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A variational principle and a finite element method
for compressible flow with free boundaries

P. MORICE (CHATILLON)

BAsep on the stream function formulation, a variational principle is presented for steady sub-
sonic two-dimensional flows with free streamlines. We begin, for fixed boundaries, by stating
two variational principles for a rotational flow of perfect gas, one with the stream function
and the other with the density as an independent variable. A numerical method is devised by
a finite element approximation of these variational principles and then applied to the problem
of exit flow from two stream nozzles.

Wykorzystujac sformulowanie rozwazanego zagadnienia przez funkcje pradu, przedstawiono
zasade wariacyjna dla ustalonych dwuwymiarowych przeplywoéw poddzwigkowych ze swobod-
nymi liniami pradu. Najpierw, dla brzegéw zamocowanych, sformulowano dwie zasady wa-
riacyjne dla wirowego przeplywu gazu doskonalego, przyjmujac w pierwszej funkcje pradu,
a w drugiej gesto$¢ jako zmienne niezaleine. Jako metode numeryczng wybrano metode ele
mentéw skorficzonych, a nastgpnie zastosowano ja do zagadnienia wyplywu gazu z dwustru-
mieniowych dysz..

Hcenonbaya ¢opMyJMpOBKY paccMaTpHBaeMOil sajaun depe3 (YHKIMIO TOKAa, NMPECTaBJIeH
BapHAITHOHHBIN MPHHIMII /I YCTAHOBHBIIMXCA OBYMEDHBIX N03BYKOBBIX TeUeHHMil cO CBO-
GOmHBEIMK JIOHMAMHE Toka. CHayana, JUIA 3SaKpensieHHbIX TpaHul, copMyJHpOBaHLI aBa
BapHAIHOHHLIX TIPHHIWNA A/IA BHXPEBOTO TeYEHHA HACANBHOTO Iasda, NPHHHMAA B IEPBOM
(hYHKIHIO TOKA, 8 BO BTOPOM IUIOTHOCTh KK He3aBHCHMbIE TepemMeHHble. Kak uncieHHbIi MeTo
130paH MEeTol KOHEUHBIX BJIEMEHTOB, 4 3aTeM OH NPHMEHEH 1A 3aJayd MCTeUeHMA rasa ua
[IBYXCTPYHHBIX BBIXOJHBIX OTBEPCTHIA.

Introduction

VARIATIONAL principles for problems in classical fluid dynamics have been studied for
a long time. Apart from giving an elegant derivation for some equations of fluid dynamics,
these variational principles lead to convincing proofs for existence and uniqueness. The
fact that they can also generate efficient numerical methods received during the last years
some illustrations in finite element methods.

The present paper deals with such a constructive aspect of variational principles in the
case of a steady subsonic two-dimensional flow of a perfect gas with free boundaries.
First, we formulate three variational principles: for stream function, density and free
boundaries; then we derive a numerical method based on these principles and the finite
element approximation to a model problem, namely the steady subsonic irrotational and
axisymmetric exit flow from two-stréeam nozzles.
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l.

1.1. Notations and equations

Through this paper, 2 is a bounded domain for plane or axisymmetric meridianal
flow. The boundaries are fixed or partly unknown streamlines (I'p), and inlet or outlet
sections (I'y).

Fp=Tp,Ulpy, I'y=TIyuly.
gl
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After assuming the case of a perfect gas with constant specific heats, we have the follow-
ing thermodynamical relations:

{1.1) p=0RT, R=cp—c,;
(12). p=ges55, y=c,ec,

where p, g, T, S are pressure, density, temperature and specific entropy.
The dynamical equations are expressed in terms of the stream function y for the plane
(¢ = 0) or the axisymmetric flow (¢ = 1) with the following notations:

v | ot L J
- Pl i a
Fu| n| L LI,
L 9
oy* dx ay

¢=VP, i1=¢4¢ =

1
S |V,
Using the property that the entropy S and the total enthalpy H remain constant on
each streamline, we assume that they are given functions of ¢
S = S(W)- H= H(!p)
The Bernoulli’s equation provides us with an expression for A in terms of g, H, S:

| Vol? 2y
1.3 = = 20y 0 av+1(5-5,)/cp
13 A 55 20*H o prHlel A
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The equation of motion and boundary conditions are

v. (—'--Wp) = o (H'(p)-TS'(p)) in K,
oy
(1.9)

oy

'Plf'u =0, 'Pif'w = Q; 3n = 0,

Ty

where Q is the value of the total mass flow in Q.
If we define the function space #(£2) and the subset 9,(£2),

