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Hydrodynamic stability of cylindrical Couette-flow
K. G. ROESNER (KARLSRUHE)

THE sTaBILITY of the Couette-flow in the gap of finite width between two concentric, vertical
cylinders is investigated numerically on the base of a linear stability analysis assuming that both
the cylinders have different temperatures. The influence of gravitational effects on the stability
behaviour of the laminar basic flow is studied and the computational results — obtained by two-
different numerical methods —are compared.

Statecznos¢ przeplywu typu Couette w szczelinie o skoriczonej szerokosci miedzy dwoma kon-
centrycznymi pionowymi walcami zbadano numerycznie. Wykorzystujac analize liniowej sta-
tecznosci zalozono, ze obydwa cylindry maja réine temperatury. Zbadano wplyw efektow
grawitacyjnych na zachowanie sie statecznosci laminarnego podstawowego przeplywu i porow-
nano wyniki obliczeniowe uzyskane dwoma réznymi metodami numerycznymi.

VYcroiiunsocts Teuerna TENa KysTra B mieny KOHeWHOH IMPHHBI MEXIY ABYMA KOHLIEHTDH-
YECKHUMH BePTHKATHHLIMHE IIHIHHIPAMH HCClieoBaHa yncieHHo. Menonssys ananua manefinoi
YCTOMYABOCTH, MPeIIONIoNKeHo, Yro 00a MMIMHAPA MMEIOT pasHble Temmepatypel. Hcciemo-
BaHO BHHAHHE I'PABHTAIMOHHLIX 3¢(deKTOR Ha NOBeAeHHe YCTOHUMBOCTH JIAMHHAPHOT'O OCHOB-
HOTO TeYeHHA M CPaBHEHBI PACUeTHLIE Pe3y/bTaThl [IOJIyYeHHbIE JBYMS PaSHBIMH UMCIEHHBIME
MEeTOlaMH.

1. Introduction

EXPERIMENTAL investigations carried out by SNYDER and KARLSSON [1] describe the effect
of a radial thermal gradient on the stability behaviour of the cylindrical Couette-flow.
The results show for the case where the inner cylinder is rotating while the outer is at rest,
that a small radial temperature gradient stabilizes the basic flow. Defining the Grashof-
number on the base of the corresponding temperature difference, the interval of stabiliza-
tion is given by Gr < 50; Gr: ="ga(4R)*6T[»*; g = gravitational acceleration, « =
= thermal expansion coefficient, AR = gap width between the cylinders, 6T = tempera-
ture difference between outer and inner cylinder, v = kinematic viscosity. When the Taylor-
number Ta: = (R, 2,4R[¥)*; R, = radius of inner cylinder, £, = angular  velocity
of inner cylinder, is raised above the critical value, a toroidal secondary flow, the well-
known Taylor-Gértler vortices, is observed. The critical Ta-number was in any case higher
for small temperature differences than the value given by Taylor regardless whether the-
temperature of the inner cylinder was higher than the outer one or vice versa.

From the mathematical point of view the question arises whether the linear stability
theory leads to the same results described above. As the temperature differences are small,.
in the calculations the influence of a variable kinematic viscosity is neglected. Only the
presence of a convective flow in axial direction is taken into account on the base of the
Boussinesq-approximation. For the numerical analysis two different methods were used.
The first method was described in [3] and goes back to Harris and Remp [4]. It will be:
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“the method of linear combination‘* because the resulting eigenvalue problem is found
by a linear combination of difterent solutions of a system of ordinary differential equations
to fulfil the homogeneous boundary conditions at the ends of the interval.

The second method ‘is based on the method of invariant imbedding. Details of the
procedure are given in [5] and similar investigations can be found in the paper of WILKS
and SrLoAN [6].

2. The system of equation

The following set of equations is used to describe the flow of an incompressible viscous
fluid in the finite gap between two coaxially rotating cylinders with a small radial tempera-
ture gradient. A cylindrical coordinate system is used:

Navier-Stokes equations:
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Continuity equation:

v, o 1 dv, Jdu,
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Energy equation:
2.3) goc(i—f +(v-V)T) = AVeT.

0o and T, are the density and temperature in the middle of the gap, v,, v, v, are the radial,
circumferential and axial velocity components related to a cylindrical coordinate system,
p is the pressure, u the viscosity of the fluid, ¢ the specific heat, and A the thermal conduc-
tivity.

