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On the isolated liquid volume meotion

V.V. PUKHNACHOV (NOVOSIBIRSK)

THis work investigates some qualitative properties of an unsteady, isolated liquid volume motion
bounded by a free surface. The motion arises from a pre-determined initial state. External
volume forces are absent. The liquid can be viscous or ideal, with a surface tension or without it.

W pracy zbadano kilka jakosciowych wlasnosci nieustalonego przeplywu izolowanej objetosci
cieczy ograniczonej powierzchnia swobodna. Ruch powstaje z wczesniej okreslonego stanu po-
czatkowego. Zewnetrzne sily masowe nie wystepuja. Ciecz moze by¢ lepka lub idealna, z na-
pieciem powierzchniowym lub bez napigcia powierzchniowego.

B paGore mccienoBalo HECKONBKO KAYECTBEHHEIX CBOWCTE HEYCTAHOBHBINETOCA TEdCHHS
H30JIMPOBAHHOTO 00LEMa, OrPaHAYEHHOr0 CBOOOHOM MoBepXHOCTHIO. JBIDKeHHEe BOSHHKAET
M3 - 33J]aHHOr0 HAYAIBHOTO COCTOAHMA. BHelmmme MaccoBmle CHIIBI OTCYTCTBYIOT. JKmmko-
CTh MOYKeT OBITH BASKON WIM MOCATBHON, C MOBEPXHOCTHLIM HAT/KeHMeM Wi Ges moBep-
XHOCTHOIO HATSYKEHHA.

1. Formulation of the problem

A MATHEMATICAL formulation of the problem of the isolated volume motion is as follows:
it is necessary to-find the region £, € R* and the solution v(x, 1) = (v,(x, t), v2(x, 1),
03(x, 1)), p(x, t) of the system of the Navier-Stokes equations

(1.1) u+v-Vo = —Vp+vdv, V:-0=0

for this region, so that at the boundary I of the region £, the boundary conditions
(1.2) v'n=2, xel,

(1.3) pn—2%Sn = 20Kkn, xel,,

and the initial condition

(1.4) o(x,0) = vo(x), x€R,=0

for ¢ = 0 are satisfied, the region £ being prescribed and bounded. Here v denotes the
velocity vector, p the pressure of the liquid, » 2 0 its viscosity, ¢ = 0 the surface tension
coefficient; » and o are assumed to be constant. The liquid density is assumed to be equal
to unity. The velocity of the motion of the surface I, in the direction of the external nor-
mal is denoted by 2 in the relation (1.2), and the unity vector of the external normal
to I', is denoted by n. If the surface I, is given by the equation F(x, ) = 0, then @ =
= —F,/|VF|. In the condition (1.3) S denotes the deformation velocity tensor with the
elements S;; = (0v;/0x;+ dv;/dx;)/2, and K denotes a double surface curvature I. It is
assumed that K > 0 if I, is a convex outward liquid.

The equality (1.2) indicates that the surface I, bounds the liquid volume £,. Accord-
ing to Egs. (1.1) and (1.3), this volume moves under inertia. i.e. at the absence of external
volume and surface forces, and its boundary I is a free surface.
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The vector field v, in Eqs (1.4) is assumed to be prescribed and solenoidal:

(1.5) V-go=0, xef.
If v > 0, v, satisfies the condition of agreement with the condition (1.3),
(1.6) Sn—n-Smn=0 if xel,, t=0.

The main difficulty in investigating the problem (1.1)—(1.4) is that it is necessary
to find the region 2,. However, the specificity of the condition (1.2) allows to transform
this problem to the other one in which the region of the determination of the solution is
pre-fixed. It is achieved by the transition to the Lagrangian coordinates.

The trajectory of the particle which is at the point & at the instant ¢ = 0 is given by the
formula

(L.7) x=x(£,1),

where the functions x,(¢, t), i = 1, 2, 3 are determined from the Cauchy problem:
dx .

(1.8) W—v(x, t), x=¢ if r=0.

The variables & = (&,, &,, &3) are called the Lagrangian coordinates. If the relation
F(x(5,1),1) = f(&, t) = 0 defines a free boundary, it follows from Egs. (1.2) and (1.8)
that f; = 0, and the free boundary equation in the Lagrangian coordinates is simply
f(&) = 0. Therefore, if I', is constructed as the image of Iy = I" at the mapping (1.7),
the condition (1.2) will be fulfilled automatically.

