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On the method of phase space for blast waves (*) 

A. K. OPPENHEIM (BERKELEY), A. L. KUHL (REDONDO BEACH) and 
M. M. KAMEL (BERKELEY) 

PHAsE space is a generalization of the concept of phase plane which has become well established 
as the most convenient means for the analysis of self-similar blast waves. Its extension to three 
dimensions provides a useful tool for the treatment of non-self-similar problems. In this manner, 
the solution for such problems is reduced to the task of determining an integral surface, or a family 
of integral curves, in a space defined in terms of appropriate reduced coordinates that, in effect, 
render the gQvernin& equations essentially independent of the physical coordinates of space and 
time. The Paper provides the formulation of the equations and describes the technique used 
for their solution. Ot particular importance in this respect is the fact that conditions at the inner 
boundary of the blast wave correspond, in most cases, to a saddle point singularity in the phase 
space. Hence special precautions have to be taken to assure the stability of the solution in their 
vicinity. Salient features of the method of phase space are illustrated here by its application 
to the classical problem of point explosion propagating in a uniform atmosphere of finite (non­
zero) pressure. 

Przestrzen fazowa jest uog6lnieniem koncepcji plaszczyzny fazowej, kt6ra zostala uznana jako 
jeden z najbardziej dogodnych sposob6w analizy samopodobnych fal wybuchowych. Jej roz­
szerzenie na przypadek tr6jwymiarowy stanowi pozyteczne nar~dzie do analizy zagadnien 
niesamopodobnych. Rozwi~zanie tych zagadnien sprowadza si~ do okre8lenia powierzchni 
calkowej lub rodziny krzywych calkowych w przestrzeni odpowie<lnich wsp6lrz~dnych sprowa­
dzonych, eo w efekcie prowadzi do r6wnan wyjsciowych zasadniczo niezale:inych od wsp6l­
rz~dnych fizycznych- czasu i przestrzeni. W niniejszej pracy przedstawiono sformulowanie 
problemu, wyprowadzono r6wnania W}jSciowe i opisano technik~ ich rozwi~zywania. Szczeg61ne 
znaczenie ma tu fakt, i:e warunki na wewn~trznym brzegu fali wybuchowej odpowiadaj~ w wi~k­
szosci przypadk6w osobliwemu punktowi siodlowemu w przestrzeni fazowej. Dlatego tei: 
nalezy zachowac szczeg6ln~ ostro:inosc na zapewnienie stabilnosci rozwi~zania w otoczeniu tego 
punktu. Charakterystyczne metody przestrzeni fazowej zostaly tu zilustrowane na przykladzie 
klasycznego problemu punktowego wybuchu rozchod~cego si~ w jednorodnej atmosferze 
o skonczonym (niezerowym) cisnieniu. 

<f>a30BOe rrpoCTpaHCTHO HBJUieTCH o6o6I.QeHHeM KO~eii:QI!H !l>a30BOH IIJIOCKOCTI!, KOTopaH 
rrpH3HaHa KaK O::t:lfH lf3 Halfoorree rrpHrO~biK: crroco5os aHa.JHl3a a.BTOMo.n;eJibHhiX B3pbiBHbiX 
BOJIH. Ee pacumpeHHe Ha TpeXMepHbiH CJI)'llaH COCTaBJIHeT IIOJie3HOe opyJJ;He JJ;JIH a.HaJIH3a 
HeaBTOMo.n;eJibHbiX 3a.n;aq, PerneHHe 3TlfX 3a.n;aq csoJJ;HTCH K orrpe.n;enemno lfHTerpaJibHOH 
IIOBepXHOCTH HHlf CeMeHCTBa HHTerpaJibHbiX KplfBbiX B IIpOCTpaHCTBe COOTBeTCTBYIQl.QlfX 
IIplfse.n;eHHbiX Koop,n;HHaT, q'fQ B 3«l>«i>eKTe rrpHBOJJ;HT K HCXOJJ;HOMY ypasHeHHIO B rrp~e 
He3aBHCHI.QeMy OT «l>H31-(qecKlfX Koop,J.l;l{HaT- speMeHlf H rrpoCTpaHCTBa. B HaCTOHI.QeH pa6oTe 
rrpe.n;CTasneHa «i>opMyJIHposKa rrpo6neMbi, BbiBe.n;eHhi HCXOJJ;Hbie y.pasHeHlfH H orrlfCaHa Tex­
HlfKa lfX perneHHH. Oco6eHHoe 3HaqeHHe HMeeT 3JJ;eCL «PaKT, 'tfrO yCJIOBlfH Ha BHYTpeHHeii 
rpaHH:Qe B3pLIBHOH BOJIHbi oTseqaiOT, s 6oJILliiHHCTBe cn)'llaes, oco6oii To~e THIIa ce.n;na 
B !l>a30BOM IIpOCTpaHCTBe. Ilo3TOMY CJieJJ;yeT COXpaHHTb oco6eHHyro OCTOpO>KHOCTL JJ;JIH o6e­
crreqeHl{H CTa6HJibHOCTlf perneHHH s OKpeCTHOCTH 3TOH ToqKl{, XapaKTepHCTuqecKlfe MeTOJJ;bi 
«l>a3osoro rrpoCTpaHCTBa HJIJIIOCTplfposaHbi 3.n;ecL Ha rrpHMepe KJiacc~ecKOH 3aJJ;aql{ Toqeq­
Horo B3pbiBa pacrrpoCTpaHHIOI.QerOCH B aTMOC«i>epe C paBHOMepHbiM, KOHe~IM (HeHYJieBbiM) 
,Z:{asneHHeM. 