0@ =olv. 52, L2 1o,

%(Q) = {ye D\ ¢lr,, = 0; ¥Ir,, = 2}, a>0,

we can give a weak formulation for the equation of motion: Find y € #4(£2) such that
for all ¢ in 8,(22)

: | ’
(1.5) f {eyz. Vo Vo +o(H' () - TS'(y)) fp} ydxdy =0,
where g and T implicitly depend on y and | V9|2 by Egs. (1.1), (1.2), (1.3).
1.2. A variational principle for the stream fumction

We have seen that A depends explicitly on p, H, S, then for -;% < 0 we can define ¢

implicitly in terms of A, H, S and therefore ¢ = g(y). In the same way p+pog? expressed
in terms of g, H, S can be considered as a function of y:

(1.6) P(y) = p+oq* = 20H~— 7’ — g”e‘"’o’f"

The condition g_: < 0 is nothing else than the subsonic condition

(1.7) (y+1)c,T—2H >0 where T = 7=18-50)/cs

1
cy—1) °

Let us consider the functional
(18) 1Q,v) = [P@)ydxdy for yede(@).
o

Assuming a sufficiently small value for a given Q and a sufficiently smooth 82 without
a reentrant corner for a given 2, we have the following variational principle for the stream
function y* solution of the equation of motion:

The stream function p¥% satisfying the equation of motion (1.4) gives a stationary
value to (82, p)over $4(2).

Moreover, this stationary value is a local minimum under the two sufficient conditions:
(1.9 (y+1)c,T-2H >0
(1.10) H'(p)-TES"(p)+S®)?*[c) >0 aeon Q.
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We only sketch the proof in giving the first and second Gateaux-derivatives of I(f2, )
with respect to y. First, it is quite easy to obtain

dP = % di+o(dH~TdS).

Therefore, denoting (S_:” q:) = iin; [1(L2, w+0p)—I(2, v)]/0 we have

Vy -V
(%"P) = J‘{ gyqu +Q(H’(v)—TS'(w))qi}y'dxdy

and the stationarity of I(£2, y) for y* € #4(£2) follows from Eq. (1.5)

(77)
}E;’:¢

We can show that the second Gateaux-derivative of I(Q2, y) is

21 ) f { |Vg|? c? }
s P, = = +oB 24————- }Fdxd 5
( 2 ‘p q’ - Qy;-s Q P QA 'y

oy
A= (y+1)c,T-2H,
B=H"'—T(S"+52/c,),
1
oy*

so that 4 > 0 and B > 0 suffice to insure the local convexity of /(2, ).

This variational principle is not truly new. The functional I(£2, v) is one of the two
well-known Bateman integrals. (The other one is the pressure integral, the maximization
of which leads to the velocity potential equation).

We refer to the illuminating paper of SEWELL [1] which also recalls the contributions of
LiN [2], LusH and CHERRY [3], SERRIN [4] for the stationarity of the integral of P = p+¢q?.

With regard to the local convexity of I(f2, v), it seems that our second condition is
new. This sufficient condition concerns only rotational flow and simplifies for

a) isoenergetic flow (H' = 0): S”+5?/¢, < 0,

b) isentropic flow ($' = 0): H”" > 0.

We have as far not further studied this convexity condition which could be connected
with the stability of the flow.

Finally, the fact that for given values of S and H > 0 there exists an upper bound
for A (precisely at a sonic point) gives us a somewhat qualitative argument for justifying
our assertion about the necessity of boundedness of Q for the existence of a solution.