Let us formulate the problem (1.1)—(1.4) in Lagrangian coordinates, for the case
v = 0, 0 = 0 (and ideal fluid with a zero surface tension). It is necessary to find the vector
x(&,¢) and the function p(%, ) in the region 2x (0, T) so that the following equations,
initial and boundary conditions

1.9) U* - xy+Vep =0, detd = 1,
(1.10) p=0 if ¢&el,
(1.11) x=& x=uvo&) if t=0

are satisfied (V; - v, = 0). Here V, is the gradient with respect to the variables (¢, &,, £3),
4 is the Jacobi matrix of the mapping (1.7) at fixed ¢, %;; = dx;/0&;, i,j=1,2,3.

This paper presents a review of works devoted to the investigation of the problem
(1.1)-(1.4) in a strict formulation as well as to some of its models. The results of the inves-
tigations obtained at the Institute of Hydrodynantics of the Siberian Branch of the USSR
Academy of Sciences are used as a basis of this work. These investigations were carried
out upon the initiative and under the guidance of L. V. OVSJIANNIKOV.

2. Existence theorems

The first result on the solvability of the problem (1.9)-(1.11) was obtained by L. V. Ov-
SJANNIKOV [1] and is based on the theory of the nonlinear Cauchy problem in the scale of
Banach spaces [2] developed by the same author. Let £ be a simply-connected plane region
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with an analytical boundary, and v, be a potential plane vector field which is analytical in
some region ' o . Under these assumptions the exintence and uniqueness of the solution
of a plane analogy of the problem (1.9)-(1.11) in the scale of Banach spaces of analytical
functions are proved.

Generalization of this result for a spatial case is of particular interest. In connection
with this, it should be noted that V. 1. NaLiMov [3] proved the solvability of the three-
dimensional Cauchy-Poisson problem of the water waves in the classes of analytical func-
tions which is close to Eqs (1.9)-(1.11). The proof of the solvability of the problem (1.9)-
(1.11) in the class of finite smoothness functions gives rise to many difficulties which are
explained below (see Sect. 7).

The problem (1.1)-(1.4) for » > 0 and ¢ = 0 was considered by V. A. SoLONNIKOV [4].
He obtained the following results. Let I'e C2+%, v, € C2+*(Q), 0 < a < 1, and the condi-
tions of agreement (1.5) and (1.6) be valid. Let |vo|3+* = R. For any R > 0 there exists
such 7 > 0 that the problem (1.1)-(1.4) with » > 0 and ¢ = 0 has a unique classical
solution if £ € [0, T'] and v and p belong to some Holder classes. Besides, it is possible to
find such R, on the basis of any T, that the problem (1.1)-(1.4) should be identically solv-
able within the interval [0, T].

It should be noted that all the above-mentioned theorems of the solvability of the prob-
lem of unsteady, liquid free boundary flow in a strict statement have a local character.
This restriction is connected with the subject matter. Let us assume that in the process
of motion of two points of a free surface being at the initial moment of time at a finite
distance, and then one part of the fluid impacts with the other part. The mathematical
nature of singularities existing in this phenomenon is very complicated and has not been
examined so far. The question of the possible spoiling in time of the smoothness of a free
surface has not been investigated, either. After all, there are no exact results of a general
character concerning the solvability of the problem (1.1)-(1.4) for ¢ # 0.

3. Finite-dimensional models

Below, examples of the solutions of the problems (1.1)-(1.4) are presented. To find
them, we must integrate the system of ordinary equations. The widest class of such solu-
tions is admissible in the case when » = 0, ¢ = 0. The motions with a linear velocity
field found by DiricHLET [5] and investigated in detail by L. V. OvsiaANNIKOV [6] (cf.
also [7, 8]) belong to this class. Here the mapping (1.7) is given by the formula

x =gt)E
thus o/ = %. Due to Egs. (1.9)-(1.11) the matrix & is the solution of the Cauchy problem
@3.1) A" = qd* N, A0)=¢&, AL'0) =4,
where
Ip(A ALY

1= Fpd TN
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o is the arbitrary matrix with $p o/ = 0, & = diag{n,, n,, n;} and n,, n,, n, are the
arbitrary positive numbers. The pressure formula is in the form

p=a(-t-H-D),

where ¢ > 0 is constant. A free surface I is the ellipsoid with the equation
c2—¢é- N E=0.

The Cauchy problem (3.1) has a unique solution at all 7 [7]. The system (3.1) has
eight integrals which express the conservation of mass (det & = 1), energy, circulation
and moment of momentum of a deformable liquid ellipsoid [5]. The problem (3.1) has
a number of exact solutions. One of them will be considered below [6].