(*) This work was supported by the United States Air Force, through the Air Force Office of Scientific 
Research, under AFOSR Grant 75-2772, and by the National Science Foundation, under NSF Grant Eng. 
73-04089A01. 
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1. mtroduction 

BLAST waves are, essentially, geometrically symmetrical, 110n-steady flow fields of a com­
pressible medium that are bounded by gasdynamic discontinuities. Generally they are formed 
by explosions. The process is g~vemed by spatially -one-dimensional time dependent equa­
tions expressing the conservation of mass, momentum, and energy, subject to appropriate 
boundary conditions at the center and at the front for the particular problem under con­
sideration. 

Base on the pioneering work of1on NEuMANN (1947), SEDOV (1946) and TAYLOR (1941), 
self-similarity variables have been formulated that transform the governing equations of 
certain classes of problems into ordinary differential equations, thus making them amenable 
to simple analysis. Such self-similar problems are, as a rule, characterized either by a con­
stant front velocity, or by a negligible (essentially zero) counter-pressure that causes the 
~ach number of the wave to remain infinite, irrespective of its actual velocity. A para­
metric study of such solutions has been presented by OPPENHEIM et al., (1972). 

In most physical situations, however, especially when one is interested in the interpret­
ation of experimental records, self-similarity conditions are inapplicable. One has to take 
into account then the dependence of the gasdynamic parameters of the problem on the 
change in the conditions at the front, as well as in their distribution within the field. It thus 
becomes necessary to deal with a nonlinear, coupled non-homogeneous set of partial · 
differential equations (viz. 0PPENHEIM et al., 1971). 

Numerical solutions for some particularly simple cases, such as the problem of constant 
energy blast wave in a perfect gas with finite ambient pressure, are available in the literature. 
VoN NEUMANN and GOLDSTINE (1955), for example, obtained one of the earliest solutions 
for this problem by using first-order difference approximations to the gasdynamic equations 
expressed in Lagrangian form, for which the position and strength of the shock front at 
each time step was determined by iteration. OKHOTSIMSKII et al. (1957) solved the same 
problem by using the method of characteristics in the Lagrangian frame of reference. 
BRODE (1955 and 1969) and WILKINS (1969), on the other hand, with the former including 
radiation effects, utilized Lagrangian difference schemes employing artificial viscosity. 
This concept, originally introduced by von NEUMANN and RICHTMYER (1950), assures the 
numerical stability of the solution. In effect, it spreads the shock discontinuity over several 
mesh steps whose number does not increase with time, while flow variables remain contin­
uous as one integrates "through7' the shock front. The penalty paid for this convenience 
is the loss of accuracy in determining the shock position, as well as difficulties that arise 
in multiple front blast waves. 

