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Pressure wave pattern in a liquid filling an elastic pipe
A. SZUMOWSKI (WARSZAWA)

A sHoCk wave generated in a liquid produces a tensile wave in the wall of a pipe. Due to the
tensile wave, which usually propagates faster than the shock, there emerges in the liquid a pressure
wave preceding the shock. Moreover, in certain circumstances, cav:tation zones appear in
front of the shock. As a result, the complex pressure wave composed of the preceding wave,
cavitation zones and the shock wave is formed. The shock front is gradually attenuated along
the pipe. This complex pressure wave in an inviscid liquid filling a semi-infinite pipe of circular
cross-section is considered theoretically in the paper. One-dimensional motion of the liquid is
assumed. The influence of this assumption and of some simplifications performed in the equations
of pipe motion on the calculation results are shown.

Fala uderzeniowa wytworzona w cieczy powoduje oscylacje $cianki rury. Oscylacje te rozprze-
strzeniaja si¢ wzdhuz rury zwykle z predkodcia wigksza niz wynosi predkosé fali w cieczy.
Na skutek tego przepltyw przed czolem fali uderzeniowej zostaje wstgpnie zaburzony. W pew-
nych przypadkach, w przeplywie tym mogg wystapi¢ strefy kawitacji. W wyniku dzialania
wymienionych czynnikéw fala uderzeniowa w cieczy ulega stopniowemu tlumieniu, W pracy,
na drodze teoretycznej, badano opisane zjawiska w przypadku cieczy nielepkiej wypelniajacej
pOhieskonczong rur¢ o przekroju kotowym, zakladajac przy tym jednowymiarowy ruch cieczy.
Zbadano wplyw tego zalozenia oraz wplyw pewnych uproszczeti w réwnaniach ruchu rury
na wyniki obliczen.

YnapHas BojHa, reHePHPOBaHHAA B KMIKOCTH, BEISEIBAeT KOjaeOaHMA cTeHKM TPYOBl. ITH
KoneGaHMA pacIpoCTPaHAIOTCA MO TpyOe cO CKOPOCTIO, KOTOpaA IpeHMMyllecTBeHHO Gonbman
yeM CKOPOCTE BOJIHbI B YKHIKOCTH. B cireficTBe Toro TeyeHue mepeq yOapHOH BOJHOM cpasy
BO3MYIIEHO, B HeKOTOpBIX ciyuasx, B 9TOM TedYeHHHM MOTYT BOSHHKHYTh KaBHTALMOHHEIE
30HB!. B pesynsraTe AefiCTBHTEIBHOCTH BhIIENPHBEAEHHBIX (aKTOPOB yAapHasa BOJMHA IIO-
CTEIIeHHO 3aTyXaeTcA. B cTaTum TeopeTHYeCKOM ITyTéM HCCIIeJOBAHO 3TH ABJIEHHA B HEBACKOH
JKHIKOCTH BBIIONHAIOWEH nos-GeckoHeunylo Tpyby Kpyruoro cedenus. Ilpu sTom mpenmmo-
JIOXKEHO OIHOMEpHOe MBIDKeHWe >kuaKocTH. HcecnenoBaHo BIMsiHHE 3TOr0 NPEATIONOMKEHHA
M HEKOTOPBIX YNPOLIeHHI MPHHATLIX B YPABHEHHAX OBIDKEHHA TPYObI HA pPe3yNbTaThl Bhl-
Y CIICHMH .

Nomenclature

-

bore area of pipe,

1
velocity of sound in liquid, a = (K/ev) ?,

-]

1
velocity of sound in pipe wall, ¢ = [E/(1—v%)04]2,
ER*[12(1—»%),

Youngs modulus of pipe wall material,
Eh|(1—v%),

E[2(1+v),

thickness of pipe wall,

K12,

Bessel’s functions,

bulk modulus of liquid,

IO;

hbha-vahbn
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M bending moment,
Nx, No longitudinal and circumferential forces,
P pressure,
ps owath,
pressure of saturated vapour,
shear force,
radial coordinate,
mean radius of pipe,
time,
tc/R,
longitudinal displacement of pipe wall element,
radial diplacement of pipe wall element,
psR*|Eh,
coordinate along the pipe,
angular deformation of pipe wall element,
Poisson’s ratio,
density,
liquid velocity,
¥, initial liquid velocity.

b4

iﬁhihhﬁm

E

S w8 X

Suffixes
L liquid,
W wall material,
r . radial direction,
x longitudinal direction.
1. Introduction

THE FIRST significant constribution to the solution of water hammer problems include
those of KOorRTEWEG [1], Joukowski [2], LAMB [3] and ALLIEVI [4].

