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On spatial free-boundary flows
P. 1. PLOTNIKOV (NOVOSIBIRSK)

THis PAPER constitutes an effort to study the correctness of the boundary-value problem for
a three-dimensional flow with free boundaries. The region of flow D is bounded by a surface
composed of the surfaces S and Z. The surface S is prescribed by the equation F(x) = 0. The
surface X is unknown and should be evaluated jointly with determination of the velocity V(x)
in the region D. This is performed on the basis of the system of equationsrot ¥ = 0,divV = 0
with boundary conditions (V -n) = 0 for x e SUZ, |V| = 4 for x € 2. The author has shown
that generally the above problem is undetermined and depends of the shape of the surface S.
At the sufficiently strong restrictions imposed on the surface § and applying the hodograph
method the uniqueness of the previously formulated problem was demonstrated. It was also
shown that in the certain particular three-dimensional cases the small local disturbances do not
disappear but cause the rising of the system of surface waves.

Praca zawiera probe zbadania poprawnosci problemu brzegowego dla tréjwymiarowego prze-
plywu z powierzchniami swobodnymi. Obszar przeplywu D jest ograniczony powierzchnig skla-
dajacq si¢ z powierzchni S i £'. Powierzchnia S jest dana réwnaniem F(x) = 0. Powierzchnia 2
nie jest znana i powinna by¢ wyznaczona w trakcie znajdowania predkosci V(x) w obszarze D.
Dokonuje sie tego na podstawie ukladu rownanrot V = 0, div V= 0 przy warunkach brzegowych
(V-n) =0dlaxeSul,|V| = 4dla xeZ. Autor wykazal, Ze powyzszy problem w ogéinym
przypadku jest niedookre$lony. Zalezy to od ksztaltu powierzchni S. Przy dosyé¢ silnych ograni-
czeniach, dotyczacych powierzchni S, stosujac metodg¢ hodografu udowodniono jednoznaczno$é
wyzej sformutowanego problemu. Réwniez pokazano, ze w pewnych szczeg6lnych trojwymiaro-
wych przypadkach mate lokalne zaburzenia nie znikaja, lecz powoduja powstawanie ukladu fal
powierzchniowych.

PaboTa cofepyKUT MOMBITKY MCC/IE0BAHHA KOPPEKTHOCTH KPaeBOH 3aJaul JUIA TPEXMEPHOIro
TeyeHHs CO CBOOOMHBLIMH moBepxHocTAmMM. OGnacTe Teuenma D orpaHMYeHa ITOBEPXHOCTBIO,
cocTosleit u3 nopepxHocrest S u 2. IToBepxHocTs § 3agana ypaBHeHmeMm F(x) = 0. ITosepx-
HOCTh L HEW3BeCTHA M AO/DKHA OBITh ONpefe/ieHa B IMPOLECCe HAXOXIAeHHMA CKopocTH V(X)
B obnacte D. OTo NpOM3BOAATCA HA OCHOBE CHCTeMBI ypaBHeHmil rotV = 0, divV = 0, npu
rpaHuuHbIX yenoBuax (V- n) =0 mig x € SUZ, V| = A qna x € X. ABTop moxasan, uTo
BhIllle MPHBOJeHHAA 3afjaya B ofluem ciyyae HemoompedeleHHas. JTO 3aBHCHT OT Gopmsel
noBepxHocTH S. IIpH AOBOJIBHO CHJIBHBIX OrPEHHYEHHAX, KACAIOUMXCA IOBEPXHOCTH S,
npuMeHsAA MeTon romorpacda, HOKa3aHa €OMHCTBEHHOCTh BhIechOPMYJIHROBAHHONH 3afauM.
Tloxasano ToXKe, UTO B HEKOTOPbIX YACTHBIX TPEXMEPHBIX CIIYUasaX Masible JIOKATBHbIE BO3-
MYIIeHHA He 3aTYXaroT, HO BhISBIBAlOT BOIHHMKHOBEHWE CHCTEMb! NMOBEPXHOCTHBIX BOJH.

1. Introduction

THE THEORY of spatial free boundary flows is one of the least developed fields of hydro-
dynamics. At the present time it is not known whether the problem of a spatial free-bound-
ary flow is mathematically well-posed [1, 2]. The given paper is the first attempt to decide
this question.