In contrast to the above, problems formulated in the Eulerian frame of reference include 
explicit information on the evolution of the shock front with time. In Eulerian coordinates, 
KOROBEINIKOV and CHUSHKIN (1966; with SHAROVATOVA, 1969) solved the non-self­
similar point explosion problem by the method of integral relations which was first pro­
posed by DORODNITSYN (1956a and 1956b) and later developed by BELOTSERKOVSKII 
and CHUSHKIN (1965). Although this method yields good results, especially near the self­
similar limit and away from the origin, the large number of ordinary differential equations 
that it generates (27 being a typical number) presents a definite drawback. This could pos-
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sibly have been the reason why it was never utilized for the solution of more involved 
problems. 

For more complicated flow fields, however, or when the cost of numerical solutions 
becomes prohibitive, one should resort to analytical methods since they are capable of 
providing not only the desired results, but may also yield additional insight into the 
problem. 

The first, and most popular, approximate analysis is that involving the expansion of the 
dependent variables in terms of the front coordinate, for which the self-similar solution 
provides the zeroth-order step (SAKURAI, 1965 and KoROBEINIKOV et al., 1963). This 
technique is useful only for the study of flows near the self-similar limit. 

Another approximate solution is that utilizing the so-called "quasi-similar" method 
developed by OSHIMA (1960 and 1962) where all the terms containing the front coordinate 
are taken to be equal to their values at the front. By virtue of its construction, this method 
gives exact results at the self-similar limit and just behind the front, with the accuracy 
deteriorating fast as one proceeds towards the center. In a third approximate method the 
density is represented by a power law of the field coordinate (MEL'-NIKOVA, 1966 and BAcH 
and LEE, 1970). Although this method gives good qualitative results for the problem of 
adiabatic point explosion, it cannot be utilized to solve many problems, especially those 
associated with energy addition in the course of the process since it disposes of the energy 
equation from the outset. 

Useful closed form approximate solutions, especially valid when the front is decoupled 
from the source of explosion, have been developed by CHESTER (1954), CHISNELL (1957), 
WHITHAM (1958) and FRIEDMAN (1961); these solutions became known as the Whitham 
role. This solution is based on the assumption that the differential relations which must be 
satisfied by the flow field variables along one set of characteristic lines, are satisfied by the 
gasdynamic parameters of the state immediately behind the front. An older approximate 
solution, valid especially for the weak non-self-similar region of the point explosion prob­
lem, has been proposed by BRINKLEY and KIR.Kwooo (1947). It was developed by seeking 
a self-consistent set of ordinary differential equations to specify the problem withou, 
having to treat explicitly the partial differential equations expressing the conservation 
principles. 

It thus appears from the above survey that ·each of the existing analytical methods 
has quite a limited range of validity that precludes its universal applicability to non-self­
similar blast wave problems. 

In this paper, on the other hand, we exploit a novel analytical approach that holds 
promise over a very wide range of validity, providing means for the analysis of a great 
variety of blast wave problems of current interest. In contrast to numerical methods, this 
approach is basically analytical. It actually takes advantage of the physical properties 
of the flow field of a particular class of problems, as manifested by singularities specified 
in the appropriate mathematical phase space of the solution. Thus, our method derives 
its impetus from the same property that limits the success of other methods: the existence 
of singularities. 

The fundamental concept on which our analysis is based is that of a phase space, a gen­
eralization of the well-known concept of phase plane used for the solution of self-similar 
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blast waves (SEDOv, 1957 and CoURANT and FRIEDRICHS, 1948). Its extension to third dimen­
sion turns it into a useful tool for the treatment of non-self-similar problems. By its use, 
getting a solution to such problems is reduced to the task of determining an integral surface, 
or a family of integral lines, in a space defined in terms of appropriate reduced coordinates 
that render, in effect, the governing equations essentially independent of the physical coordi­
nates of space and time. 

To test the utility of the phase space method, it is used here to obtain a solution to the 
classical case of non-self-similar point explosion. The results are compared to those of the 
most recently published detailed numerical solution, obtained for this problem by 
KOROBEINIKOV and CHUSHKIN (1966; with SHAROVATOVA, 1969). 

2. Formulation 

Problems under consideration here are concerned with the determination of the Euler­
ian space profiles in a sourceless flow field of a blast wave propagating into an atmosphere 
of uniform thermodynamic state. Following our systeiJlatic method of approach (OPPEN­
HEIM et al. 1971 ), they are formulated in terms of the following variables: 

1. Physical space coordinates, the independent variables of the problem: 

X = !__, ~ = !.!!_ 
rn ro 

the first referred to as the field and the second as the front coordinate. The symbol r denotes 
the space coordinate of a point in the flow field, while r n is the radius of the front at the 
same instant of time, subscript 0 specifying its reference value. It should be noted that 
when the front trajectory is known~ becomes a measure of time, t. 