As boundary conditions we assume that the inner cylinder is rotating with a fixed
angular velocity while the outer cylinder is at rest. So the velocity at the inner boundary
is given by

9, =0, Up = Ry, wv.=0.
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At the outer boundary all velocity components vanish. We introduce dimensionless varia-
bles by relating any length to the gap width 4AR: = R,—R,, the angular velocity to
R,Q, /AR, the temperature to the difference 6T: = T, — T, and the density to p,. It follows
that the reference velocity is given by R; 2, the time scale by AR/R; 2, and the pressure
is relatéd to po R3£23.

The process of nondimensionalizing leads to three parameters: Taylor-number Ta: =
= (AR - R,8,/v)?, Grashof-number Gr: = g&(4R)*4T/v*, and Prandtl-number Pr: =
= »[x. The basic equations are now written in dimensionless form:

Navier-Stokes equations:

30. vy dp 1 % 2 dv, o
Vo4 = “a:‘*,/ﬁ(" g ?f‘a;"-;f),
; 9v, 3 UV, _ 1 dp 1 2 i 0 U
SO Rl ey i L e
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Continuity equation:

(2.2) W"' = 3?’ +‘r—+ 3z =0.
Energy equation:

oT 1
2.3 +(v V)T = —V2T.
@.3) O = o

3. The basic solution

A linear stability analysis has to start from the exact solution of the set of equations
(2.1") = (2.3"). An exact stationary solution for the case of a non-zero temperature gradient
is given by the following formulas:

(3.1) o = a2

r

* _ D* *
(3.2) v:ﬂ)= I/Gr'ri'_[% r2+E#]nr+%-r21D. r+F*:|,
a
In (r/Ry)
LU P RS Pt 445
(3.3) T® = Ti= 4 RRY
A*? B*2 (1 1

3.4 © =L 2_R=———(—— )+2A*B*In-—-
(3.4 P 2 (*— Ry 2 \r R R,
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The constants 4*, ..., F* are defined in Appendix 1.

This basic solution differs from the well-known Couette-flow insofar as the axial
velocity component #{* does not vanish because of the existence of a convective flow
induced by the radial temperature gradient. It should be emphasized that the basic stream-
lines have a helical character while the streamlines of the Couette-flow are circles.

4. Ansatz for the perturbations

For the formal investigation of the linear stability behaviour of the fluid motion we use
an ansatz for all the unknoWn functions #,, ¥y, Uz, p, T in the following form:

f@r,9,2;8) = fOO)+ef D, @, 2,0+ ...\
¢ is the formal expansion parameter. After cancelling all nonlinear terms in the set of
differential equations which arise from the ansatz above, we choose a special form of the
disturbances allowed. Introducing an axial wave numbzr « €R a circumferential wave
number y € Z, and an amplification factor # € C the special type of disturbances is
defined as follows:

4.1) S®: = f(r) exp {—i(az+yp+p1)}.
If this ansatz is introduced into the system of partial differential equations for (", ¢{",
o, pM, TW it leads to a system of ordinary differential equations of the second order

for the complex amplitudes ©,(r), v,(r), v.(r), p(r), T(r). Using the abbreviations D: =
= d[dr; D,: = d|dr+1]r the system of ordinary differential equations can be given as

“4.2) (DyD+A)u+ A9+ A;Dp+Bu =0,
(4.3) (De D+ Ao+ Asu+B,v+Bsu+B,p = 0,
44 (DyD+Ag)w+ A;p+Bsw+Bsv+ B,T =0,
“.5) Dyu+ Agw+ Bgv = 0,
(4.6) (DyD+By)T+B,, T = 0.

All terms containing the coefficients By, ..., B,, are due to the temperature gradient.
The coefficients A,, ..., A belong to the normal Couette-flow problem which leads to the
well-known Taylor-Gortler vortices when no thermal effects are present.

The coefficients A4;,i=1,...8;B;;j=1, ..., 10 are listed in Appendix 2 and 3.

5. The numerical calculation

The eigenvalue problem which is defined by the system (4.2) — (4.6) with homogeneous
boundary conditions at both ends of the interval of integration is solved numerically by two
different methods. The first methods starts with rewriting the system (4.2) - (4.6) into
a system of first order. Starting with homogeneous boundary conditions for the unknown
functions at the inner boundary the whole system of equations is solved for a sufficiently
large number of initial conditions which differ only in the values for the derivatives of the



HYDRODYNAMIC STABILITY OF CYLINDRICAL COUETTE-FLOW 623

unknown functigns. To fulfil the zero boundary condition at the outer boundary, a suitable
linear combination of the whole number of solutions is sought which leads to the so-called
secular equation combining all the parameters of the problem

F(e, B, vy, Gr, Ta, Pr) = 0.

