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Two-dimensional calculations of an explosion
in the real atmosphere

L. V. SHURSHALOV (MOSCOW)

TWO-DIMENSIONAL or axisymmetrical non-stationary gas flow which arises when a cylindrical
or a spherical charge explodes in the real non-homogeneous atmosphere is studied. The explo-
sions are modelled by the expansion of the corresponding volumes containing compressed hot
gas. The finite-difference Godunov's method with some necessary modifications is applied to the
solution of the arising gasdynamical problem. Non-isothermal properties of the real undisturbed
atmosphere and thermodynamical high-temperature characteristics of air are taken into account.
The comparison with the analogous results obtained for the isothermal (exponential) atmosphere
and the perfect gas is carried out. On the basis of the two-dimensional numerical solution the
accuracy of the well-known approximate modified Sachs scaling rule, which allows to determine
shock wave intensity in a non-homogeneous atmosphere using the corresponding data for
a homogeneous atmosphere, is evaluated. Significance of the results obtained for the determina-
tion of the Tunguska meteorite trajectory and energetic parameters is discussed.

Badany jest dwuwymiarowy lub osiowo-symetryczny przeplyw gazu wywolany wybuchem cylin-
drycznego lub sferycznego ladunku w rzeczywistej niejednorodnej atmosferze. Wybuchy modelo-
wane s3 ekspansja odpowiednich objetoéci zawierajacych podgrzany gaz. Do rozwigzania wyzej
oméwionego zagadnienia gazodynamicznego zastosowano metode réznic skoficzonych Godu-
nowa z pewnymi niezbednymi modyfikacjami. Uwzglgdniono nieizotermiczne wlasnosci rzeczy-
wistej niezaburzonej atmosfery i termodynamiczne wysokotemperaturowe charakterystyki
powietrza. Przeprowadzono poréwnania rozwigzania z wynikami analogicznymi otrzymanymi
dla izotermicznej (wykladniczej) atmosfery i gazu doskonalego. Na podstawie dwuwymiarowego
rozwiazania numerycznego wyznaczono dokladno$¢ dobrze znanego przyblizonego, zmodyfi-
kowanego prawa podobienstwa Sachsa, ktore pozwala okresli¢ intensywno$é fali uderzeniowej
w niejednorodnej atmosferze, wykorzystujac odpowiednie dane dla atmosfery jednorodnej.
Przedyskutowano znaczenie otrzymanych wynikow dla okreslenia trajektorii i parametrow
energetycznych meteorytu Tunguskiego.

Hccnenyerca ABYMEPHOE HJIH OCECHMMETPHYHOE TeUeHHeE I'a33, BLI3BAHHOE B3PLIBOM LMJIHHAPH-
yecKoro uim cepryecKoro 3apafa B PeasbHOI HeOHOPOAHOM atmMocthepe. Baphisnl moaem-~
PYIOTCA PACILHMpPEHHEM COOTBETCTBYIOUIMX 00BLeMOB, cofepyKalliux momorpersiii ras. ns
pelleHHs Bbllieobey)IeHHOH rasoguHaMuyeckoil 3afjauu NpUMEeHEH METOJ KOHEUHBIX pas-
Hocteit T'ofyHOBa ¢ HEKOTOPEIMH HEOOXOMMMBIMHM MOMMHKALMAMH. YUTEHBI HEH3OTEPMH-
YecKHe CBOHCTBAa peaJlbHOH HEBO3MYLIEHHOH aTtmochepbl H TEPMOAHMHAMHYECKHE BBHICOKO-
TEMIEPATYPHbIE XapaKTePHCTHIM Bo3yxa. IIpoBefeHo cpaBHeHHE PELIeHHA ¢ AHAJIOTHYHBIME
pe3ybTaTaMu, MOTYYeHHBIMH /17 H30TEPMHYECKOH (3KCIIOHEHIMANBHOH) aTMochephl H HaeaTh-
Horo raza. Ha ocHoBe NBYyMepHOro YMCIEHHOTO pelUeHHA ONpe/e/ieHa TOYHOCTh XOPOILO M3~
BECTHOro Npub/MDKeHHOTo MOAMQHIMPOBaHHOTO 3akoHa nofodusa Coxca, KOTOPEIH MO3BOIACT
ONpee/IUTh MHTEHCHBHOCTE YAapHOH BOJIHBI B HeOJHOPOAHOH armoctepe, HCIIONB3YA COOT-
BETCTBYIOILME MaHHBbIE 1A OOHOPOMHOH aTmocdepbl. OOCY)KIEHO 3HAYEHHE IIONYUYEHHBIX
PE3YJILTATOB JUIA ONpeNiesIeHHA TPaeKTOPHBIX M SHEPreTHUYeCKHX NapameTpoB TYHI'YCCKOro
MeTeopHTa.