2. Front parameters, i.e. variables pertaining uniquely to the front motion and there­
fore functions of only the front coordinate, ~: 

a2 dlnrn wt , =- _ 2 din w = dlny, 
y = w;' fl = dint = r;:' 11. dlnr,. dln~ 

where w = drnfdt is the front propagation velocity, a is the velocity of sound, while sub­
script a denotes conditions of the ambient atmosphere into which the front of the blast 
wave propagates. 

3. Gasdynamic parameters of the flow field, the dependent variables describing the 
structure of the flow field: 

I= wu , h = _f_, g = ~, 
(!a (!a W 

where u is the particle velocity, (!the density and p the pressure. 
4. Reduced variables; coordinates of the phase plane: 

F = I = !!!___' Z = Fg = (!!!_)2' 
x 'fl x2h 'fl 

where 
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As shown by 0PPENHEIM et al. {1971), in terms of these variables the conservation 
equations can be expressed by the following set: 

(2.1) ( az) = ~ P(F, z; f/J9, f!JF, f!JZ) 
oF y I-F Q(F, Z; f/J9, f!JF) ' 

{2.2) (
olnx) D(F,.Z) 
a£ 1 = - Q(F, Z; f/)9, f!JF) ' 

(2.3) ( 
o In h) = H(F, Z; f/Jh, (/)9, f!JF) . 
oF 1 Q(F, Z; f/J9, f!JF) 

and 

(2.4) 

In the above 

f!Jk = o Ink = A o Ink 
' oln~ olny' 

where k = h, g, For Z, are the logarithmic cross-derivatives, taken with respect to the 
front coordinate, while 

D(F, Z) = Z-(I-F)2
, (2.5) 

(2.6) 

(2.7) 

Q(F, Z; f/J9, f!JF) = ()+ I)(F-FD)Z-F(I-F')(Fy-F), 
I 

P(F, Z; f/J9, f!JF, f/Jz) = b(F8-F)D+(F-I)Q, 

(2.8) H(F, Z; f/Jh, f/J9, tJ>F) = -I~F [Q-{U+l)F+f!Jh)D] 

and 

(2.9} 

Here j = 0, 1, 2 for flow fields of plane, line or point symmetry, respectively, while 

" A 
(2.10) FF = 1+2-f!JF, 

(2.11) ;D = U+\)r [A-f!J9], 

(2.12) 

and 

<5 = (j+ l)(F-1)+2. 

In the above set Eq. (2.1) defines the problem in the phase space. Integral curves corre­
sponding to fixed values of y computed on the basis of this equation, subject to appropriate 
boundary conditions at the front, provide essentially the solution to the problem. When 
such integral curves are determined, profiles of the gasdynamic parameters describing the 
structure of the flow field are obtained from the quadratures of Eqs. (2.2), (2.3), and (2.4), 
while the relationship between the front decay parameter, A, and y, evaluated at the same 
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time, provide all the. necessary information that is required for the determination of the 
front trajectory in the time-space domain. 

It is worth noting at this point that Eq. (2.1) has the same form as the governing equation 
in the self..,similar phase plane analysis (OPPENHEIM et al., 1972) except that the terms f,., Fn 
and F8 vary along the integral curves, rather than remain constant. 

3. Method of solution 

The main objective if the analysis is to determine the integral surface of the solution 
in the phase space. This is specified in terms of integral curves that correspond to fixed 
values of the front parameter, y. It should first be noted, however, that, in general, the 
flow fields. under study are each bounded by a front and an inner boundary. The front 
is usually comprised of a gasdynamic discontinuity that is described by the appropriate 
jump conditions. The state immediately behind the front represents the outer boundary 
and is denoted here by subscript n, while the inner" boundary, referred to by subscript i, 
expresses the conditions at the center of symmetry on a piston face or at any internal 
surface along which all the conditions are prescribed. The problem is thus basically one 
of a double boundary value. 