=0, Vged(2).

p=p*

where

G = Vy* - Vg —o(H'—yTS) g,

1.3. A variational principle for the density

Let us now consider the following functional:

Voul?
am  s@en- {1V
2

Y4
+oH(y) - ___ye_ e ‘“}y°dxdy,
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defined for each y € $¢(£2) and each p a positive and bounded function over 2. This in-
tegral was already introduced by LiN and RuBINOV [5] in the case of iso-energetic flow

(H(y) = Ho).
Then we define (o) as the solution in $¢(£2) of

V_.TP . .v_?g ¢ Qr_l S -5 ]
(1.12) f{——-z. +9(H W) — ——y eCV NS ()| op yidxdy = 0,
P oy c,(y—1)

Yo € 9,(2).
This is the weak form (1.5) of the equation of motion but for p not necessarily connected

with y by the Bernouilli equation.
Assuming for a moment the existence and uniqueness of the solution y(g), we set

J(Q,0 = #(2, 0, %),
and with the same restrictions as before about the given Q and 2 we can state the following:

The Bernouilli equation connecting ¢ and y(p) is the stationarity condition for J(£2, p)
with respect to g.
Moreover, the stationary value is a maximum under the two sufficient conditions:

(1.13) y%g*”ew-%m—sz >0,

v—1 .
(1.14) H' - %y_-l—) eS-SIe(S” £ 82/6) > 0 aein Q.
Proof:

With the choice of y(g) according to Eq. (1.12) we get

oF )
L =0, Vged(Q),
(3?’ v v=¥(p) PEd(S)
and therefore,
(af ) (B.f ) ” V2 2+t
=T =|-—>7 = - +20°H- "5 ¢ @ Tytdxd
de deo v=vp) gy i g p—1 2p2 ¥ 4

giving the proof of the first assertion.

We then have to use a Lagrange multiplier technique for the evaluation of the second
2

U /o | -
Gateaux-derivative (—a—e— o i 72) and after the definition of - as the solution of

S-S,
1 — T — . et SRR
—v( v)+ ‘B =v(-—v )+ . (H’—L e S')-

o K TEEE W T T oD

=0, ﬂl =0 with ¢ =p0% v=uy()?*

Iy on [f‘N
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9*J

we get

AT [V }
= - + +o*By?( yedxdy,
p=p* bf{ o* e*y* By yidxdy

y+1

- ¥= 1 ,(S-Sp)fep __
A yy-l o' et 2H,

o ! S—Sy)e,( QL Q.
B=H'"— ——_ ¢S-5Y%(§" +82/¢c,.).
cn(y_l) ( l )

It is time to notice that the condition (1.14): B > 0 in 2Vp > 0 is a sufficient condi-
tion for

321 3
(3—w2,@,(}’) >0, V@Eﬂu(g),
therefore, in this case (with the supplementary assumption 4 > 0 in 2);
(1.15) max J(2, ¢) < max [min #(2, g, y)].
e e v

For the solution fields p* and y* = y(p*) we have
(1.16) J(Q,0% = £ (2, 0% v*) = 12,9*) = [ (p+eq)yrdxdy.
]

This variational principle can also be seen as an optimal control problem (for fixed Q
and Q) where the density function g is the distributed control, the stream function (o)
is the state with its nonlinear partial differential equation as “state equation” and
F(2Q, o, v(p)) is the criterion to be maximized.

It is possible to extend this variational principle to other boundary conditions (non-
-homogeneous Neuman, periodic) for bounded 2 and even to exterior problems. Finally,
as noticed by SEWELL [1] in a similar situation, the concavity of J(2, g) with respect to o
can occur even for flow where the conditions 4 > 0, B > 0 should be slightly exceeded
in some small part of £. Unfortunately, it seems difficult to give quantitative results about
this situation.

1.4. A variational principle for free boundaries

It is convenient to denote by (£2) and p(£2) instead of y*, p* the solution fields in 2
and to introduce for given Q

(1.17) K(©Q) = J(2,0(Q) = I(2, p()) = Df (p+0g?) y*dxdy.

We intend to restrict the variations of {2 so that the boundaries remain smooth except
perhaps in some convex corner. On the unknown portions I, C I, of the limiting
streamlines the Dirichlet conditions y|r,, = 0; y|r, = Q must be imposed.