1. Introduction

DURING the last ten years considerable attention has been paid in the theory of explosion
to the study of two-dimensional effects caused by the non-homogeneity of the real Earth’s
atmosphere. In particular, the “strong” stage of an explosion, i.e. when counter-pressure
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of the shock in front can be neglected, was investigated in detail [1 —4]. For many appli-
cations, including those from meteoritics, consideration of the late stage of an explosion
in a non-homogeneous atmosphere, when the shock wave goes far from the source and the
counter-pressure cannot be neglected, is of prime importance. For the perfect gas model
and an isothermal exponential atmosphere such a two-dimensional solution taking into
account gravity force was numerically obtained by the author [5] on the basis of the Godu-
nov finite-difference method [6, 7). The present paper generalizes the previous results to
the case of the non-isothermal standard atmosphere and high-temperature properties of
real air. The explosion energies and heights considered are chosen close to those which
might have taken place at the gigantic Tunguska explosion in 1908. Gasdynamical aspects
of the Tunguska meteorite problem were studied lately by V. P. KorROBEINIKOV, P. I. CHUSH-
KIN and L. V. SHURSHALOV [8—13].

2. Gasdynamical models

Undisturbed pressure p and density g in the non-homogeneous Earth’s atmosphere are
supposed to be dependent only on the vertical coordinate z which is counted off further
on from sea level. Two models of the atmosphere are considered. In the simplest isothermal
exponential atmosphere

P = p«€Xp(—2/z,), @ = @sexp(—2/z,),
= Pm"(@szs)-

Here z, is the scale height of the atmosphere, p, and g, are the pressure and the density
at z = 0, g is the acceleration of gravity. The real Earth’s atmosphere is not isothermal.
Its average, so-called standard conditions are tabulated. Convenient analytic fits were
built up [13], representing the table data to within 0.5%, in the height range from 0 to 60 km.
Their general form is as follows:

(2:2) f=a+bé+ct*+d83, & = (2—20)/(z1—20)

The values of log p, log p and g are taken as f. The coefficients in Egs. (2.2) for g in the
whole considered height range are a = 9.8066, b = —0.1845, ¢ = 0.0026, d = 0, with g
in m/sec?. The height interval 0+ 60 km was divided into three parts forpand 0: z, < z < z,
(zo = 0 km, z; = 10 km; z, = 10 km, z, = 30 km; z, = 30 km; z, = 60 km). The cor-
responding coefficients for these three intervals are shown in Table 1.

Here the pressure p is expressed in kg/m?, while the density p is in kg sec?/m*.

For the numerical procedure it does not matter which atmosphere model is considered.
But results may differ rather essentially, what will be illustrated in the following.

Two kinds of explosions in the non-homogeneous atmosphere are considered: one
of a spherical charge and the other of a cylindrical charge inclined under the angle a to
the Earth’s- surface. In the latter case the plane sections’ hypothesis (which has evident
limitations, of course) is used. On account of it the three-dimensional problem is reduced
to a two-dimensional one: the consideration of a flow in a plane perpendicular to the
charge’s axis. In all cases an explosion is modelled by an expansion of compressed hot gas
volumes. It is simple, on one hand, and it provides better representation of some significant

@.1).
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Table 1.
log p 0<z<10km 10<z<30km 30<z< 60km
kg/m?

