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Settling velocity of Newtonian suspensions
I. PIENKOWSKA and R. HERCZYNSKI (WARSZAWA)

THE MAIN point of the theory of sedimentation is the relation between the settling velocity and
the spatial distribution of suspended particles. We consider spherical particles settling in infinite
fluid, at low Reynolds number conditions. The nearest neighbour distribution function of ran-
domly distributed spheres is exploited, to modify a cell model approach. Inside a cell of a radius
equal to the characteristic length of suspension, the Stokes equation is solved. The striking
result of our calculations is the presence of the overshoot of the relative settling velocity. This
overshoot was also experimentally found [1]. For large volume concentrations of suspended
zarticles (¢ < 0.4), the proposed approach satisfactorily agrees with available experimental
ata.

Praca dotyczy sedymentacji zawiesiny, w ktOrej ciecza noéna jest ciecz lepka, a faza rozpro-
szong — kuliste krople cieczy o dowolnej lepkosci. Gléwnym problemem jest wplyw przestrzen-
nego rozkladu rozproszonych kropli na srednia predkos¢ sedymentacji. Predkos¢ te obliczono
zakladajac losowe rozmieszczenie kropli cieczy, opisane przez funkcje rozkladu odleglosci
do najblizszego sasiada. Oddzialywania hydrodynamiczne miedzy kroplami opisano zmodyfi-
kowanym modelem komérkowym. Rezultatem pracy, na ktory chcielibySmy zwroéci¢ uwage,
jest wystapienie, przy koncentracji objetoéciowej kropli ponizej 1%, éredniej predkosci sedy-
mentacji wigkszej niz predko$¢ opadania pojedynczej kropli. Efekt ten obserwowano w kilku
pracach eksperymentalnych. Obliczono rowntez $rednia predko$é sedymentacji jako funkcje
léoa;centracji objetosciowej kropli dla gestych zawiesin (dla koncentracji objgtosciowej ponizej
4).

B Teopuit ceMMEHTALMH OCHOBHYIO POJNb MTPAaeT COOTHOLIEHHE MEWIYy CKOPOCTHIO OCaXKia-
HUA B3BellleHHbIX YACTHL] M WX NPOCTPAHCTBEHHbIM pacnpeneneHem. B paGore paccmarpu-
BaeTcs ocakJaHwe chepHUecKMX YaCTHI] B HEOrpaHHUYeHHOH KHMAKOH cpele NpPH YCJIOBMH,
4Yro umcno Peitnonsaca mano. Ilpeanaraerca momuduuMpoBaHHAsA KIeTOYHas Cxema, B KO-
Topoii ynorpebnserca GyHKUMA pacnipefeneHua mo Omoxalintero cocema. B oxpectHocTH
KOKI0A cdeprueckoll yacTHubl peliaercA 3agady Crokca. HeoxHgaHHBIM pe3ysTaTom
HAIIMX BbLIYHCICHHH fBJIAECTCA NpPeBbIUICHHE OTHOCHTE/IBHON CKOPOCTH OCIMKOAHHA MJIA
KOHIIEHTPalKM OKojo 1 mpoueHTa. DTO mpeBbllleHie GbUTO TakyKe HANHAEHO IKCHEPHMEH-
TanbHO [1]. Jna Gonpmmx o0BLEMHBLIX KOHLUEHTPALMIl NpEIOKEHHBIH MeTo[ YAOBNETBOPH-
TeABHO COTIJIACYeTCA C SKCIePHMEHTANLHLIMM JaHHBLIMH.

1. Introduction

THE SEDIMENTATION of equi-sized spherical particles, dispersed in the Newtonian and in-
compressible fluid, is not fully yet understood. In the simplest case, to be considered here,
the fluid is unbounded and at Test far from the particles. It is assumed that sedimentation
takes place at low Reynolds number conditions. The settling velocity is established under
the combined influence of hydrodynamic interactions between dispersed particles and the
gravitation force. It will be regarded as a function of the viscosity ratio 5 = u/u (# — the
coefficient of viscosity of the suspended particles, u — the viscosity of the ambient fluid),

and the volume concentration ¢ of the suspended particles (4) = -g- na®n, a— the radius



586 ) I. PieNkKOWSKA and R. HERCZYNSKI

of the suspended particles, » — the number density of particles). The qualitative descrip-

tion of the sedimentation is usually the following one: up to a certain concentration the
particles settle individually and they obey the Stokes’ formula:
(.1 U, = _ 2ga*(g—o) (I+n)
3uC+37)

where the usual notation is used:

g — the acceleration of* gravity,

e — density of particles,

¢ — density of the ambient fluid.