The most common and practically applied theory is Joukovski’s. This theory predicts
that pressure waves travel without change of shape and velocity

(1.1) g wm e T
2R K\?
(‘ i T 1
Accordirig to this theory, the pressure rise due to the rapid flow stopping is
(1.2) Ap = erad,.

In Joukowski’s theory it is assumed that the flow properties are uniform across any section
of the pipe and that the deflection of the pipe is proportional to the instantaneous pressure
in the liquid.

In fact, the wave phenomenon resulting from the rapid stopping of the flow is much
more complicated. Let us take into consideration an extreme case, when as an effect of
this stopping a shock wave emerges (Fig. 1a). The pressure jump in this shock causes,
among other things, radial oscillations of the pipe wall. Because of these oscillations at
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the surface of the fluid, waves are generated and then are propagated inside the pipe (Fig.
1b). Finally, the flow across any section becomes non-uniform. Moreover, the oscillations
of the pipe propagate along the pipe wall with the velocity of sound specific for a material
of the wall. In most cases this velocity is greater than the velocity of sound for the liquid.

|

a —_————,— — — o — —

)

F1G. 1. Physical model of the investigated waves
motion.

Thus the wave in the pipe wall moves ahead of the shock front and disturbes the initial
flow properties. Eventually, the shock wave is preceded by a weak cone wave (Fig. 1c).

One can expect that due to the wall oscillations, the pressure distribution along the
pipe becomes non-uniform and varies in time.

When the initial pressure is sufficiently low, the pressure ahead of the shock front can
locally decrease to the saturated vapour pressure.

Of particular significance to this problem is a theoretical study by SkALAK [5], whose
model of a transient water-hammer phenomenon includes axi-symmetric motion of the
liquid as well as the inertia of the pipe wall.

By means of Fourier and Laplace transforms of the equations of motion for the pipe
wall and for the liquid, Skalak obtained an asymptotic solution, which is valid after a suffi-
ciently long time from the moment of the flow stopping.

An example of Skalak’s results is shown in Fig. 2 where pressure, longitudinal stress
and radial displacement distributions along a pipe are given.

It is specific in Skalak’s solution that these distributions are uniform between the pre-
ceding and the main waves as well as behind the main wave.



648 A. SzuMOWSKI

Further investigations of this problem made by KiNG and FRIEDERIC [6] concerned
the preliminary phase of the wave formation when the shock front travels a distance up
to 3 radii.
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Fic. 2. Example of Skalak’s results [5].

The authors gave pressure distributions in the case where longitudinal and shear
forces as well as momentum in the wall were neglected.

Naturally, in this case, the existence of the precursor wave and the attenuation of the
shock wave were not predicted.

In all of the previous investigations continuous flow of the liquid was assumed; that
means cavitation was neglected. The aim of this work is to investigate the formation of
the wave pattern generated by sudden termination of a uniform flow at the end of a semi-
infinite tube including all internal forces and inertia of the pipe wall as well as the possible
discontinuities of the liquid.

2. Governing equations

In the case of axi-symmetric loading of the pipe, one can distinguish four internal for-
ces shown in Fig. 3. A pipe element is displaced and deformed as a results of the action
of these forces (Fig. 4).

Using the notation shown in Figs. 3 and 4 and designating a comma as the x-derivative
and a point as the #-derivative, one can write the equations of pipe motion as follows:

Equation of motion in the axial direction

Y
2.1 N; = Qwh(" + m“?):
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in the radial direction

22) -2 +p(1—3’§—) = ewhiv,

and the equation of rotary motion

@3) M—g =2 [E

FiG. 3. Internal forces in the pipe element.

u

FiG. 4. Displacements and deformation of the pipe element.

Moreover, we have the following four equations which describe the relations between
forces and deformations for the case of an elastic pipe:

LW, R
Nx = E,(u +‘)’F+ﬁ¢-‘ ),
,wW h?
Ny = Ep[‘i’l{ + 'E(l + W),
(2.4 ;
u '
M= D('R- +q@ ),
Q = k*Gh(p+w),
where k% = 0.91 for» = 0.3 [7].