This method was already used by HARRIs and REID [4]. In the calculation the Pr-number
was kept constant. Searching for neutral stability curves and secondary flows of toroidal
character (= Taylor-Gértler vortices) we set f = 0, y = 0, Pr = 6.25. Then the triple
a, Gr, Ta must be determined such that the secular equation is fulfilled.

For the integration of ‘the set of first order equations the stiffness had to be proved.
It could be shown that the system does not have a typical stiff character which means
that the imaginary parts of the eigenvalues of the Jacobian matrix do not differ too much.
For the solution the program EPISODE of HiNDMARSH and BYRNE [7] was used which
includes also the solution of stiff systems.

Using the invariant imbedding method, a Riccati transformation was applied which
results in a nonlinear system of 64 real differential equations. The parameter sets which
define the eigenvalues of the neutral stability curve are determined from the zeros of a de-

, max (Det (R(x))) = 0.76

015 —t
Det (R(x)) \
g \ Ta = 40349
6T = 0.5°C
Y =
4
%9 05 30 15

FiG. 1. Zero of R(x) at x = 1.0 (y = 0).

terminant. A typical behaviour of the determinant R(x) along the variable x is shown in
Fig. 1. For a toroidal secondary flow (y = 0) a zero is found at x = 1 which defines the
eigenvalue Ta: = 40349 for the temperature difference 67 = 0.5°C.

6. Comparison of computational results

For different values of 6T the neutral stability curves were computed using both methods
mentioned above. In a (e, Ta)-diagram (Fig. 2) the results of the method of linear combi-
nation are given by the broken lines. The full lines correspond to the invariant imbedding
technique. Both sets of curves have in common that the critical Ta-number is raised when
the temperature difference is raised. The curves for one value of 4T do not coincide. The
reason for it can be found in the inaccuracy of the invariant imbedding-method which

19*
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Fi1G. 2. Neutral stability curves for different temperature differences (AT = 0.01, 0.025, 0.05, 1.0).

leads to a bigger amount of algebraic operations (e.g. matrix inversion and larger system
of equations) compared to the method of linear combination. The maximal difference be-
tween critical Ta-numbers is given for 6T = 1°C by 0.2%. This agreement of both compu-
tational results is satisfactory. When plotting the critical Ta-number versus the Gr-number

invariant
imbedding

T T T T T T

-75 -50 -25 0 25 50 75

—= Gr

F1G. 3. Critical Ta-number versus Gr-number for small temperature differences.

the computational results give the two curves in Fig. 3. The broken line again corresponds
to the method of linear combination while the full line is plotted from the invariant im-
bedding calculations. Both curves show in the vicinity of Gr = 0 that a small tempera-
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ture gradient leads to an increase of the Ta-number. This means that small temperature
gradients in a cylindrical gap of two vertical cylinder have a stabilizing effect on the
onset of a toroidal secondary flow.

7. Concluding remarks

An attempt was made to extend the calculations into a region of larger Gr-numbers
beyond 50 to get the critical values of the Ta-number for the onset of the spiral secondary
flow. The results on the base of the linear stability analysis do not show a significant chang-
ing of the character of the curves given in Fig. 3. Searching for zeros of R(x) for the
case of y # 0 leads to results shown in Fig 4. No zero of R(x) exists near the point x = 1.

0.075
Det (R(x))
005 A\
Ta = 40200
6T = 1.0°C
Y = -
0.025 /
0 .
0 0.5 10 —— x 15
Fi1G. 4. Values of R(x) along x for y = — 1.

On the base of a linear stability analysis with the assumption of small temperature gradients,
it is only in the narrow vicinity of Gr = 0 that reliable results can be observed which corre-
spond to the experimental data by SNYDER and KARLSSON=[1].

Appendix 1
A*: = Rl_R%QE
Ri—R3,’
B*_ s ‘RlR%(l _RIQZ)
' R-R
InR, R,+R,
* o — iy S
LR = In(R/R,)’ Ro: 3

1
Do
In(R,/R,)
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(C*—D*)(R}—R3) + D*(R}InR, — R3InR;)

e = 4In (R,/R,)
* _ (%
F*: = D_C_Rf_ (.P_R'-;.*_E#) InR,.
4 4
Appendix 2
k The coefficients A4,
A | = yTapi— ot +iyTap,
— p®
4, |2 |/TaE——
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Appendix 3
k The coefficients B,
R o
B, | - —y—~ +i) Ta (o:'v“”+y )
2 f— m)
B, “f—z“lTa( vtm_'_},
By | =il
B, | +iy '/Ea
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k The coefficients By

2

. (©)
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B 2 : z
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