At higher concentration the rate of sedimentation diminishes with increasing concen-

tration.
However, some experimental evidence exists showing that dilute suspensions settle

faster than the individual Stokes’ particle. Interesting experimental results have recently
been obtained by BArroD [1]. Figure 1 presents a typical behaviour of dilute suspensions
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Fic. 1. Experimental data for the relative settling rate of dilute suspensions obtained by Barrop [1].

showing that the relative rate of sedimentation (i.e. the ratio of the average settling velocity
U to the Stokes’ settling velocity U,) exhibits an overshoot at these concentrations. The
exact position of the maximum relative rate and its height is difficult to assess. According
to Barfod’s interpretation, the observed overshoot is due to the particulate spatial distri-
bution of settling particles, namely, due to appearance of clouds of particles which have
a greater settling rate than single particles.

For the simplest case of just two particles, this effect has been considered theoretically
by GoLpMAN, Cox, BRENNER [2]; they have found the linear and angular velocities of two
settling spheres to be a function of their relative positions (of the separation and of the
orientation of theit line-of-centers relative to the direction of gravity).

The discussion of the settling rate dependence on a spatial distribution of particles has
started with BURGER’s paper [3]. In the first part of this paper Burgers studied random
dilute suspensions of rigid spheres, assuming that the centres of spheres in the suspension
take with an equal probability all positions, under the only condition that no two particles
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overlap. He obtained a correction to the Stokes settling velocity, proportional to the first
power of particle concentration:

(1.2) UlUy = 1—6.88 .

For ordered suspensions the correction in terms of the one-third power of volume con-
centration is reported:

(1.3) U[U, = 1—const * ¢'/3,

where the numerical value of the proportionality coefficient depends on the assumed lat-
tice structure.

Also so-called cell models [9] lead to the power law ¢'/3. The controversial point of the
power-law dependence was critically examined by SAFFMAN [11].

An extensive discussion of the sensitivity of the settling velocity to the arrangement
of particles has been given in BATCHELOR’S paper [4]. Batchelor developed a theory which
enables us to calculate the relative settling velocity to order ¢ :

(1.4) UlU, = 1—-6.55¢.

In the present paper the average settling velocity is examined using the method already
applied for calculating the effective viscosity of suspensions [12]. This method enables
us to calculate the average settling rate for the relatively broad range of volume concentra-
tions, up to ¢ =~ 0.4.

It is shown that the assumed form of spatial distribution of suspended particles leads.
to the overshoot of the average settling rate for small volume concentrations.

The proposed approach enables us also to calculate the dispersion coefficient which
describes the fluctuations of the relative settling velocity.

2. A binomial spatial distribution of particles

‘We assume, like some of the previously mentioned papers, a random distribution of
suspended particles. The analytical form of description of that particle arrangement is
a separate problem considered, f.e., in statistical geometry [5]. We have chosen here a
way of description which takes explicitly into account the finite size of particles. In view
of that finite size the parameter ¢,, giving the maximum volume concentration is intro-
duced. It is defined by the following relation, describing the maximum number of M par-
ticles, which can be embedded in a volume V:

1) M = Vi, / (%na:‘).

The quantity of our interest is the probability B(N, V) that the volume V' contains.
exactly N particles, N < M. This probability is described by the relation of binomial form:

(2.2) B(N,V) = (ﬁ )P”(l—P)"'",

where P = ¢/p,,, Pe [0, 1].
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The conditions under which that relation can be used were discussed in [8].