Then, defining on I', a function dn as a suﬁﬁciengly small and smooth normal dibplace-
ment of I',, we can show that

(1.18) SK(@) = [ py*ondy + 0(sn?).
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A formal proof is easily derived using a Lagrangian
2@,v,5) =1Q,9)~ [ 5(p—vyo)dy.
Tp

If we choose

3(Q)

3 »@) =0, Vged(Q).
Then

4

. %D | 3ma
vy = K@ = ..-f [+ e -3 252 |onay - J pyondy.

By means of this “Hadamard’s formula” (1.18) we can build variational principles for
several kinds of pressure condition on free streamlines.

For the model problem of the next part (see Fig. 2) of two perfect gases separated by
an unknown free streamline I',, on which p, = p,, the second free streamline L,

yl

=¥

being the external boundary on which the pressure p, has a constant value p,,,, we define
the function & in the following way:

(1.19)  F@Q, D) = [(+ea?—pu)ydxdy+ [ (p+ea*—pud)y drdy;
Dl nl
then, for given Q; and Q, and compatible variations of 2, and 2, we have

(1.20) 3F (21, 2) = [ (i=2)yomdy+ [ (p2—pud)y*onady.
Iy Tez

We can state the following variational principle:

If, for the given mass flow values Q, and Q,, there exists in the class of admissible do-
mains for Q, and 2, a pair (Qf, £27) which makes & stationary, then the actual flow
in Q%, Q% satisfies the pressure equilibrium conditions p; = p, on Iy, and p; = Pexe
onl,,. ’

This result generalizes those of RIABOUCHINSKI [6], GARABEDIAN and al. [7, 8], LUKE
[9], O'CarroLL and HArrisson [10].
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Unfortunately, we were not able to find a variational principle which includes varia-
tions of Q, and Q, so that the Kutta-Joukowski conditions would appear as a stationarity
condition of some functional.

It is important to notice here that the present formulation is valid for any number
of juxtaposed fluids and not only for two of them.

2.
2.1. The model problem

We henceforth consider the problem of steady subsonic irrotational axisymmetric exit
flow from a two-stream nozzle with constant external pressure.

With the irrotationality assumption, the stagnation pressure and density po;, oo are
constant in 2,(/ = 1, 2). We can set

: (S(y)—S5)
1 Pu — e Pot
= Hy = b e ©

o Yi—=1 oo’ Dr= (0o)™ ’

and then the main formulae of the first part (with the subscript / omitted) become,

'Q’ ’ o {_—"f' Hyl| —— —{—- dx d) "
@, 0.9 ;f R i rvame ey B s

of ) fv_’vr"v??
S T . . PP
&%) o g

3f IWI . 9)2 (e s 15}
(a ’r)" ” R H“[ 2! \eo ]

It is quite easy to verify that for

H(y)

-

+

~

[Vl
2

< ;‘mat = QOHO()’ l) (‘}’+l)

2
we can express p+pq> in terms of I ;’l according to

Z’z

PW) = pot 5 f es.,(z)

Assuming that the quantities pey,, (Por» 001> ¥1) |l = 1,2 are given, the physical problem
consists in finding the shape of the streamlines I',,, I',, and the mass flow values Qy, @,
so that, for the corresponding flow in the domains 2,, 2,, the pressure equilibrium con-
ditons p, = p, onI',, and p, = p.,, on I',, should be satisfied up to the trailing edges.

The satisfaction of the Kutta-Joukowski conditions means to impose for each trailing
edge the initial tangent of the curve I,.
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It is assumed that for the given data there exists a solution flow which is subsonic

everywhere.
Due to the variational principles of previous sections we are now in the position to

give the following mathematical formulation for the model problem:

Find (Q¥, 0¥) and an “admissible pair (I %, I'%)” such that, for the corresponding
(2%, Q%), the function F (2,, £2,) has a stationary value. In the evaluation of #(2,, 2,),
the functions p(£2,), o(£2,) are defined as solutions of

max [min #(2,0,v)], [=1,2.
e Vﬁf’q-(ﬂl

The numerical method we have devised is based essentially on a discrete version of this

variational formulation by the way of a finite element approximation.

2.2. A moving grid system

We use quadrilateral element and consider that the curvilinear mesh over £ results
from the numerical computation of a transformation F which maps the reference unit
square K onto {2 in a manner sketched in Fig. 3.