a. 4.0142 3.4316 2.0817
b —0.5156 —1.3496 —1.9532
c —0.0543 —0.0508 0.5295
d —0.0127 0.0505 —0.2672

log ¢ 0<z<10km 10<z<30km 30<z< 60km

kg sec?/m* *

a —0.9034 —1.3750 27386
b —0.4175 —1.3057 —2.0934
c —0.0436 —0.0465 0.4541
d —0.0105 —0.0115 —0.0929

features of an explosion of finite volume charges, on the other. The plane sections, hypothesis
in the cylindrical explosion case suggests that some effective values of the acceleration of
gravity § = g cos« and atmosphere scale height Z, = z, /cos« for the isothermal atmosphere
or the corresponding alteration of the length scales for the standard atmosphere should be
introduced. The general qualitative features of spherical and cylindrical explosions appear
quite similar. That is why the computational results for a spherical explosion will mainly
be discussed later on.

In our calculations air is considered as a non-viscous non-heat-conducting gas whose
caloric equation of state is in the form

&(p, o) = plle(y—1)]

in which p is the pressure, p the density, ¢ the internal energy per unit of mass. Both, a per-
fect gas having the constant value of the adiabatic index y = ¥o = 1.4 and a real gas with
y = y(p, 0) are considered. Table data of the air thermodynamic characteristics within
the wide range of temperatures from very low up to millions of degrees Kelvin exist (see,
for example, [14]). There are also different analytic fits to the table data. We use BRODE’S
analytic form [15] which represents the thermal and caloric properties of air to within
10% in the density and temperature range of interest. In the cases considered the tempera-
tures T are high enough to take into account various dissociations and ionizations of mole-
cules and atoms in high-temperature air and, at the same time, not so high in order that
radiative processes strongly affect the explosion dynamics (200°K < T < 30.000°K). Use
of an effective adiabatic index y(p, g) leads in the method [6, 7] to some complication of
the calculation procedure and the corresponding increase of the computing time.

.With the understanding of what has been said, the equations of motion governing the
flow from an explosion in a non-homogeneous atmosphere will have the form

oduldt+dplor = 0, pdw|dt+dploz = —pg,
do/dt+o(0w/dz+ du[dr +vu[r) = 0, '
OE[ot+ d[w(E+p)]/0z+ 8[u(E+p)l|dr+vu(E+p)[r = —ogw,
E = gle+ u*+w?)/[2].
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Here u and w are the 'velocity components along the radial » and vertical z coordinates,
correspondingly, » = 0.1 for a cylindrical and a spherical explosions, accordingly.

The g terms in the equations are very important. One can neglect them only while
considering the early “strong” stage of an explosion, as it is ordinarily done [4]. The con-
sideration of all explosion stages up to the “weak™ one does not allow such a neglect
because it leads to a catastrophic deterioration of results.

3. Numerical aspects

The blast calculations were carried out by the finite-difference GopuNov’s method [6, 7]
with some modifications specific for the problem under consideration. A good choice of
the network is important. Here it is built up in the polar coordinates R, # with the origin at
the explosion centre. Firstly, we use a moving computational grid in which the shock wave
is treated as its boundary line with all the necessary boundary conditions being exactly
satisfied. The shock front distinguishing technique considerably improves the accuracy
of the solution as a whole. Secondly, the radial size of network cells is taken to be variable
according to some law so that it diminishes while approaching the shock front and is
automatically handled to the flow. This provides a better representation of hydrodynamic
functions in the zone of their maximum gradients. Thirdly, uniform approximation along
the angular coordinate 6 is required. The network angle division is formed by uniformly
distributed rays = const. beginning at the central point of the explosion. Fourthly,
from the same considerations the difference scheme is built up in a somewhat non-standard
way. In it the basic divergent form of continuity and energy equations is chosen ordina-
rily [7], while for two momentum equations it is taken as it was proposed for all equations
in the work [16]. The purpose is that the two-dimensional difference scheme should give
the best possible results if one solve is the one-dimensional problem, as well, i.e. that the
results along different angle directions should not differ at all or differ minimally. Fifthly,
the convergence of the grid rays 6 = const. at a single point accounts for a computational
singularity. Cells which are neighbouring geometrically do not turn out to be neighbouring
computationally. Because of this effect disturbances come to some central cells from
others, adjacent to them, with a time delay and this deteriorates the quality of the solu-
tion. To exclude that the central triangle cells are united in one, a polygon (or two poly-
gons: upper and lower). In addition, this procedure increases the difference scheme stability
and correspondingly decreases the computational time, all the more that just within that
central region maximum temperatures and sound speeds take place.