A similar distribution of particles was used by BuyevicH [6] who regarded the fluctu-
ations of the number of particles in dense dispersed systems, and by SMiTH [7] who studied
experimentally the spatial distribution of spheres falling in a viscous liquid.

The present analysis involves the nearest neighbour distribution function related to the
random distribution of spheres. It was shown in [8] that it is of the form

fla,R)=0 for R<a,
80m|— —1
fa, R) = 24R2¢"'l(1———)(1——¢— ) for R>a.

Here R denotes half of a distance to the nearest neighbour sphere.

(2.3)

3. Dissipation of energy due to sedimentation

To model hydrodynamic interactions between suspended particles a modified cell model
of suspension is employed. Let us imagine that each particle is surrounded by a spherical
fluid envelope of the radius b, equal to the characteristic length of the suspension:

@3.1) b = %
4nn
The particle moves downward with a'velocity U.
The mathematical problem posed involves the solution to the creeping motion equa-
tions inside the envelope:
pdu=Vp, r<a,
3.2) udv=Vp, a<r<hb,
Viu=0, V-v=0,

where p, u—the pressure, and velocity field inside the suspended particle, p, v— the
pressure and velocity field in the ambient fluid in the region a < r < b, with the boundary
conditons imposed at the surface of the particle (r = a), and at the outer spherical envelope
(r = b)- At r = a, the velocity and the tangential components of normal stress are con-
tinuous, and the radial component of velocity is equal to Un, (n,— the directional cosine):

vy=w, i=1,2,3
(33) eamn(0,j—0i;) = 0
n; = mu; = Uny,
:0j, 0;; — the stress tensor components, respectively, inside the suspended particle and in
the ambient fluid.
At r = b, the radial component of velocity and the tangential stress vanish:
nv; = 0,

(34)

O'ﬂg=0.
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That kind of boundary conditions was used first by HAppeL [9]. Having imposed these
boundary conditions, we arrive at cells which do not exchange energy with their surround-
ings. On the other hand, the boundary conditions proposed earlier (see [9] for references)
do not lead to the energetically independent cells.

The pressure and velocity field inside the envelope were calculated with the aid of the
Lamb’s general solution to the creeping motion equations. For the suspended particles

the results are
- —[(1 r? 1 r?
U{A§;1+B(—5—? (5“ o m? ﬂlﬂ‘)} s

Il

Ui
p = UBurn,|a?,

where
A = 5 [=2°0=1)+7°Gn=3) -y G+ +20+3],

B= l—; (y5-=1), y=alb,
4= =2y°(—D)+y*Gn-2)—yGn+2)+27+2,
and, respectively, for the ambient fluid

1 r? 1 r?
U{Aa“w(T?a“_#L )

(35 u

a® a® 1 1
+C(—r-3— 5“—3? nlﬂl) +D(7% ajl‘}'?% nl"i)}:
P = U{Bﬂfﬂ1/a2+ﬂmla."r2}s
where

= =2 [2956n—=1)—3n— i .

D = & [2*(n—1)~3n-2).

As it was discussed by HAPPEL [9], the resulting motion is of a circulatory type. This
way the return, upward flow of fluid, observed between settling particles is taken into
account.

In the present work a cell model approach is modified by introducing variable radii R
of spherical envelopes surrounding suspended particles. To describe the variation of these
radii, we adopt the nearest neighbour distribution function f(a, R). Owing to the features
of that function, the whole space occupied by the suspension is divided into non-overlap-
ping cells (envelopes) which can be considered independently of one another.

Outside these envelopes the fluid is assumed to be at rest.

For an evaluation of the settling velocity we will need the average rate of energy dissi-
pation in the suspension.

Inside an envelope of the radius R, the energy dissipation is presented in the form
2nuaU?F(a/R), a< R<Db,

(3.6) E(a, R) = ithzF(a/b)s b< R< o,

17 Arch. Mech. Stos. 4-5/78
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where

= 5 5
F(a/R) = 2%1}324-24(:2 (1—%) + 1 (% - 1) +2D? (1 —%)

25
a’ 2 R?
As envelopes surrounding different particles are not overlapping, the average dissipa-
tion per particle is
3.7 <E> = 27paU? | F(a|R)f(a, R)dR = 2mpal? (F).
The dissipation takes place only in envelopes since outside these envelopes the velocity
field, by the assumption, vanishes.