To develop an analytic solution, an appropriate expression for the variation of the 
front derivatives must be adopted a priori. For· a given value .of y these derivatives are, 
in general, functions ofF or Z, as well as q>f and 4>!. Since the form of these functions has 
a definite bearing on the solution, a judicious choice must be made. For example, they must 
satisfy conditions at both boundaries, as well as comply with any other constraints of 
the problem. However once these conditions of constraint are satisfied if one starts to 
evaluate integral curves on the basis of the self-similar solution, wbich is exact, the partic­
ular form of these functions becomes ptactically immaterial. The reason for this is that 
for self-similar solutions, where y = 0, all <P = 0, whereas for y close to y = 0, <P •• are 
relatively small. Consequently, the proper form of these functions may, in principle, be 
developed step by step, as y is varied from 0 to 1, to approach the exact solution. 

As a consequence of the above. argument one may define, without much loss in gener­
ality, a progress variable, e, as follows 

(3.1) <P = (/>:+e(«P!-~). 
The value of e must be equal to 1 at the front and 0 at the inner boundary while, within 
the flow field, e may be taken as a function of either Z or F. Specifically, in general, one 
may have 

(3.2) E= 

where 

a,C+a2C2+a2C3+ ... 
a1 +a2+a3+ ... 

C = ZnfZ. 

The gasdynamic profiles obtained by the use of a given form of e(F) or e(Z) must of course 
satisfy the global conservation equations. The extent to which this is achieved serves as 
a check of the appropriateness of the form used for this function'. 
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For example, if one takes e = I throughout, Eq. (3.1) reduces to lJ>k = ll>!, correspond­
ing to the postulate of the so-called quasi-self-similar theory {OsHIMA, 1962). In this case 
one loses the constraints imposed by the inner boundary conditions of the center and, 
consequently, the mass integral cannot be satisfied. On the other hand, as will be demon­
strated later, if one takes in Eq. (3.2) a2 = a 3 = ... = 0 so that e = C one can achieve 
for the classical case of point explosion in · an atmosphere of finit~ pressure as accurate 
an agreement with the mass integral as one wishes. 

4. Application 

As an illustration of the method of phase space, a solution obtained by its use is describ­
. ed for the classical case of an adiabatic point explosion in uniform atmosphere of finite 

(non-zero) pressure. The medium is assumed to behave essentially as a perfect gas with 
constant specific heats, so that r = I'' the specific heat ratio. 

Under such circumstances the- state immediately behind the front is given by the Ran­
kine-Hugoniot relations, yielding 

(4.1) 

(4.2) 

(4.3) 

and 

(4.4) 

2 
F, = --1 (1-y), 

y+ 

y+I 
h, = -----=--, 

y-.I+2y 

g, = y-1 ( 2y ) 
y(y+I) y-1 -y 

y-1 ( 2 ) Z, =-
2

- y-
1 

+F, (1-F,). 

For a given value of y, the first and last equations specify the front boundary condition 
for the integral curves in the phase space. 

For this particular problem the inner boundary that specifies the integral curve at the 
other limit is singularity D (OPPENHEIM et al., 1972) which is a saddle point representing 
conditions at the center of symmetry. In the phase space this singularity is located at Z = oo 
and F = F 0 • The latter is specified by Eq. (2.11) corresponding to l/>9 evaluated at Z = oo. 

The front derivatives at this singularity are as follows: 

(4.5) 

(4.6) 

(4.7) 

and 

(4.8) 

15* 

l/>j; = J.y( a In F) , 
ay o 

ll>i = (I ~Fo)(l.o- {j+ I)Fo, 

tP, = U+ l)r[ U+).l)y Fo] 

http://rcin.org.pl



560 A. K. OPPENHEIM, A. L. KUHL and M. M. KAMEL 

where 

ao = ( ~::: t 
The first equation in the above set is obtained directly from the definition of A.; the 

second -by dividing Eq. (2.3) by Eq. (2.2) and expressipg the result at point D with the 
aid ofEqs. (2.5) and (2.8); the third- from Eqs. (2.6) and (2.11), corresponding to point D, 
while the fourth- from the definition of Z. 