While calculating explosions in the atmosphere one should keep in mind that sooner
or later the shock will reach the Earth’s surface and the problem of a reflection calculation
then arises. This problem is in itself a rather complicated one and, generally speaking,
demands special attention. In our calculations reflection processes are taken into account
within one and the same difference scheme and network. In this case, then, details of re-
flection in the vicinity of the shock wave-Earth’s surface intersection point are lost, they
only contribute to the integral picture of the process. Consequently, one has to introduce
here a non-standard five-cornered cell. In the region near the ground surface far from the
intersection point the accuracy achieved is of the same order as for the solution as a whole.
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4. Results

Some results of an explosion calculation in the real non-homogeneous atmosphere
are discussed in the following. In the examples presented initial blast parameters are taken
close to those that may be interesting for the investigation of the Tunguska meteorite
problem studied in detail in the works [8-13].

To begin with we consider an explosion of energy E, = 1022 erg occurring at a height
H = 8 km above sea level. The explosion is not a point-source blast but an expansion of
a finite spherical volume containing a compressed hot gas. Initial data within the volume
are chosen so that the shock wave quickly approaches the point-source blast regime; in
other words a low hot gas density within the spherical volume is taken. The influence of
different factors on shock wave strength is clearly seen in Fig. 1. Here the shock overpres-
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FIG. 1, Peak overpressure AP = (p,—p,)/p, versusshock radius R, for the upper and lower parts of the shock.
1 —real gas, standard atmosphere, 2 — perfect gas, exponential atmosphere, 3 — real gas, exponential
atmosphere, 4 — perfect gas, standard atmosphere.

sure AP = (p,—p,)/p: (p, is the shock pressure, p, is the ambient atmosphere pressure
immediately outside the shock) is depicted as a function of the shock radius R,. The set
of the lower [upper curves corresponds to the blast wave part propagating vertically down/
upwards. The solid lines show the results for the real non-isothermal atmosphere and
real gas, the air physical-chemical high-temperature properties being considered. The
dashed curves give analogous data for the isothermal exponential atmosphere and perfect
gas with y, = 1.4. Circles and triangles indicate intermediate cases: 1) the isothermal
atmosphere and real air, 2) the standard atmosphere and perfect gas, correspondingly.

Though Fig. 1 represents results for one set of initial parameters, the mutual position
of the curves is the same for the broad range of energies E, and moderate heights H (H <
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< 10 km) and also for a cylindrical explosion. Therefore, Fig. 1 may serve as an illustra-
tion of the role of the non-isothermal atmosphere properties and high-temperature char-
acteristics of real air. First of all, it is seen that results for the lowering part of the shock
(the lower set of data) for real air inthe exponential and standard atmospheres are very
close out at considerable distances. The same is true for the perfect gas model. Hence,
it follows that the lowering front parameters out at far radii from the source do not depend
substantiglly on which of the two mentioned atmosphere models is used. This conclusion
is especially important for the Tunguska meteorite problem for which just parameters of
the lowering shock wave are of interest. Thus these parameters can be determined with
good accuracy by means of the isothermal atmosphere model.

One should keep in mind only the following. The isothermal (exponential) atmosphere
may be chosen differently. The constants p,, ., 2z, in the relations (2.1) may be taken
from the conditions at sea level, at the blast point or at any other point of the atmosphere.
Then, strictly speaking, the exponential and standard atmospheres coincide only in this
single point and nowhere more. In general, the greater the distance from this point, the
more they differ. In our calculations those constants are chosen from the standard sea
level air conditions, what provides proximity of the two atmosphere models near the Earth’s
surface. Consequently, shock wave intensities near the ground happen to be close.