2 l2 A-—-E-———-.. 74 ¥a
K
Mo
3
o1 13
= h ..
%2 £
Fic. 3.

Instead of using an explicitly defined transformation, we want to characterize F(£, %) =
= (x(¢, m), p(£, n)) as the pair of the functions x, y, solutions of the two elliptic partial
differential equations in the square X:

e e+ & (220 C) =) =

with the boundary conditions

- 9

- =0,
- ok ‘.

Yilys

X

{
_— 82(5). yL == 34(5)3

Y12
where

1 1
= [ (@u—g:)adt] [ (fs=f)dn
0 L]

and
1

a® >0, [a®ds=1.
0

13 Arch. Mech. Stos. 4-5/78
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Here we set

fi) = x,  fi(n) = X0, [2(8) = fu(8) = f(®),
f0) =x;,  f(1) =x0,  a(®) =1"()(xo—xy).
With this choice the shape of I'p, and I'py are given by the parametric representation

x=f¢&), y=g0; x=f§), y=2gd)
and a variation of 2 is clearly defined by variations of the functions g,(£) and g,(¢) with
J(€) kept fixed.

The simplest finite element approximation of the preceding equations leads to the linear

systems
Ai=f, By=%
giving the coordinates of the nodes of the grid.

These systems are solved by the fast Poisson’s solver of BUNEMAN [11].

The two grids for £, and £, are separately computed by the same technique. The
connection between the two systems is made on I, by choosing the same Dirichlet con-
ditions for x and y on I'py, and I'pp,.

We shall denote by u, and u, the fixed values of the ordinates of the trailing edges
and by v,, 7, the vectors of the ordinates of the moving nodes of I',; and I',, as it can
be seen in Fig. 4.

“z[vz]
] — —— -—
e By —1 05
= . Uy (Vs r
Q1 F1
X
FiG. 4.

This method of automatic mesh’generation (2.1) is a simple special case of more gen-
eral techniques to be published elsewhere.

2.3. Finite element approximation

For approximating y over 2 we have taken the simplest isoparametric quadrilateral
finite element for v, that is to say a continuous piecewise bilinear function for ), = Bt
o v, on K. The approximate g, is a piecewise constant function. The approximation of
F(Q, 0, y) was done with the aid of numerical integration formulae. For example, on
a quadrilateral Q,(corresponding to an elementary rectangle K, = [0, H,]x [0, H])
we set

Iv'Phlz I 1 £ * 12
2.1 = = Vyul®’leH H,,
(2.1) { o7 .dxdy S [((DF)|Vyil*]eHy Ha

Q¢
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where Dﬁ; is the Jacobian of the mapping ﬁ‘. from K, onto Q,; [f]. = arithmetioymean
of the values of f at the four nodes of £2,.
Then, for fixed £, and Q, the approximate yj, off are defined as the solutions of

(2.2) max [min #,(2s, ok, vs)l,

where y;, € V4(Q, £2,) finite dimension subspace of #4(£2;).
If we denote by p; ~ the vectors of nodal values of y, and element values of g,, we
can express the Gateaux derivatives of #, in vectorial notation:

( (24
3;0.
5
Jon

Now, we call &,(u;, u,, 91,92, 0y, Q,) the approximation of F(2,, 2,) consistent
with the definition of #,(£2,, o4, ¥s). Clearly, the variational principle for free boundaries
can be interpreted in a discrete form according to

(asr.
7
however, we need two more equations if we want to adjust @, and Q,. For these two equa-
tions playing the role of the Kutta-Joukowski conditions we have chosen

(3.9'.

: sv:.) = #-(Cp—h);  C, h depending on gy, 2, Q.

. r,.) =7:G; G = 0 gives a discrete Bernouilli equation.