Let # = &, and the matrix o/, have the following non-zero elements: a,, = a;3 =
= —2a,; = —2b,a;; = —a,3; = w. The matrix & has non-zero elements a,; = m, a,, =
= a3 =k, a3; = —a,; = n for '

k = i/% cos (w f m(s)ds) , h= ~1; sin (w of m(s)d.s')

and the function m is found as a quadrature from the equation
302 +w?(1—m)
142m?
for m(0) = 1. The equation of the free boundary I'; in Eulerian coordinates is

m'? = 4m®

2
X1
= +m(x2+x32) = ¢

The interpretation of this solution is as follows. At the initial moment of time the liquid
fills the sphere I" and is in the state of a uniform rotation which is imposed upon a poten-
tial linear velocity field. Let us assume, for definiteness, that @ # 0, & > 0. Then for
0 < ¢ < t, the sphere I is extended taking the form of the rotation ellipsoid I, with the
axis x,, as long as its large hemi-axis takes the largest value of cm, = c[3(b/w)*+1]"2.
After it the ellipsoid is contracted; at the moment 7 = 2¢, it takes the form of the sphere I
and then shrinks to the plane x, = 0 merging with it when ¢ — oo.

Now let us consider the case when @ = 0, i.e. the matrix is diagonal and the motion
is potential. If 5 > 0 then m > 1 for t > 0 and m — oo for ¢ = co. Thus, if # > 0 and
o = 0, the ellipsoid I’ is expanded in the direction of the x; axis when # increases, and is
contracted to this axis when ¢ — co. From the viewpoint of the motion stability, this re-
sult means that the potential motion pre-determined by the &/ matrix is unstable with re-
spect to any small vortex disturbances for @ = 0.

The question of the behaviour of the Cauchy problem (3.1) in the case when ¢ —»
has not been studied so far. It seems to be likely that when &/, # 0, this problem has
no limited solutions.

Now let us consider plane motions with a linear velocity field. In this case & and x de-
note two-dimensional vectors, and &/, &/, and A4~ are second-order matrices. The solution
of the problem (3.1) here describes the rotational deformable ellipse motion. Using the
integrals of motion, this problem can be integrated in quadratures. It turns out that if
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an initial motion is not a rest, the following alternative takes place: either one of hemi-
axes of an ellipsoid increases infinitely when # — oo, or the motion is a uniform rotation
of a liquid circle around its centre.
Now let us consider the plane problem (3.1) for
: b o
“=(_, b)

and 4 = & (I' is the circle of the radius ¢). In this case the semi-axes of the ellipse a,(z),
a,(t) are connected by the relations
4. .2

—;— (ai?+a®) + (&% = (b2 +w?)c?,

aa, =c*,  a,(0) =a,(0)=c
and the angular velocity of the ellipse rotation is equal to 4c2w(a, +a,)"2. The case b = 0
corresponds to the rotation of a circle as a solid. From Eq. (3.2) it is seen that any small
initial deformation of the velocity field (b # 0) destroys the above-mentioned stationary
motion.

The number of exact solutions of Egs. (1.1)-(1.4) in the case » # 0, ¢ # 0 is extremely
poor. The only non-trivial example of a solution describies the radial inertial motion of
a spherical layer [9-12]. A plane analogy of this solution describes a radial motion of
a circular ring [10, 13]. The plane problem of a rotationally symmetric motion of a rota-
ting ring is more general. Section 4 is devoted to the consideration of this problem.

(3.2)

4. Rotating ring

Now let us consider the plane problem (1.1)-(1.4) with special initial data:  is the
circle with rio <r = [x] < ry
4.1) O, =gor"Y, wy=w(r) f =0, ro<r<ry.
Here v, and v, are the radial and circumferential velocity components respectively, in the

polar coordinate system (r, 6), x, the given constant; v, the given function. The solution
of this problem has the form

U = X(‘)r_l’ Vg = t’a(f‘, 1), P = P("a ‘)'
The free boundary equations are r = r((t), i = 1, 2. This solution is interpreted as a lig-
uid rotating ring motion due to inertia, viscosity and surface tension.

If v > 0, the problem (1.1)-(1.3) is reduced to the solution of the connected system
of one parabolic and three ordinary equations for the functions v, %, r;; and to the quadra-
ture for finding p. This problem was studied by V. O. ByTev [14] for the case ¢ = 0, and
by O. M. LAVRENT’EVA [15]. The obtained results are presented below.

Let the moment of momentum of a ring be denoted by L, and its square by 2. The
values of Z'and L are the integrals of motion. Let the dimeasionless parameter be intro-
duced:

Lz
B= 002

18*
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(o is the density of the liquid). Suppose that o > 0. Then if the inequality 8 > B, ~ 5.17
is valid, the problem has two stationary solutions describing the rotation of a ring as-
a solid. If # < f,, the stationary solutions do not exist.