For the raising part of the shock, as it is seen from Fig. 1, the results for the isother-
mal and standard atmospheres considerably differ. This is accounted for by the marked
difference in these two atmosphere models at high altitudes. In the height range between 0
and 17 km, which is characteristic for this example, the standard atmosphere pressure is
everywhere lower than in the exponential atmosphere, the standard atmosphere density
is lower between 0 and 12 km, then it is higher than in the exponential atmosphere.

Figure 1 shows that shock wave intensity in real air is lower than in perfect gas. The
difference is 75—100%; at the beginning, then it decreases down to approximately 10%.
It is clearly seen that for the lowering shock it is more important to incorporate in the
calculation the real air properties than the non-isothermal distributions of the atmosphere.
Hence, by solving the inverse Tunguska meteorite problem with due consideration of high-
temperature effects in air, one may get somewhat altered Tunguska explosion energy estima-
tions obtained for the present by means of the perfect gas model [10, 12].

For an approximate determination of shock wave parameters in a non-homogeneous
atmosphere, the well-known modified Sachs scaling rule exists. It postulates that for an
explosion in a non-homogeneous atmosphere the shock wave strength at a point where
P = D1, 0 = @, is the same as the shock wave intensity at the same distance R from the
source for an identical explosion in a homogeneous atmosphere whose constant ambient
pressure and density are p, and p,. M. LutzKy and D. L. Leuto [17] compared the Sachs
rule with the quasi-one-dimensional blast calculations in an exponential atmosphere for
the case of the lowering shock waves. It turned out that the Sachs rule gave shock waves
intensities to within 209 lower than the quasi-one-dimensional solution. It is interesting
to find out what is the relation of the Sachs rule with respect to the two-dimensional numeri-
cal solution for all parts (lowering and rising) of the shock wave and for both spherical
and cylindrical explosions.
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Figure 2 shows the dependences AP(R,) = (ps—p,)/p; calculated for a spherical (E, =
= 1023 erg, H = 8 km. solid lines) and a cylindrical (E, = 1.4- 107 ergfcm, H = 13 km,
o = 40°, dashed curves) blasts in an exponential atmosphere by means of the two-dimen-
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FiG. 2. Comparison between the two-dimensional solution and the modified Sach’s rule for spherical and
cylindrical explosions.
1 — spherical explosion, 2 — cylindrical- exlosion, 3 — modified Sach’s rule.

sional numerical procedure and the corresponding results obtained with the help of the
Sachs rule (crosses for a spherical, circles for a cylindrical explosion). The upper/lower
curves conform to the vertically rising/lowering shock front part. As it is seen, the
Sachs rule gives quite good results not only for the lowering but also for the raising part
of the shock. For the lowering shock the maximum difference between the Sachs and two-
dimensional values of AP lies within 15—20 %, the Sachs rule giving higher intensities here.
For other values of .energies and altitudes this relation between the Sachs rule and the two-
dimensional solution is approximately kept. Therefore, the simple Sachs rule gives better
results than the quasi-one-dimensional numerical solution, at least for the lowering shock
waves. Unfortunately, there are no data in [17] concerning rising blast waves but apparent-
ly the situation will be the same for them, too. Anyway, the use of the simple Sachs
rule while performing the Tunguska explosion calculations, as it was done in [8-12], is
fully justified. It leads only to a comparatively low (up. to 20%) raising of shock wave
intensities and a corresponding understating of the explosion energy estimations in the
solution of the inverse problem.

The way the explosion energy is distributed in space in a non-homogeneous atmosphere
is a significant question, especially from the point of view of applicabilities of various
quasi-one-dimensional techniques. The first calculations of a “strong blast” in a non-
homogeneous atmosphere [1] demonstrated that there was a flow of energy upwards.
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However, until recently, a detailed picture of this process at all stages of explosion has not
been ascertained. Only in [5, 13] the question was elucidated for the case of an isothermal
atmosphere and perfect gas model.