4. The average settling velocity

To determine the average settling velocity one can calculate the time rate of change
of potential energy P, of fluid and particles in a volume V:

N

@) P = 3 n@G-0g ) U®,

k=1

where U® denotes a settling velocity of particle k.
As usual, the average settling velocity U is determined through
4.2 U = lim

P,
CEK p———

i.e. U yields the same rate of change of potential energy as is described by P,.
To calculate U we take advantage of the fact that the change of potential energy is
equal to minus the rate of energy dissipation:

N N
@3) P = = Y E®(a, R) = —2npaU? Y F®(a|R).

k=1 k=1
In view of Eq. (3.7) we simply have
4.4 P, = —m2nuaU*(F).
From Egs. (4.2), and (4.4) it follows that

@5) W) = -

Further, the relative settling velocity will be inquired:

U\ _ 2+3y 1

4.6) To/ ~ (+m) <F
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The use of an explicit form of the distribution function enables also to give an expres-
sion for the dispersion coefficient o:

:_/UY\_ U\
@7 3 *\( Uo) / Up/ "’

or
SRR T
(1+n)<F) <F* )

which is the nreasure of fluctuations of settling velocities.

5. Results

For dilute suspensions we have arrived at a correction to the Stokes’ settling velocity,
proportional to the one-third power of the concentration ¢. That result is a reminiscence
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FIG. 2. The relative settling rate (solid lines), and the dispersion coefficient (dotted lines), for viscosity
ratios equal to = 10%, 5 = 1, and n = 0, at small volume concentrations ¢.
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of the cell model employed. Such a dependence appears.in all approaches, exploiting that
model [9]:

1/3
(5.1) (g; E:a.+1—Q(gi) .

However, due to the assumed particle arrangement, the coefficient Q is negative: this
feature leads to the overshoot of the relative settling velocity

Q = 3{1—-230.4¢3y —e~%m(0.5+28.842 +6¢,)},

5.2) - 2 D@l < 0.01266,

el ( %+n)n!

¢m =074, Q= -0.71.

We are aware of the fact that the presence of the overshoot is not generally accepted.
Here only one of the possible explanations of the observed behaviour is discussed.

Figure 2 shows the relative settling velocity and the dispersion coefficient for suspensions
up to the concentration ¢ equal to 0.1. The non-monotonic dependence should be noted.
The position of the overshoot depends on the viscosity ratio #; also the dispersion curve
exhibits the maximum in the same region with a slight shift towards greater concentrations.

For rigid particles the predicted relative settling velocity has the maximum equal to
1.12 at about ¢ = 0.006. The numbers given here and the curves plotted in Figs. 2, 3 and
4 are results of numerical calculations, according to the formulae (4.6) and (4.7).
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F1G. 3. The relative settling rate (solid lines), and the dispersion coefficient (dotted lines), for viscosity
ratios equal to = 10%, 5 = 1, and 7 = 0, at intermediate volume concentrations ¢.
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FiG. 4.Comparison of the calculated relative settling rate with the experimental data selected by OLIVER[10].

A tentative comparison with experimental findings is not discouraging, as Barfod
reported the maximum in the range 0.001 < ¢ < 0.002, and the maximum relative settling
velocity changing between 1.12 < U/U, < 14.

Figure 3 presents the behaviour of the settling velocity and the dispersion for denser
suspensions. Here the relative settling velocity decreases with the concentration ¢, as it is
expected. The high values of the dispersion are of interest. This feature is attributed to the
slow asymptotic decrease, as r=!, of the velocity disturbance due to the individual falling
particle (Stokes’ particle).

The last figure, Fig. 4, gives the comparison with the experimental data selected by
Ovriver [10]. Certainly, the denser the suspension, the more questionable is the present
analysis based on a purely geometrical distribution function. In view of this fact the com-
parison is even more promising than it was expected.

Finally, it should be mentioned that any cell model provides only approximate results
and it always serves as a tool because of the lack of more rigerous methods.
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