As pointed out earlier, in order to obtain a satisfactory solution for the adiabatic point 
explosion, it is found that taking 8 = Z,/Z in Eq. (3.1) is quite sufficient. Thecross-deriv, 
atives at the singularity are obtained from Eqs. (4.5)-(4.8), while those behind the front 
are evaluated by differentiating directly Eqs. (4.1)-(4.4) with respect toy, keeping in mind 

that (/>k = A.y a!:k, while the •position of singularity D corresponds to 8 = 0 and y = 0. 

For fixed values of y or~' Eqs. (2.1)-(2.4) are reduced to a set of ordinary differential 
equations. Their solution yields . the integral curves delineating the phase space, as well 
as the gasdynamic profiles of the flow field. Each integral curve, however, is still coupled 
to three parameters that are not known a priori: the decay coefficient A.(y), specifying the 
front trajectory; the singularity location; Fn(y), which is related to A. through Eq. (4.7); 
and the parameter a.n. One has thus, at each step corresponding to '<~ . fixed value of y, 
a double boundary value problem whose solution requires an iterative procedure to de­
termine the unknown parameters A., Fn and a.n. This is accomplished in the following 
manner. 

Preliminary values for the unknown parameters, as well as for (oFfoy)n, are based 
upon an extrapolation from a solution corresponding to a smaller value of y. Since singu­
larity D is in general a saddle point, one cannot integrate into it. Consequently, asymptotic 
analysis is used to specify the solution in the vicinity of the singularity, i.e. for 100 ~ Z ~<X) 
Then Eqs. (2.1)- (2.4) are integrated from Z = 100 to the shock front. At the same time 
the mass integral / 1 and the energy integral J 3 defined as 

(4.9) 

and 

(4.10) 

I 

11 = J hxidx 
0 

- Jl ( z p2 ) 1: j + 2d 
J3 = (y-l)y -z lX X 

0 

are evaluated, while the decay coefficient A.(y) is calculated on the basis of the energy equa­
tion expressed in the following integral form (OPPENHEIM et al., 1971): 

(4.11) 

Noting that A. is only a fu,nction of y, the above may be differentiated with respect toy 
yielding thus 

(4.12) 
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The logarithmic density gradient at the center rxD is then varied until the solution con­
serves mass globally, i.e. 

(4.13) 

and the decay coefficient A. is varied until it agrees with the value given by Eq. (4.12). 
Finally, the singularity location is adjusted so that the integral curve terminates at the 
assumed shock front boundary conditions Fn and Zn given by the specific value of y for 
which the solution at a given step is sought. 

5. Results 

The method of phase space was applied to the classical adiabatic point explosion prob­
Jem in spherical, cylindrical and planar geometries, the blast wave propagating into 
a uniform quiescent atmosphere of finite pressure. The medium was assumed to behave 
as a perfect gas with y = 1.4. 

Figure 1 depicts the solution surface in the phase space. As pointed out at the outset, 
the surface consists. of integral curves, each for a fixed value of y. Each integral curve 
starts from an appropriate point on the Rankine-Hugoniot curve, representing conditions 
at the front, and ends. at singularity D(Z = CXJ; F = FD), representing conditions at the 
center. The surface is bounded on one side by the integral curve y = 0, the self-similar 
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FIG. 1 (a, b, c). Phase space for point explosion in an inviscid and non-conductive atmosphere of finite 
pressure with y = 1.4. 
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limit, while on the other side by the vertical line y = 1 corresponding to the acoustic limit. 
Curves of constant values of Z are included to facilitate the visualization of the integral 
surface. It should be noted that integral surfaces, within the range 0.6 < y < 1, extend 
into negative values ofF, indicating that the particles after their initial outward shift due 
to the passage of the front move towards the center of the flow field. One should also note 
that the integral surface approache& the acoustic solution smoothly, as one should expect. 

In order to compare our solution with that obtained by KOROBEINIKOV et al. (1966) 
using the method of integral relations, the integral curves of both solutions are compared 
in Fig. 2 for some representative values of y. Solid lines represent solutions obtained by 
the phase space method. From this comparison it appears that for intermediate values 
of y the method of integral relations yields higher values for Fat any given Z, thus slightly 
shifting the location of singularity D in the phase plane. This shift is most probably due 
to the fact that the central strip used in the method of integral relations, where the asymptot­
ic solution is considered accurate, extends over a larger portion of the flow field than in 
the present solution. For example, for y = · 0.2, in the case of j = 2 and y = 1.4, the central 
strip extends to x = 0.5 which corresponds to Z = 20.34, while for the same conditions 
the asymptotic solution, taken along the axis of singularity D, extends only to x = 0.45 
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Z Spherical {j•2) z Cylindrical (1=1) 