Now suppose that v, € C2**[ry0, r;0] and the agreement conditions wy(ro) = vg
(r20) = O are satisfied. If 8 < B,, then either the solution of the problem with the initial
data (1.1)-(1.3), (4.1) exists at any ¢ > 0, and then r, = 0(r) at # — ob, or such ¢, is found
(finite or infinite) that r (1) — 0 if 1 — ¢,.

If B > B, the existence of the two regimes of motion is possible: vanishing of an
inner radius and stabilization of motion to the ring rotation as a solid. In the paper [15]
sufficient conditions to realize each of these regimes are presented. For example, under
the condition

8ri,20E, < L?,
where E, is the total liquid energy at moment ¢ = 0, the inner radius cannot turn into zero.
In the case o = 0, the qualitative picture of motion significantly changes. If L # 0
and in the condition (4.1) y, < 0, at first the rotating ring converges to the centre, until
the inner radius reaches a positive minimum. Then the ring diverges, thus r; — oo if
t - 0. At yo = 0 divergence begins immediately. Two different divergence regimes exists.
If the inequalities

2
rio

@2y Iocq, oo f red(r)dr < 2

are satisfied, then r, = 0()/7) when ¢ — co. If one of these inequalities is changed by the
opposite one, r; = 0(t) when ¢t — oo [14].

The case v, = 0 in Eq. (4.1) corresponds to a purely radial ring motion. If in this case
o # 0, either the ring diverges up to infinity or its inner radius turns into zero at some
moment. If ¢ = 0 and the first of the inequalities (4.2) is valid, then lim r,(f) = r,, > 0
exists when ¢ — co. In the opposite case r, tends to infinity when ¢ — co.

So far we have considered the motion of a viscous fluid ring. In the case » = 0, the prob-
lem is simplified and the integration in quadratures [7] is admissible. Here the different
regimes of motion dependent on initial data are realized. In particular, when ¢ # 0 and
L # 0, radial free-oscillations of a rotating ideal ring are possible.

5. Stationary motions

The stationary motions of an isolated volume of a capillary viscous fluid admit a simple
description: the fluid rotates as a solid around its axis which is parallel to the given vector
of momentum, and a free surface is unmovable in a rotating coordinate system. It is
determined as a closed instantaneous surface in the field of centrifugal which restricts the
given volume.

Existence, stability and branching of equilibrium forms of a rotating fluid have been
considered in detad in [16] and here they will not be discussed. Among the problems un-
solved, the existence problem of the equilibrium forms of a rotating drop which are not
the surface of revolution, is of particular interest.
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It should be noted that for a rotating cylindrical column such forms exist [17].

If the fluid has no surface tension, then for » # 0 the stationary motion of an isolated
volume can be only a translational motion. In a plane case the rotation of a circle and a
ring as a solid is also admissible. If, simultaneously, ¢ = 0 and » = 0, non-trivial station-
ary motions of an isolated liquid volume are possible. Below, the example of such a mo-
tion will be presented where an ideal flow is axi-symmetric with respect to the z axis, and
its vorticity is proportional to the r distance to this axis.

If the stream function is denoted by v, and the radial and axial velocities are denoted

by v, and v,, respectively, we have v, = —r~! dy/dz, v, = r~' Op/dr; and y satisfied
the equation

d (1 oy d 1 oy
G- or (r 3r)+ T Bz) v

where k is constant. The angular velocity v_is equal to Cg/r, where Cgq is constant. For
the flows of the above-mentioned type, the Eulerian equations admit the integral

(5.2) P+ % (@2 +02+C3*@r))+ky = ;—Cz = const.

Now we will find free surfaces I" close to a torus. Let the meridional section I" bé de-
noted by y, and a plane domain bounded by the curve y, by w. The conditions at a free
boundary p = 0, » = 0 and the equality (5.2) lead to the relations
1 ay

=0 ¥ gl = OVIET

where d/dn denotes the operator of differentiation in the direction of an outer normal y.
By virtue of Egs. (5.1) and (5.3), the constants k and C are connected by the equality

k=cC[yi=¢[rdy| [ rdo.

(5.3) Y

In Egs. (5.1) and (5.3) let us make a substitute of the variables

r=a+bx, z=by, wy(,z)=abC Vl—u;?w(x,y),
where a and b are some constant dimensions of length, u = g/a, and let ¢ = b/a. The
images of the curve y and domains w on the x, y plane are denoted by y, and w,, respec-
tively. In the new variables the problem (5.1) and (5.3) takes the form

e aw (1+ex)? fp 1— 2 [(1+ex)2dy,
Aw— =
14+ex ax 1{1_ (l+sx)dw0

—0, M (1 F e
Yo 3!10 Yo '/l
(4 is the Laplacian operator with respect to x, y Varlables).