Before speaking about the explosion energy distribution it is interesting and useful
to trace out the way the flow is changed with time. The flow (velocity) fields for an explo-
sion with E, = 6.5- 10?2 erg and H = 6.5 km at two instants ¢ = 5.4 sec and ¢t = 19 sec
are shown in Figs. 3 a, b. Because of the large difference in shock radii at these two mo-

z,km § £,=65-10%%rg, H=65km

—r—?ﬁﬂm/&'

0

o

Fi1G. 3a. Velocity field at ¢t = 5- 4 sec.

ments, a different length and velocity scales (indicated in the figures) are used here. At the
instant ¢ = 19 sec the shock wave has already reached the ground (z = 0) and reflection
from the surface is calculated. As it is seen, initial radial velocity distribution which is char-
acteristic for the one-dimensional flow is changed at first (Fig. 3a) in such a way thata pow-
erful gas flow upwards arises in the central part of the disturbed region. Then, at later
times (Fig. 3b), the flow is whirled and a ring-shaped vortex is formed. The latter effect
is typical for explosions in a non-homogeneous atmosphere. Its origin lies in the end in the
action of gravity. Thus, as one may note, at later times the flow acquires a rather complicated
character.
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The exchange of energy between the lower and upper parts of the disturbed region as
a function of time ¢ for a spherical explosion with E, = 10?* erg and H = 8 km is shown
in Fig. 4. An integral of the form

- LB BV
4.1) E= fnff[y—l 5 +e +(o gl)gz]a!Q
z,km )
15 E,=65-10%%rg, H=65km

—= 150m/s
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FiG. 3b. Velocity field at r = 19 sec.

over the upper and lower halves of the calculation region is computed here, the value ob-
tained being divided by E,. The results for the real air and standard atmosphere are drawn
by the solid lines, for the perfect gas and exponential atmosphere by the dashed curves,
for the real air and exponential atmosphere by circles, for the perfect gas and standard
atmosphere by triangles. The dash-dotted straight line corresponds to the case of a homo-
geneous atmosphere when energy exchange between the bottom and top does not occur.

20 Arsch. Mech. Stos. 4-5/78
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As it is seen, the difference between these four cases is not considérable. Nevertheless,
one may note that the atmosphere type is less substantial for the energy partition than the
gas model. Data for standard and isothermal atmospheres are practically the same, while
for real air and perfect gas they somewhat differ. At the beginning the upward energy flows
is a little bit more intensive for real air, at later times the same is true for perfect gas. On the
whole, the energy division between the lower and upper parts of the disturbed region pro-
ceeds very actively and grows with time.

A more detailed picture of energy redistribution for the same blast is depicted in Fig. 5.
Here, for each solid angle 2, integrals of the form (4.1) are computed and are then divided
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Fic. 4. Enzrgy partition between the lower and upper parts of the disturbed region.
1 — real gas, standard atmosphere, 2 — perfect gas, exponential atmosphere, 3 — real gas, exponential
atmosphere, 4 — perfect gas, standard atmosphere.

by the initial value of energy E,(0) in the same solid angle. In the one-dimensional case,
when no energy flow in angular directions exists, the mentioned ratio is equal to a unit
(the dash-dotted straight line). It rapidly changes in the two-dimensional case. The four
different models are considered here, as in Fig. 4, and designations are left the same.
The energy distributions and effects caused by the chosen models are more complicated
here. First of all, beginning from some moment and for all the models, the dependence
E(6)/Eo(6) stops to be monofonic in the vicirity of # = n/2 (f.is counted off from the
vertical in the upward direction). That means that locally not only the energy flow upwards
takes place but also a small quantity of energy flows in the opposite direction. This is con-
nected with the above-mentioned complex character that the flow acquires at later times.
While comparing results for different models one should keep in mind that distributions
in Fig. 5 correspond to the same radii R, covered by the shock in the 6 = #/2 direction
but to different instants ¢ because shock intensities in the models differ noticeably and
these equal the distarices the shock waves traverse for different time intervals. For example,
the dashed curve almost everywhere corresponds to a smaller energy exchange. Apart from
other considerations this is so because the corresponding times for this model are the least.
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The real gas model results in the standard and isothermal atmospheres are appreciably
different. The difference grows in magnitude with time ¢ and' is especially pronounced
at0 < 45° and 6 > 135°. As the general feature of all the models one may still remark
that, beginning from some #, in the vicinity of 6 = 0° the function E(8)/E,(f) becomes
negative. That means that from such a zone more energy has flowed out than there was
in the undisturbed atmosphere.

