch. Mech. Stos. 4-5178 
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FIG. 8. Radial displacement and pressure distributions in the case of one-dimensional (thick lines) and 

axi-symmetric (thin lines) flow. 
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FIG. 9. Radial displacement and pressure distributions obtained by means of full (thick lines) and simpli­
fied (thin lines) equations of pipe motion {see Fig. 6). 
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Shock wave attenuation determined in the case of the quasi-steady and the unsteady 
deformation of the pipe is shown in Fig. 7 where the pressures behind as well as ahead 
of the shock front are given. One can see that the shock wave has been almost fully atte­
nuated at a distance of about 10 radii. Immediately ahead of the shock front, when it is 
sufficiently strong, the cavitation zone appears. 

In all of these calculations a one-dimensional model of the motion of the liquid was 
assumed. In fact, as mentioned above, the flow is axi-symmetric. The influence of this 
assumption on the result of calculations was examined in the following manner, which 
is similar to that of KING and FRIEDERIC [6]. 

One can convert the axi-symmetric wave equation Eq. (2.12) by means of the Hankel 
transform 

R:r 

"(n17 x, t) = ~2 J rJ0(n1r)ljJ(x,.r, t)dt, 
% 0 

The derivative (alf>tar),=R:r is determined by the boundary condition between the liquid 
and the wall, namely 

( 
a4>) aw 
Tr r=R:r = Tt' 

Introducing new variables 

one obtains the following: 

(3.2) 

(3.3) 

-o, = a", 
ax' 

a"i 
Pt = f2LTt' 

a-o, + _1_ ap, = 0 
8t (2L ax ' 

B{}i 1 ap1 2 2 aw 
ax + (2La2 Tt = :Ttt ";+ R;Tt' 

which can be recognized as the momentum and continuity equations with successive pairs 
of variables Pi and {}1 for i from 0 to infinity. The compatibility equations along the char­
acteristics of Eqs. (3.2) and (3.3) are then 

(3.4) 1 ( 2 2 aw) --dn.+d{}. = n1 ~·--- adt. 
(!La 'YJ- ' ' R at 

The wall pressure is equal to the following sum: 

(3.5) 
00 

Pr=R:r =};Pi· 
i=O 

The results of calculations using this method for i from 0 to 4 are compared with the corre­
sponding ones for the one-dimensional model (Fig. 8). For simplicity Eq. (2.8) is used. 

Zl* 
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656 A. SZUMOWSKI 

The lines corresponding to the one-dimensional and axi-symmetric model are very close 
to . each other. Thus one can conclude that in this case the one-dimensional model of the 
fiow is accurate. 

In Fig. 9 pressure and radial displacement distributions along a pipe, obtained by 
means of full and simplified equations of pipe wall motion Eqs. (2.5), {2.6), (2. 7) and 
{2.8), respectively, are compared. One can see that the corresponding distributions are 
far away one from the other. Thus not only circumferential forces and radial inertia Eq. {2.8) 
but also longitudinal, shear forces and bending moment as well as longitudinal and rotary 
inertias have essential influence on the investigated wave motion. 
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