If ¢ = 0 the problem (5.4) has a one-parametric family of solutions where y, is a circle
x*+y* = c¢? and w = (x*+y*—c?)[2c. It is proved that for sufficiently small & and the
certain dependence u = u(e), this problem has a three-parametric family of solutions.
A four-parametric family of solutions of the problem (5.1), (5.3) corresponds to it. A ki-

w
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netic energy of fluid, the inertia moment of the meridional free-surface section with respect
to the line r = const containing the gravity centre of the section, the length of the merid-
ional free-surface section and the distance between the gravity centre of the section and
the rotation axis can be predetermined as physical parameters (the ratios of the two latter
values must be sufficiently small).

6. Small disturbances

Let us consider the motion of an ideal isolated liquid volume with zero surface tension.
Such a motion can be described in terms of the functions x(&, t), p(£, t) determined in
a cylinder Qy = 2x [0, T] and satisfying the relations (1.9)-(1.11). The solution x, p
corresponds to the initial field x,(¢, 0) = v,(£) and will be called the basic solution.

Let us consider, in the cylinder Qr, the solution of the problem (1.9)-(1.11) with the
other initial velocity field 9o(£) = vo(8)+Vo(8), Ve Vo = 0. The solution X, p correspond-
ing to the initial function ¢, is called the disturbed solution, and the function V, the
initial disturbance. Assume that X = x+X, p = p+P and call the functions X, P the
basic solution disturbances. Assuming the smallness of the initial disturbance, we can hope
that the functions X, P are small within some interval of time. Substituting the expressions
for X, p into the relations (1.9)-(1.11) and neglecting the terms which are nonlinear with
respect to disturbances, we will come to the linear problem for the functions X, P which
is considered in this section.

The linear model in the theory of unsteady free boundary flow is of interest for two
reasons. In the first place, linearization on the solution of the free boundary problem makes
it possible to understand the mathematical nature of this problem. Secondly, if we have
a certain solution determined for all # > 0, the analysis of the small disturbance behaviour
for t - oo allows to judge the stability of the given solution.

There is a great number of works dealing with small disturbances at rest or at a uniform
liquid rotation (the works on the linear wave theory belong to the same number). How-
ever, up to present time there have not been any works devoted to the investigation of
small disturbances of arbitrary solutions of Eulerian equations in all — or partly free
boundary region. The formulation of this problem and the first results for the case of a po-
tential flow are attributed to L. V. OvsiaNNIKov [10]. A gereral problem of small disturb-
ances of an ideal free boundary flow in a potential field of mass forces was investigated
by V. K. ANDREEV [18]. When the whole boundary of flow is free, this problem reduces
to the question of finding the function @(, ¢t) adhering to the following relation:

VI U1 (VD + V)] = — V(@' W),
X _f Wlu*-'(VO+Vy)dt], &€, 0<t<T,
(6.1) (@D +nU= U*~H (VD + V) '
= —n(¥* W),j W-\Y*- (VD +Vy)dt, Eel, 0<it<T,
0

®=0, & =0 if =0, &ef.
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Here a = —(dp/dn)~", n is the unit vector of an outer normal to the boundary I of the
region £2; dp/dn is the p derivative with respect to the normal n to I". The matrix W is the
solution of the Cauchy problem

W,=U*UW, Wio=2¢
and % is the Jacobi matrix of the mapping (1.7). The operator V in this section denotes
the gradient in the Lagrangian variables &, &,, £5. The unknown function in the problem

(6.1) is connected with the pressure disturbance by the relation @, = — P. After solving
the problem (6.1), the vector X is restored according to the formula

I
X=W[ W a1 (Vo+Vy)d.
J

The relations (6.1) are strongly simplified if basic and disturbed flows are potential.
In this case ¥y = V@, (4D, = 0), the matrices % and W coincide, and for the function

- @+ P, the following problem is obtained:
V@ 'u*-'V®) =0 if (e, 0<t<T,
(6.2) @D AnU-U*'VD =0 if tel, 0<t<T,
d=D,), D=0 if e, t=0.