Eliminating forces from the equations of motion by means of Eqgs. (2.4), one obtain
the following [7]:

9% a2 v 0 D 2* J @9
&) [E’%?“QW""&T]”[EPE a]““f[fz;?“-’* mz—z]?’ =<l
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v 3 By B ons 8 9* g O ) h
D ¢ J o* d a2
(2.?) [Ea-f—Qwiajhlu—[kz(;hg]w-f*[D'a—'z——szk ewja 2] = 0.

When one includes only circumferential forces and radial inertia which seem to be the most
important factors of the pipe motion, Egs. (2.5), (2.6) and (2.7) reduce to the following:

d’w wh h

The axi-symmetric motion of inviscid fluid is governed by the following equations.
Equation of continuity

3(91.’9:) 9, 3(9:.3:) dor
@9 or r B @

and two momentum equations
o9 00, a, 1 op

(2.10) o gt a0,
o9, . 29, .3, 1 o
(2.11) % +3, I +%, e + F =0.

Linearizing and neglecting terms with 9,, ¥, one can reduce Eqgs. (2.9), (2.10) and (2.11)
to the axi-symmetric wave equation with respect to the velocity potential ¢

¢ 1 ¢ 9% 1 8%
(1 T IR P R R T
On the other hand, when one-dimensional flow is assumed one obtains the following:
Equation of continuity

(2.13) 3(@514) + a(giA)

=0,

and momentum equation

o8 ¢ 1 dp

(2.14) ?r_-'- E:—+Q—LE=O.

In these equations the radial deformation of. the pipe is taken into account.
The equations governing the motion of the pipe wall are of the hyperbolic type and
have the following characteristics:

dx

(2.15) = Fg=0
(2.16) ——-+ckV—~(l— ) =0,
2.17) £ a1,

dt
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Physically, the characteristics given by Eq. (2.15) correspond to the propagation of
axial forces and momenta, the characteristics given by Eq. (2.16) to the shear forces and
the characteristic given by Eq. (2.17) corresponds to the path line.

Neglecting the convection derivative in the momentum equation (Eq. 2.14), we have
the following characteristics for equations of one-dimensional flow of the liquid:

d
(2.18) —’:m =0.
Along these characteristics we have
_ ;_az dw .

where dw/ét is derivative along path line.

In the present investigation the case is studied when ¢ > a; the velocity of sound in
a steel pipe is about 4 times greater than in water. The characteristics corresponding to
this case for the positive x-direction are drawn in Fig. 5.
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Fi16. 5. Model of numerical calculations. X

3. Numerical calculations and results

The disturbed region in the x, ¢ plane due to the rapid stopping of the flow is determined
by the angle between the 7-axis and the characteristic dx/df = ¢. Numerical calculations
of the flow properties and wall displacements in this region are carried out by the method
of characteristics for the equation of motion of the liquid Egs. (2.13), (2.14) and by the
method of finite defferences for the equations of motion of the pipe wall Egs. (2.5), (2.6)
and (2.7). For this purpose the rectangular net is built in which the ratio of the s-step to
the x-step is limited by the characteristic dx/dt = c. In these calculations it is taken that
At = Ax[a- n, where n = entier (¢/a)+1. This formula fulfills the limitation mentioned
above and simultaneously secures the sharp shock wave in the calculations. In order to
achieve this purpose each x-step (4x) is devided into n equal segments. At the ends of these
segments flow properties are calculated.

In the case when the pressure of the liquid at any section of the pipe decreases below
the pressure of the saturated vapour (p,), it is assumed at this section that p = p,.
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The following initial conditions for fluid motion are assumed:
#0,0) =0, H(x>0,0)= —9d,,
p(o’ 0) = Ps» P(x >0, 0) = 0’

p/ps, w/ws
A

NN
14 15 16 17y /R

FI1G. 6. Pressure and radial displacemsnt distributions along the pipe

unsteady motion of the pipe,
} pressure | quasi-steady motion of the pipe (e),
al e . | Joukowski’s theory;
;""'-""'.'.".} radial unsteady motion,
displacement |quasi-steady moiion,
aft = 3.63, bft = 7.26, ¢/t = 10.9, dt = 21.79, e/t = 39.96.
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which corresponds to rapid stopping of the flow. Moreover, it is assumed that wall displace-
ments and their first derivatives are initially equal to 0.

A semi-infinite pipe whose end is rigid and motionless is considered. At this end we have
the following boundary conditions:

w(0, 1) = u(0,1t) = ¢(0,1) = 0,
aw _ Ou _ dp _
a_x(o’ Ir) e -5;(0, f) = "5;(0’ I) =0.