The purpose of our study is to investigate the correctness of problems of steady spatial
potential free boundary flows. In these problems the flow region D is in the space of points
X = (x,, x;, x3). The boundary of D consists of two components, S and X. The surface
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S is given by the equations F(x) = 0, the surface 2 is unknown. It is necessary to find X
and the velocity field V(x) so that the equations

(1.1) D:rotV =0, divV =0;
(1.2) SuZ:(V,n) =0;
(1.3) Z: V=4

are satisfied. Here n is the normal vector to the boundary of D, A — some parameter.

There is a difference of principle between three- and two-dimensional free boundary
problems. We illustrate it with a simple example: Let S be the plane x5 = 0. In the two-
dimensional case the uniform flow turns out to be a unique solution of Egs. (1.1) - (1.3),
and the surface X' coincides with the plane x; = const. In the three- dlmensmnal case the
problem (1.1) — (1.3) has an infinite set of solutions:

(1.4) V=(2,0,0, 2Z:x3=o0(x),

where o is an arbitrary continuous function.

This suggests, generally speaking, that the problem (1.1) - (1.3) is sub-definite. In this
work it will'be shown that the correct formulation of the three-dimensional free boundary
problem depends on the flow region geometry.

2. Hodograph method

Since the domain D is unknown it is convenient to use the hodograph method.
Let u denote the flow potential and V(x,) # 0. It is well-known that in the neighbour-
hood of x, there are the functions v, w which satisfy the equality

@.1) Vu—VoxVw = 0.

The surface of the level v, w consist of streamlines, i.e. v, w are the stream functions.
The relations (2.1) can be considered as the system of differential equations for the vector
function w = (u, v, w). :

Harmonic mappings are the solutions of Eq. (2.1). The existence and uniqueness the-
orems for the mappings of the layer-type regions to a plane layer are valid. We formulate
this theorem for the case of an infinite region.

Let us assume that D satisfies the following conditions:

a) the surface S is given by the equation x; = f(x,, x,) and asymptotically tends to the

planes x; = 0 and x; = x;tgf if x;, > +oo:
22) |} D*(f—x,tgf)l -0 if x; = oo,
' XD -0 if x,— —oo;

b) the surface X' is given by the equation x, = f+/4. The depth of flow A(x,, x,) is the
smooth positive function. It is supposed that it tends to the limited values of A*(x;)
when x, - +o0:

(2.3) ¥ DAh—h%)] -0 if x, — +oo;
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c) the vector field V(x) exists satisfying Eqs. (1.1) and (1.2) such that
PIDAV—j5) >0 if x, - + oo,
C>(V,j7)>C'>0.

Here j- = (1,0,0), j* = (cosf,0,sinp) are the vectors tangential to the asymptotes
of S, o — the multi-index, || < 3.

Let 2 denote the layer in the point space w bounded by the planes I'y:w = 0 and
I'y:w = H where the mean flow depth is expressed by

(2.4)

N
.1 f _
H_,\lrlm W“Nh (t)dr.

Let v = v7(xz, x3), w = w~ (x;, x;) be the arbitrary smooth mapping of the two-
dimensional region 0 < x; < h~(x;) onto the region 0 < w < H

T, w) _
d(x2, x3) %
For example,
B X3 _ _ x3
v~ = | hm(t)dt, w = H-— .
6‘. © h™(x,)

Then we have the following theorem [3]:
THEOREM 1. Under the above hypothesis the system of (2.1) has a unique solution satis-

Jying the conditions
'U(X) =% U“(xz ] xS)! W(X) - W (xz ’ xﬁ)s
u(x)—xl -0 if X, =+ —oo,

The vector function w(x) is the diffeomorphism of D onto L with uniformly bounded
derivatives.

An analogous statement for a periodical case is proved in [4].

Let u, v, w be independent variables. In order to reduce the free boundary problem
to the boundary value problem in the domain 2 for the vector function x(w), we turn
to the reverse functions Egs. (1.1) — (1.3). The equations

Q: x,—x,xx, = 0;

2.5)
Iy: F(x) =0, TIjix,| = 47!

are obtained.