In turn this problem can be reduced to the initial value problem for the differential equa-
tion in Hilbert space
(ap)e+ X ()p = 0,

=90, @=0 if =0
with the unknown function ¢ = {fil r- The operator 2" associates the element ¢ € W}/2(I")
to the function X, € W3 12(I") by the following rule: The solution of the Direchlet prob-
lem qbfp = g for Eq. (6.2) is found by the function ¢, and then the derivative of the so-
lution is calculated by the co-normal to I', ¥'¢ = n®¥ ~'4*~! Vqﬁ. The writing 5¢°(¢) under-
lines the dependence of the operator X" on ¢ (it is explained by the fact that # depends
on 7). In the initial condition (6.3), ¢, is a trace of the function $,(&) € W3(£2) on the
surface I

The operator X is symmetric and positively determined on the sub-space of the space
W3/2(I") formed by the functions ¢ with a zero mean value on I. Let us assume that for
all £ €T, t € [0, T] the condition

(6.3)

P
6.4) —-a—‘::) =a(,t)=2a,>0.

is valid. In this case Eq. (6.3) can be considered as a hyperbolic pseudo-differential equa-
tion in the manifold I'. If the basic solution is such that I"'e C?, x;,, pe C3(Q,), i = 1,2, 3
and the condition (6.4) is satisfied, the solution of the problem (6.2) admits the estimate

(6.5) [ @2ar+ [|vépae < c(1) [ |V@2aQ
r 0 2

for ¢ €[0, T]. Basing on this estimate, V. K. ANDREEV proved the solvability of the problem
(6.2) at the condition (6.4) [19]. Under the same conditions, he proved the existence and
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uniqueness theorem for the solution to the more general problem (6.1) [18] within the space
Z,=(0,T; Wi9).

It should be noted that the problem (6.1) can also be reduced to an operator equation
of the (6.3) type. This equation is nonhomogeneous and the operator 2 () is nonlocal
with respect to ¢ and nonsymmetric. However, its main part is a symmetric and positively
determined operator; thus the above mentioned operator equation conserves the proper-
ties of a hyperbolic equation at the condition (6.4).

It should be emphasized that it is precisely the condition dp/dn < 0 which provides
the correctness of the problem of small disturbances. The importance of the latter condi-
tion was noted in the works by G. TAyLor [20], L. V. Ovsiannikov [10], V. I. NALIMOV
[21]. V. 1. Nalimov proved the solvability of the plane Cauchy-Poisson problem in an exact
formulation in the class of finite smoothness functions. He established a remarkable pe-
culiarity of this problem. The Cauchy problem for linearized equations turned out to be
correct only when linearization was based on an exact solution of nonlinear equations.
Probably it is characteristic of the problem of an ideal isolated liquid motion without
a surface tension.

Now let us come back to the problem of small disturbances (6.1). It is rather difficult
to characterize the class of basic motions for which the inequality (6.4) is valid providing
the correctness of the problem (6.1). However, it should be noted that for potential motions
of an isolated volume differing from a constant flow, this inequality is always valid [10, 7].

If a basic motion is such that for all £ € I" and ¢ €[0, T, the inequality

(6.6) % >0

takes place, Eqs. (6.3) is an elliptic one, and the Cauchy problem is not well posed in the
sense of Hadamard. The condition (6.6) can be satisfied even for potential motions if the
boundary of the region 2 is not wholly free, or if external forces act onto the fluid. Exam-
ples of the uncorrectness of the problem of small disturbances of a plane free boundary
flow were presented by G. TAYLOR [20]. As for an isolated flow, the uncorrectness of the
problem of disturbances can be explained by a heavy vorticity of flow. In particular, if
the solution from Sect. 3, which describes the rotating ellipsoid motion, is taken as a basic
one, the inequality (6.6) is valid when ¢ is close to 7.

Since the linearized problem (6.3) or more general problem (6.1) when dp/dn > 0
are solvable only in the class of analytical functions, it would not be expected that the initial
nonlinear problem (1.9) - (1.11) is solvable at arbitrary initial data in the class of finite
smoothness functions.

It is interesting to note that in the case when a basic flow is a uniform rotation of fluid
as a solid, the problem of small disturbances is correct [22] though the inequality (6.6)
is satisfied. This case is an exclusive one, because in the rotating coordinate system the
basic motion is a rest.

In these considerations we did not take into account surface tension. As was mention-
ed by G. Taylor, the surface tension turned out to be the factor which stabilizes short
wave disturbances and makes the mathematical problem of small disturbances well posed.
The existence and uniqueness theorem in the problem of small disturbances of an ideal
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isolated capillary flow was proved due to V. K. ANDREEV [23] (without any restrictions
to the sign dp/dn).

The problem of small disturbances of a viscous capillary flow was studied only in the
case when a basic motion is a rest or uniform rotation [16]. The disturbances of an arbi-
trary basic motion for » # 0, ¢ = 0 were considered in [4].

In conclusion, it should be noted that the other formulation of the problem of the free
boundary flow disturbances is possible: that is, at the invariable initial velocity field, the
domain of the mapping (1.7) is changed. For the potential ideal flow, the problem of the
domain disturbances was investigated in [10].