Figure 6a, b is a plot of the reduced pressure p/p, and density p/e, distributions at
indicated times along the vertical r = 0 for a spherical explosion with E; = 10?3 erg and
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FiG. 5. Energy distribution as a function of a polar angle 0.
1 — real gas, standard atmosphere, 2 — perfect gas, exponential atmosphere, 3 — real gas, exponential
atmosphere, 4 — perfect gas, standard atmosphere.

H = 8 km. The solid curves show the results for the real air, standard atmosphere model.
Analogous data for the perfect gas, isothermal atmosphere model are marked by crosses.
The undisturbed pressure and density dependences on the z coordinate are indicated by
the dashed curves. Though maximum temperatures in this example take place in the central
region, where the main difference between the real and perfect gas models may naturally
be expected, it turns out that the most pronounced difference in the results is observed near
the shock front. As it is better seen for the pressure at the shock, it is much lower in real
air, especially in the early portion of the explosion. At the same time the density in real
air happens to be noticeably higher. All this points to the lower temperature at the front
in real air. Above the heights of 8 =10 km other effects due to the difference in atmosphere
models are added. As to the lowering shock, as it was mentioned above, those effects are
rather negligible.

Considering on the whole the influence of the real atmosphere non-isothermal prop-
erties and air high-temperature physical-chemical characteristics, one should note their
contrary, to some extent, nature. A study of the real air properties at high temperatures
leads to the largest difference in results reaching 100% at an early stage of the process.
Then the difference gradually disappears. On the contrary, the standard atmosphere re-

20¢
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sults deviate from those of the isothermal atmosphere more and more with the time and
distance covered by the shock wave. At some instants in some regions there may occur
conditions where one effect may compensate the other. From this point of view their sep-
arate consideration here is useful.

2
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F1G. 6. Pressure and density distributions along the vertical at different times.
1 — real gas, standard atmosphere, 2 — perfect gas, exponential atmosphere 3 — undisturbed atmosphere
pressure and density.

5. Tunguska meteorite problem

The results discussed above are of interest, in particular, for the gasdynamical simula-
tion of a shock wave system arising during the flight and explosion-like disintegration of
a cosmic body in the Earth’s atmosphere and for the solution of the corresponding inverse
problem. These questions in application to the Tunguska meteorite problem were dealt
with in works [8-13] by V. P. KoroBeINIKOv, P.I. CHUSHKIN and L.V. SHURSHALOV.
Some initial results of this investigation were reported at the 10th International Symposium
on Modern Problems and Methods in Fluid and Gas Dynamics (Poland, 1971) [8]. In those
works the mentioned shock waves system is simulated by a wave system arising from the
explosion of a semi-infinite cylindrical charge with variable specific energy along its axis,
the charge’s axis being directed along the trajectory and its end point being located at the
point of the atmosphere where the meteorite exploded. Since the inclination angle of the
trajectory, the height of its final point (of explosion), the energetic parameters of the Tun-
guska explosion are not known beforehand, then an inverse problem arises: the basic para-
meters of the model explosion must be found so that the calculated consequences of the
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blast be close to the observed ones. As it is known, the main and well studied result of the
Tunguska explosion is the forest flattening in the catastrophy region. The forest destruction
zone investigated in detail by FAST et al. [18-19] is shown in Fig. 7a. It has a number of
peculiarities:

1) The outer boundary of the zone has a specific form resembling a butterfly.