Every schlicht solution of the nonlinear boundary value problem (2.5) gives the solution
of the free boundary problem (1.1) - (1.3).

Two-dimensional flows. If F does not depend on variables x,, then

3x1__3x3_0 -
= =0, 2 = 7.

v v

In this case Egs. (2.5) turn into the Cauchy-Riemann system for the functions x,(u, w),
x3(u, w).

(2.6)
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3. Existence theorem

Let a certain approximate solution V, of the problem (1.1) — (1.3) with the surface S,
be given, and the approximate solution xo(w) of Egs. (2.5) correspond to it. We shall
find the exact solution of the problem (1.1) - (1.3) with the given surface S which is close
to S,. Now it is necessary to find an exact solution of the problem (2.5) which is close
to Xq(W).

The new required vector function z is introduced by the equality x,(z) = x. The
identical mapping z,(w) = w corresponds to the initial solution x,. After a change of varia-
bles we shall obtain the following equations for z(w):

Q:L(z) = (detG)_%Gz.,—z,,xzw =0;
(3.1 I'y: B(2) = (Gz, z) =
Iy:z3—ed(z) = 0.
Here @ is the function giving the perturbation of the surface S;, G is the matrix with the

elements
G' (axo() 3x0())

1t is assumed that: a) the matrix G is diagonal and its elements satisfy the inequalities
Gii > o > 0. The functions G;;(z), @(z) are periodical with respect to z;, z, and belong
to the space Cs(D,). D, is the region —a < z; < a+ H; b) the identical mapping z,
is an approximate solution of Egs. (3.1):

IL(Zo)llcycn + 1P @) llc e + 1| A0 B(Zo) = Llc,rp < &;

c¢) the matrix G satisfies the conditions
dB(z,)

aw
Here a, 4, are some positive constants, ¢ is a small parameter. The following theorem is
valid:

THEOREM 2. Under the above conditions and for sufficiently small positive € the problem
(3.1) has at least one solution:

(3.2) >a>0 if w=H.

z(w) = w+Z(w).
The vector function z diffeomorphically maps 2 onto a certain region D c D,. The vector
JSunction Z is periodical with respect to u, v and ||Z||c o = 0 if e = 0.

As an application of this theorem, we discuss the following problem concerning flows
on a torus: Let S;, j = 0, 1 be two coaxial tori in R® which are given by the equations
(elx|? +1—erf)? = 4(Ix|* —x3)?,
ro=1, r,=expH.

The configuration S = S,, 2 = S, forms an approximate solution of the free boundary
problem (1.1) - (1.3). The mapping

COS &9 sin ev e
X1,0=0 T X2,0=0 y X3,0= € Slnu,

Q = 1—¢ee"cosu
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corresponds to it. After turning to the variables z we shall obtain the problem (3.1) with the
diagonal matrix G. Its elements

Gy, = Q% Gy = G33 = &%
satisfy all the conditions of Theorem 2. It follows from this that the problem (1.1) - (1.3)
is solvable in the case when the given surface S is close to torus S;, and ¢ is sufficiently
small.

The inequality (3.2) is the main restriction to the class of flows under consideration.
It means that.on a free surface the pressure gradient vector is directed “from fluid”.

4. The linear model

The transition to the hodograph variables makes it possible to introduce simple approx-
imate equations describing flows which are close to plane ones. Consider the problem
of an imponderable free boundary flow above a rough bottom.

Let g(x,, x,) be a smooth finite function. Assume that 1 = 1, the surface § is given
by the equation
4.1) x3 = folx1)+eg(xy, x3)
and satisfies the condition (2.2). It is necessary to find the solution of the problem (1.1) —
(1.3) with the velocity field V and the stream depth 4 satisfying the conditions (2.3) — (2.4).
The functions hA* are unknown.

For &€ = 0 the problem has a unique solution Vy(x;, Xx3), ho(x;) in the class of two-di-
mensional flows, [2, 6, 7], and the functions A* are constant:

(4.2) h~ = h*cosf = H.