7. The problem of stability

Assume that a certain solution of the problem (1.1) - (1.4) definite for all £ > 0 is
known. Then we can consider the stability of this solution with respect to the change of
initial data. If the disturbances which are caused by this change are small, the problem
of stability can be considered within the framework of a linear theory.

It should be noted that so far no results on the stability of the problem (1.1) - (1.4)
within an infinite interval of time have been obtained. For this reason, the problem of the
proof of a linear approximation within the theory of stability of a free boundary flow is
far from being solved.

If the basic solution is non-stationary, the coefficients of linearized equations depend
on time. In connection with this it is rather difficult to obtain sufficient stability conditions
in a linear approximation in the general case. All the results on the stability of an unsteady
flow of a finite liquid volume were obtained by considering some special examples. In these
examples the fluid was assumed to be ideal, and its motion to be potential (except for the
work by V. M. MEeNsuCHIKOV [24] where the stability of a rotating ring of an ideal fluid
was considered).

The problem of potential disturbances of a potential ideal flow in the case when ¢ = 0,
is reduced to finding the function @(&, ¢) from the relation (6.2). It is assumed that the
elements of the matrix # (det % = 1) and the coefficient a are definte and sufficiently
smooth functions of &, 7 in the cylinder Qr = Qx [0, T] for any T > 0. The boundary I"
of the region 2 is also assumed to be smooth. Now suppose that for any (¢, ¢) e I'x [0, T]
the “hyperbolicity condition™ (6.4) is satisfied for some ao(7) > 0 (it is permissible that
ao — 0 when T — ). This condition assures the correctness of the problem under con-
sideration.

For the solutions of the problem (6.2) the estimate (6.5) is valid. This estimate allows.
the value N(t) = ||@,||+||VD||, to be taken as a measure of stability (the symbol ||- ||
denotes the norm in %) and the basic solution to be termed stable if N(¢) is bounded at all
t > 0 for any @, € W3(£2), and unstable in the opposite case. Such a definition of stability
is not the only possible one. L. V. Ovsiannikov [10] suggested to characterize stability
in terms of the behaviour of the free boundary perturbation vector component normal to
I', and equal to .

() o w25
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when ¢ —» . Here F(£) = 0 is the equation of the free boundary I', X is the perturbation
of the vector of the variable x; n, is the unit vector of an external normal to the surface I,
at the point x(&, t).

If R(%,t) = co when £ — oo for some & el, the local disturbance of a free surface
from its undisturbed state in the space x infinitely grows. Thus the value R(&, ¢) finally
characterizes the motion stability. In the meantime, the tunction N(?) is its rough integral
characteristic. Some solution can be steady in an integral sense, but the function R infinitely
grows for t — oo at some point of the boundary. Such a situation really arises in the prob-
lem of the deformable ellipse stability [25]. The corresponding basic solution is described
at the end of Sect. 3 (in the expressions for the matrix &4 and hemi-axes a,, a, it should
be assumed that w = 0). The peculiarity of the problem is that the eingenfunctions of the
operator ¢ (¢) do not depend on ¢, and the function a doesn’t depend on &. It allows to
reduce the problem (6.3), which is equivalent to the problem (6.2), to the Cauchy problem
for desintegrating the system of ordinary second-order differential equations.

In the case under consideration I is the circle || = ¢, Dyl = @o(0) is the periodical
function of I" with a zero mean. Further, ||+ || denotes the norm in #,(I"). It turns out
[25] that if g, € £, (I"), the value ||(3|p]| is bounded for all ¢t > 0. If g, W1/(I'), the value
Ilé,;pfl is uniformly bounded. Increasing the smoothness ¢, it is possible to obtain the
estimates of the higher order derivarives P. Specifically, if p, € W3(I") then Q?‘“lp, éeq r
i=1,2, at the fixed ¢ belong to #(I"), their norms in %, being bounded for all ¢ > 0.

It should be noted that in the case when the initial function @, is even with respect
£,, the estimate |Ié;r|l = 0(t~") takes place if 1 — co. The solution which is even with
respect to &, describes the motion with the impermeable wall &, = 0.

The obtained results indicate that the basic motion is stable 4n a linear approximation
if the norm in %, of boundary values of the disturbances of the @ potential, or its deriva-
tives, are considered as a measure of stability. However, if one will define stability from the
deviation of a free surface from an undisturbed state, then the motion should be interpret-
ed as an unstable one. In particular, if @, = sinnf, n = 1, 2, 3, the function R deter-
mined from Eq. (7.1) has the form

73sinnf

(cos‘ﬁ + 7*sin26)!/2 [7a+0(~)]

1.2)

if t > oo. Here y, is some constant, 7(¢) is the function given by the equality

T —
bﬁf:fl/ss;'-lds
1

7 = 0(¢) when ¢t — co. From Eq. (7.2) it is seen that outside the zones |6] < ¢, |[z—0]| < &
(e > 0 is fixed) R is O(¢) if t = oo. Thus, in this case a free boundary is unstable. Tn the
meantime, |jéi,r|; —-0if t > o0.