rt4 a'= 1.4 

8 8 
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4 4 0.3 

2 2 

0 
0 0.2 0.4 0.6 o.s r 1.0 -0.2 0 0.2 0.4 0.6 o.B F 1.0 

10 c 
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'8=1.4 
8 

y=O 
6 0.1 

0.2 
0.3 

4 

2 

0 
-0.2 0 0.2. 0.4 0.6 0.8 F 1.0 

FIG. 2. Integral curves for representative values of y . The dashed lines are those of KOROBEINIKOV et al. 
(1969). 
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and Z = 100. In addition, the marching technique inherent in the method of integral re­
lations tends to decrease the accuracy of the solution in the vicinity of singularity D espe­
cially if it is far from the seJf-similar 1imit. This point is especially apparent near the acoustic 

a 
1.0 .----------------, 

Sphencal (i=2) 
ufun t=1.4 

1.0 .... b------.,--------. 
1. Cylindrical {j=1) 

u,un ~= 1.4 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

-0.2 -0.2 

0.4 -0.4 
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 

c X=rlrn X= r/rn 
1.~ 

Planar (j=O) 
U/Un ~=1.4 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 
0 0.2 0.4 0.6 0.8 1.0 

X= r/rn 

FIG. 3. Velocity profiles obtained by phase space method for point explosion without transport phenomena, 
(y = 1.4). Broken lines represent solution of KoRoBEINIKOV et al. (1969). Small circles mark the matching 

point with asymptotic solution. 
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limit. For example, while the curve for y = 0.9 in Fig. 2, evaluated by the phase space 
method, approaches smoothly its asymptotic value at the center, that obtained by the 
method of integral relations bulge,s pronouncedly in the negative F direction before re­
turning to the value at the center, a feature which appears quite unnatural. 

The profiles of the gasdynamic parameters, namely velocity, pressure and density, are 
presented respectively, in Figs. 3-5 for j = 2, I and 0. Broken lines show the solutions 
obtained by the computations of KOROBEINIKOW et al. (1969) using the BELOTSER.J(OVSKII'S 

method of integral relations (1965). Circles on the curves indicate transition points from 
the asymptotic analysis to numerical integration. 

As they appear in Fig. 3, the velocity profiles we obtained tend to fill out the void 
caused by the condition of zero velocity at the center more completely than they do accord­
ing to the solution of KOROBEINIKOW et al. (1969). 

a b 
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0 0.2 04 0.6 0.8 1.0 
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FIG. 4. Pressure profiles obtained by phase space method for point explosion without transport phenomena, 
(y = 1.4). Broken lines represent solution of KOROBEINIKOV et al. (1969). Small circles mark the matching 

point with asymptotic solution. 
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Pressure profiles are given in Fig. 4. One notes that pressure at the center is always 
finite, first becoming smaller as the Mach number of the front decreases from infinity 
corresponding to the self-similar solution, and then increases towards unity as the blast 
wave decays to a sound wave. 

Figure 5 displays the density profiles. It is evident that the density at the center is al­
ways zero, corresponding to infinite temperature, a characteristic property of the solutions 
obtained for an inviscid gas without taking into account the effects of transport properties. 

The results of the phase space method turned out to be in a significantly better agree­
ment with the mass conservation integral than those of the integral relations method. 
This is reflected especially in the differences between the density profiles near the center for 
weaker shocks. For example, for a spherical point' explosion with y = 1.4, the error in 
mass obtained by KOROBEINIKOV et al. (1969) reaches 4% while, by the use of the phase 
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·FIG. 5. Density profiles obtained by phase space method for point explosion without transport phenomena, 
(y = 1.4). Broken lines represent solution of KoROBEINIIWV et al. (1969). Small circles mark the matching 

point with asymptotic solution. 

http://rcin.org.pl



ON THE METHOD OF PHASE SPACE FOR BLAST WAVES 567 

space method, this error is maintained at the level of 0.01% for the same conditions, thus 
demonstrating the accuracy of the present teehnique. 

The main parameters of our solution are presented in Figs. 6, 7 and 8. They were de­
termined by iteration as described in the previous section. 