Example (1.4) shows that in the three-dimensional case the problem (1.1) - (1.3), (2.3) -
(2.4) is sub-defined. In [2] the hypothesis is suggested that for the correctness of the
problem (1.1) - (1.3) it is necessary to demand that the conditions (4.2) be satisfied.

We will show, whithin the framework of an approximate model, that the correct for-.
mulation of the spatial free boundary problem depends on the flow region geometry.
For some flows the conditions (1.1) - (1.3), (2.3) - (2.4) are sufficient for the existence and
uniqueness of the solution. The condition (4.2) is not satisfied in this case.

Derivation of approximate equations. Let us consider the problem (1.1)-(1.3),
(2.3) - (2.4) in hodograph variables. Let x,(w) be the solution (2.5) corresponding to V,,
hy. According to Theorem 1, such a solution exists and satisfies Eqs. (4.2) and (2.4).

Denote the new vector function with the components ¢, y,, v, by ¢, Let y(u, v) be
the restriction v, to the plane Iy, M —the Jacoby matrix of the mapping x,(W).
We will find the solution (2.5) in the form

(4.3) X = Xo+eM*e.
It follows from this that the formula for the disturbed flow depth 4 has the form
h—hy—gg = ey(s, x,)cosB(s)+ O0(e?),
h™—H = ep~(x;), h*—H = ep*(x;)cosecf.
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Here s is the arc abscissa of the curve x; = fy+h,, 0 the angle between the tangent of
this curve and the axis of the abscissa,
y*(v) = lim y(u, v).
N U=»400
It follows that y coincides with the value of the free surface disturbance. If we substitute
Eq. (4.3) into Eq. (2.5), reject terms in the order of £ and axclude y,, y,, we will obtain
the following system of equations for ¢, y:

2: div(4Ve) = 0;
(4.49) I'i:g—ay =0, w.+g¢,=0;
Iy: ¢ = go-

The function g, depends only on g (1.3). The element of the diagonal matrix 4 and
the coefficient a are in the form

' a
Ay = Az =1, Az = fxo.u|z, a= Ee(ﬂ)-

The conditions at infinity can be written as follows:

-0 if u- —oo, |pJ—=>0 if J|ul = o0,

(4.5)

N
: lf_ _
&mz—N—_pr ()dt = 0.

The additional condition (4.2), within the framework of a linear model, is in the form
(4.6) pi(v) = 0.

Equations (4.4) form a boundary value problem for ¢ and the free surface disturbance.
In the two-dimensional case the problem (4.4) coincides with the boundary value problem
for the Veinstein function (2.2), (2.3).

For a wide class of flows the conditions (4.6) and (4.5) provide a uniqueness of the so-
lution (4.4). Assume that the following conditions are valid.

The function a vanishes only in a finite number of points u;, i =1, ..., k, k < 2.

If kK = 2, then within the interval between zeros u,, u, the function a is negative. The
matrix 4 and the coefficient a satisfy the inequalities

a,(u) >0, oo@la@)|=mi if |ul>T;
layu)l = mi, |lgoallc,cr < 4.

Here T, m, A are the positive constants, g, = (1 +#?)°, o > 1 the weight function.

The following theorem [3], which is a spatial analogy of Friedrichs-Veinstein lemma [6]
is valid.

THEOREM 3. Let ¢, v be the solution (4.4)-(4.5) with g, = 0, Vo € L,(£2) satisfying the
condition

[ 1D*yl2dudv < co.
lej<2 Iy
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Then the positive constant Ay = Ao (m, T) exists such that if 1 < Ay then y = ¢ = 0.
For some classes of flows the additional condition (4.6) is unnecessary. The problem

(4.4)-(4.5) is correct in the class of bounded functions. Thus the following theorem is valid:
THEOREM 4. Let the function a satisfy the inequality

m gy < a < mp.

For any finite g, € C3(I'y) the problem (4.5)-(4.4) has the unique solution (@, ) € C,(£2)
x C,(I"y) for which the estimate

IV eoWwlle.crp+ 1192l oo < € ) lleo Dgollz,erys
le|<2
is valid. The functions p* are equal to zero if and only if g, = 0.
Thus it has.been proved that in some cases the local disturbances of a spatial flow
do not vanish at infinity, but lead to the appearance of the system of surface waves.
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