If @p=cosnd, n=1,2,3,..., then if t -

T cos nf _
o= (0320 + sl sin20)"72 - [8,+0¢%)
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with the constant d,. It follows from this that for the given solution the free boundary
instability is localized within the range of angles |6] = 0(z~*), |#—60] = 0(¢~*). This con-
clusion is followed in part in the problem of deformable ellipse stability at the presence
of an impermeable wall &, = 0. If 1 — oo, the liquid approaches the wall and stabilizes
a free boundary.

We have considered above only potential disturbances. The solution which is stable
with respect to potential disturbances can become an unstable one provided that the poten-
tiality of a basic solution is retained, but the class of disturbances is extended without
taking into account the potentiality condition. The corresponding examples are presented
in [18]. Some exact solutions describing the motions of a rotating ellipse and rotating
ellipsoid point to the same fact (see Sect. 3).

In addition to the case which was considered above, at the present time the stability
in a linear approximation of the following potential motions of an ideal fluid has been
investigated: the motions of a spherical layer [9], a circular ring [10, 13], an ellipsoid of
revolution with a linear velocity field [26].

We.did not consider here the equations of stability of equilibrium states of an isolated
liquid volume. Here the sufficient conditions of stability and instability with respect to
finite disturbances have been obtained. They are based on the results obtained by V. V. Ru-
MYANTSEV [27] who established the analogy of the Lagrange theorem of stability for viscous
capillary flow [16].

The question of limiting regimes of an isolated volume motion if # — oo is closely con-
nected with the problem of stability. The above-mentioned examples for an ideal fluid
and viscous ring motion indicate the variety of possibilities existing in this field. In the
general case this question is far from being solved. Only the following partial results takes
place [7].

Assume that for ¢ > 0 there exists the classical solution of the problem (1.9) - (1.11),
and the mapping (1.7) defines the diffeomorphism of the regions 2 and £, for any ¢. The
diameter of the region £, is denoted by d(¢),

d(t) = max {x—y|: x, ye 2,}.
Let vo(%) # 0 and rot v, = 0 for £ € 2. Then d(t) - oo when ¢t — o0,

In other words, at the potential inertial motion of a finite ideal volume with non-costant
velocity and zero surface, the volume diameter infinitely increases in time.

The proof of this result is based on the property of the pressure superharmonicity in
a potential fluid motion and the identity of W. A. DAy [28]

2 .
o [ra2, =2 [1xpa0~40 [ari+s [ pao,
2 2 I Q¢

which is valid for an arbitrary motion of an isolated volume of a viscous capillary fluid.

8. Boundary layers

Assume that the solution of the problem (1.1) - (1.4) is known for » > 0. How can its
asymptotics be found if » — 07 It is natural to expect that outside thin layers near a free
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boundary the motion will be close to that of an ideal fluid. Within the boundary layers,
a sharp change of the velocity derivatives occurs. As a result of this, the tangential stresses
on the free surface turn into zero. The formal asymptotics of the solution of this problem
in the plane and axisymmetrical cases is presented by V. A. BATISHCHEV [29]. In particular,
he investigated the boundary layer in the problem of motion of a non-rotating ellipsoid
of revolution when o = 0 (see Sect. 3).

The only example which affirms the validity of an asymptotical expansion is the problem
of a rotating ring. The asymptotics is found in the form

00 ~ U+ /74 ) FED+ D) 7D s P4 D)+ .o,
2= 1O+ Y P44
1~ O+ Y@ L, i=1,2.

The notations vy, x, r; were introduced in Section 4. The functions o®, y*, ri, k =
=0,1,2, ..., were found by the Lusternik-Vishik first iterative process. If k = 0, we
obtain the solution of the problem of an ideal fluid ring motion. The boundary layer type
functions, £, i = 1,2,k = 1, 2, ... are defined as a result of the second iterative process.
They compensate discrepancy under the condition of the absence of the tangential stresses
at the free boundary of a ring. The estimate of the asymptotic expansion error is given
if ¥ —» 0. It is valid within any finite interval of time if ¢ = 0, and within any interval
0<t<T< oo where 0 < 6 < r{® (¢) if o # 0 [30].

The question of the asymptotics construction for the solution of the problem (1.1) - (1.4)
for » - 0 remains open in the three-dimensional case.

The other interesting and unsolved problem is to find asymptotics of the solution of the
problem of an isolated liquid volume motion if ¢ — 0.
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