The results of calculations carried out with the data #/R = 0.06598, a/c = 0.2753,
0.@*[(owe?) = 0.009596 are shown in Figs. 6-9. Figure 6 indicates the successive stages
of the wave motion. One can observe that the pressure distribution before the shock
front as well as behind it is non-uniform.

o/ps

—
| __—__‘_____."_“..l-u‘i._.
%;\ 1 | 1 _1____—_-_-_[__——/1__ -
1 2 3 1 5 5 7 8 g 0 u XIR
FiG. 7. Shock wave attenuation along the pipe ( ) unsteady and (— - —-— ) quasi-steady motion

of the pipe.

Immediately behind the shock, pressure decreases because the wall in this region has
the highest outward radial velocity. After the shock wave is passed, the wall returns and
the pressure increases again.

It can also be seen that the strength of a shock wave is gradually diminished. At the
stage when the shock front reaches a position equal to 11 radii (Fig. 6e), the shock is
practically no longer visible.

When the shock wave is sufficiently strong, regions of cavitation emerge ahead of the
shock front.

In Fig. 6e the pressure and the radial displacement of the wall in the case of quasi-
steady deformation of the pipe are also shown. One can observe that both the pressures
and the radial displacements corresponding to the quasi-steady and the unsteady motion
of the pipe are very close to one another at a sufficient distance behind the main wave.

A good approximation of the pressure distribution in the main wave could be obtained
from Joukowski’s theory.

21  Arch. Mech, Stos. 4-5/78
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Fic. 8. Radial displacement and pressure distributions in the case of one-dimensional (thick lines) and
axi-symmetric (thin lines) flow.
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FiG. 9. Radial displacement and pressure distributions obtained by means of full (thick lines) and simpli-
fied (thin lines) equations of pipe motion (see Fig. 6).
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Shock wave attenuation determined in the case of the quasi-steady and the unsteady
deformation of the pipe is shown in Fig. 7 where the pressures behind as well as ahead
of the shock front are given. One can see that the shock wave has been almost fully atte-
nuated at a distance of about 10 radii. Immediately ahead of the shock front, when it is
sufficiently strong, the cavitation zone appears.

In all of these calculations a one-dimensional model of the motion of the liquid was
assumed. In fact, as mentioned above, the flow is axi-symmetric. The influence of this
assumption on the result of calculations was examined in the following manner, which
is similar to that of KING and FRIEDERIC [6].

One can convert the axi-symmetric wave equation Eq. (2.12) by means of the Hankel

transform
Ry
—2~f rdo(mr) ¢(x, r, t)dt,

2
R’o

x(nlv X, t) -

where R, = R(1 —h/2R), m; are non-negative roots of J;(7; R;) = 0, to this form
G.1) I Lo annmrl®l -0
’ ax?  a* ar? ' FORHTEN or ’

r=R;

The derivative (d¢/dr),.g, is determined by the boundary condition between the liquid

and the wall, namely
%) _ ow
or J,= Rs oot

axg _ 3%;
% = x’ b= QLa_t,

Introducing new variables

one obtains the following:

319; 1 Bp, _
(3.2) —é?"i'a"‘é—; = 0,
aﬂl‘ 1 3pi e _g_ 3w
G3) ax +g;a’ a - ™ ik R, at’

which can be recognized as the momentum and continuity equations with successive pairs
of variables p; and ¥ for i from 0 to infinity. The compatibility equations along the char-
acteristics of Eqgs. (3.2) and (3.3) are then

1 i 2 ow
(34) &—adp: a d‘ﬂi = (75] *®— "R" —.a}'-')ad!
The wall pressure is equal to the following sum:
(3.5 Prere= ), Piv
i=0

The results of calculations using this method for i from 0 to 4 are compared with the corre-
sponding ones for the one-dimensional model (Fig. 8). For simplicity Eq. (2.8) is used.

21
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The lines corresponding to the one-dimensional and axi-symmetric model are very close
to each other. Thus one can conclude that in this case the one-dimensional model of the
flow is accurate.

In Fig. 9 pressure and radial displacement distributions along a pipe, obtained by
means of full and simplified equations of pipe wall motion Egs. (2.5), (2.6), (2.7) and
(2.8), respectively, are compared. One can see that the corresponding distributions are
far away one from the other. Thus not only circumferential forces and radial inertia Eq. (2.8)
but also longitudinal, shear forces and bending moment as well as longitudinal and rotary
inertias have essential influence on the investigated wave motion.
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