2) The approximately radial character of the forest flattening appears in the main part

of the zone.
3) Some systematic deviations from radial directions are observed near the edges of

the “butterfly wings”.

4) A small region (approximately 5 km in diameter) of standing dead trees without
branches is present near the epicentrum of the explosion.

5) The areas of maximum destructions are situated approximately symmetrically at 1/3
of the distance from the epicentrum to the edges of the “butterfly wings”.

‘The gasdynamical problem of the propagation in the Earth’s atmosphere .of shock
waves arising from the explosion of a semi-infinite cylindrical charge with variable specific
energy along its axis is a complicated one. An effective method combining two-dimensional
computational and approximate numerical approaches was worked out in [8-12]. In
this method both the reflection of shock waves from the ground and the non-homogeneity
of the Earth’s atmosphere are taken into consideration. The latter factor was initially cal-
culated by means of the Sachs scaling rule, then an improved technique based on matching
the Sachs rule with a well-known asymptotic solution for weak shock waves in a non-
uniform medium was set up.

A large series of caculations carried out gave the theoretical picture of ground destruc-
tions shown in Fig. 7b. The outer boundary of the flattened forest zone is drawn by
the solid curve corresponding to the value of dynamic pressure g = gu® (u is the horizontal
air velocity near the ground) equal to 0.008 kg/cm?2. About 5% of all the trees are thrown
down by such a “wind”. The directions of the fallen trees are plotted by the arrows. The
dashed lines represent isochrones, i.e. the lines of shock waves reaching the ground at
various times. Between the calculated (Fig. 7b) and the observed (Fig. 7a) pictures of
the flattened forest, a good qualitative and quantitative correspondence exists in all
the characteristic features mentioned above. The following basic trajectory and ener-
getic parameters were found as a result of these calculations: the angle of the trajectory
inclination to the Earth’s surface a = 40°, the height of the explosion at the final point
of the trajectory H = 6.5 km, the specific energy of the ballistic wave E,, = 1.4 -10'7 erg/cm,
the energy of the final explosion E,; = 10?3 erg. The combined energies of the blast and
ballistic waves responsible for the forest flattening is equal to about 9.5 M ton. The total
TNT equivalent to the Tunguska event may be approximately 1.5 times more than this
figure if one takes into account all the factors put aside for the present. The latest esti-
mates [20] of the Tunguska event TNT equivalent, obtained on the basis of available
barograms and seismograms, are found to be 12.54+2.5 M ton, in good correspondence
with our results. :

The question arises as to how accurate the solution of the inverse problem for the
Tunguska meteorite is and whether it is single-valued. As to the accuracy, one should note
that the obtained solution may be improved by taking into consideration a number of
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additional factors such as real physical-chemical properties of air at high temperatures,
radiation processes, the three-dimensional character of the real flow, more exact data
concerning the flattened forest zone, etc. From this point of view the results presented
above of shock wave ‘calculations in the real atmosphere contribute to a better under-

H=65km , a=40°, E,s=10%%erg, Epe=14-10"erg/em, Esym=9.5Mton
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Fic. 7. Real and calculated pictures of the Tunguska forest flattening.

standing of the influence of various factors. When applied to the solution of the inverse
problem these results will give more accuratly the trajéctory and, especially, the energet-
ic parameters of the Tunguska event.

As regards the uniqueness of the solution, it may not be unique theoretically, But the
practice of calculations shows that the more complete information about the forest flat-
tening zone is taken into account, the less probable becomes the same solution with some
other combination of the basic parameters in the model considered. For example, the
outer boundary of the flattened forest zone close to the real one may be obtained with
various sets of parameters (in particular with a = 30°) in the gasdynamical model [12].
But the combination of those parameters becomes practically unique if one considers not
only the outer boundary but also the inner structure of the destruction zone. Thus the Tun-
guska meteorite trajectory and energetic parameters determined in [10, 12] are quite re-
liable within the limits of the model chosen and available information about the real for-
est flattening. It is quite another matter that some other models of the Tunguska event
may be applied to the calculation of the forest destruction zone. But no one as yet has
made such calculations by means of other models.
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