~ 

3 

--- Phase space method 

---- Hethod integral re/att'ons 
· (Korobet"nikov and Chushkt'n) 

2 Frnite diFFerence 
(Goldstine and van Neumann) 

0 0.6 0.8 1.0 lj 

FIG. 6. Decay coefficient, A., as a function of shock strength, y, for spherical, cylindrical and planar symme­
tries (y = 1.4). Dashed lines are those obtained from the solution of KoROBEINIKOV et al. (1969), while the 

chain dotted line is based on the results of GOLDSTINE and voN NEUMANN (1951). 

Figur.e 6 compares the front decay parameter, .1., with that obtained by the method 
of integral relations (KoROBEINIKOV and CHUSHKIN, 1966, 1969). They are in close agree­
ment over the entire range of shock strengths, with the maximum difference of 7%, -at 
y ~ 0.7. Also included for reference is the decay coefficient evaluated from the classical 
numerical solution of Goldstine and von Neumann. 

Figure 7 provides information on the location of singularity D, FD(Y) for point, line, 
and plane symmetrical explosions in comparison to F,(y), the front limit of the integral 
curve. For strong and moderate shock strengths (0 ~ y ~ 0.5) the singularity position 
is almost independent of the geometry. For weak shock strengths (y ~ 0.55), its location 
corresponds to negative values of P and becomes dependent on the geometry; this corre­
sponds to the initiation of a negative velocity region in the space profiles (viz Fig. 3). 

Figure 8 shows the variation of the density modulus parameter a.D (logarithmic slope 
of the density profile at the center of symmetry) as a function of the shock strength. This 
parameter is not bounded by the self-similar value a.D(y =· 0) = (j+ l)FD/(1-FD), but 
reaches a maximum at a finite shock strength (y ~ 0.10). For weaker shock strengths a.D 

is less than one, which introduces an inflection point in the density profiles (viz. Fig. 5). 
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FIG. 7. Singularity location, F0 (at Zn = eo), and shock front location, F,. (at Z,.) as a function of shock 
strength, y, for j = 0, 1 and 2, with y = 1.4.-

FIG. 8. Variation of the density modulus parameter, cx0 , as a function of the shock strength y for j = 0, 1 
and 2 with y = 1.4. 
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0 

FIG. 9. Energy integral J3 (y) as a function of shock strength y for j = 0, 1 and 2, with y = 1.4. 

Finally, the energy integral, J3 (y), for spherical, cylindrical and planar explosions is 
presented in Fig. 9 as a function of the shock strength. The decrease of J 3 with y over the 
range 0 ~ y ~ 0.3 is caused by the decrease of pressure at the center of the wave. The 
energy integral approaches the value of 1/y(y-l)U+ 1) as the shock Mach number ap­
proaches unify. 

6. Summary 

A new technique, the phase space method, has been developed for solving non-steady 
flow fields with point, line or plane symmetry. On its basis conservation equations are 
reduced to a set of ordinary differential equations which have the same form as the phase 
plane equations for self-similar blast waves. For a fixed value of the shock strength the 
solution of this differential equation defines an integral curve. The full set of these curves 
forms a solution surface in phase space. Once this surface is determined, :flow field profiles 
are obtained from quadrature.s. The singular behavior inherent in inviscid blast wave prob­
lems is merely a consequence of the singularities of the conservation equations; most 
other methods (finite difference, integral relations, etc.) ignore their effects. With the phase 
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space method, however, this singular behavior is prominently taken into account in the 
integration procedure furnishing the solution. 

The phase space method was applied to the classical problem of spherical, cylindrical, 
and planar explosion propagating in a uniform atmosphere of non-zero counter-pressure. 
The flow field profiles (pressure, density, and velocity) calculated by this method agree 
qualitatively over the entire range of shock strengths with results obtained by the method 
of integral relations. The mass integral, and, consequently, the density profiles calculated 
by the present method retain their accuracy even as the shock Mach number approaches 
unity. 

In principle this method can be used to extend all existing self-similar solutions to cover 
the entire variation of shock Mach numbers from infinity to its asymptotic lower limit. 
Examples of other problems emenable to this approach are: explosions in a detonating gas, 
shock waves driven by accelerating and decelerating pistons or by deflagration waves, 
as well as implosions in a gas of finite (non-zero) pressure. 
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