(2.3) dv, )—0 Vép, eRM; [1=1,2

4
24) -
We were led to this formulation by the somewhat heuristic argument of extending the
variational equivalent of each pressure equilibrium condition up to the trailing edge node.
The main benefit of this choice is the similarity of treatment of these N1+ N2+ 2 equations
(2.3) and (2.4). Due to the implicit character of the mesh generation it is necessary to
use the optimal control theory (or the Lagrange multipliers technique) for evaluating the
partial derivatives of &;.
Thus the discrete problem is now
Find Q%¥, 0%, ¥, 9% such that
oF ), oF,
2 Sl M il §
( 5) 3u, 0, %g
where yj (2)), % (¢2,) used for computing these derivatives are the solutions in £, of

max {min £, (@, o1, )}

a)_o VoweR; I=1,2

=0, =12,

2.4. The method of solution

Since the discrete problem (2.5) has the structure of a three-level optimization process,
the method of solution consists of three nested loops. In fact there are two nested loops
in gy, y, for each of 2, and £2, which are treated independently giving their contribution
to the common external-loop where Q;, Q,, ", ~; are modified.

13+
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Internal loop: For fixed @, £, o,
min £,(2x, on, i) — va(ow)-
Va

The quadratic functional #, is minimized by a “conjugate directions” method with

the mesh operator B used as an auxiliary operator.
Middle loop: For fixed Q, 2,,

max Ju(2s, on) = Fu(2h, 0> vaen)) = 04($24) and  y,(L2).

The non-quadratic functional Jj, is maximized by a conjugate gradients method with
a crude one-dimensional search.

External loop: The N1+N2+2 components of the gradients of %, are computed
providing information for modifying @), 7; (! = 1, 2) so that 6%, = 0 hold. The (N1+
+N2+2) nonlinear equations (2.3) and (2.4) of stationarity of &, are solved by a least
square minimization code using only the derivatives of #,[12].

As a preliminary step, the problem is solved with the assumption of a constant density
0 = 0 in 2, and for some reasonable guess of I, 0.

This initialization phase furnishes good starting data (I'y, Qi, ¢, y) for the compres-
sible case.

2.5. Numerical results

We have studied various geometrical configurations for two-stream nozzles without
encountering peculiar difficulties attached to any combination of solid walls.

We present here some results concerning two test cases. For each one, there are 320
quadrilateral elements. The number of control variables for I, Q; is 25 for case 1 and
18 for case 2 with respective total running times of 17 min and 15 min including the initial-
ization phase taking nearly 2 min. Computation was run on a CII Iris 80 computer.

[TYERTY
[TURRT

LELHLL )
IRRRRR RN TTAANY
(RRR RN B ATRRARY!
(RRRRRRR TTRRANY

— VECTOR LENGTH FOR SONIC VELOCITY

1]
11

]
]

FiG. 5. Test case 1. Finite element grid for solution after 42 iterations.
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The extrapolated pressure of free boundaries was found to satisfy the equilibrium condi-
tions with a relative tolerance less than 1.1072,

Figures 5 and 6 represent for each configuration the final grid system and final values
of velocity vectors the length of which is equal to the local Mach number. In Fig. 7 we have
plotted for case 1 the boundary extrapolated pressures on fixed or free boundaries.

(ARARET! RRRARIYI
WARRARR TRERRIR

VECTOR LENGTH FOR SONIC VELOCITY

Fi1G. 6. Test case 2. Finite element grid for solution after 36 iteration.

MACH NUMBER, INLET |OUTLET
p 9, | 0.39 | 062
Q, | 042 | 080

15— 5,

i
folvz —clove 68— o
1.4} o— s B o |z +
or o —

Mo e

1.3t
1.er
1.1+
I —h
0.9
A i i xJ
2 3 4 5

Fi1G. 7. Pressure distribution. Test case 1.
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Conclusion

We have presented a variational principle for a two-dimensional steady compressible
flow with free boundaries in the case of a perfect gas at subsonic velocity. This principle
concerns rotational flow without being restricted to an insentropic or isoenergetic case.
In the course of this derivation, we were led to formulate, for fixed boundaries, a varia-
tional principle for the stream function and a variational principle for the density. This
last principle, seen as an optimal control problem, provides us with a tool for building
a numerical method after a finite element approximation. We have chosen the lowest order
for polynomial approximation on quadrilaterals but higher order choices are possible
and could deserve attention. As concerns the free boundary problem to be solved, the
methodology we have devised can easily be extended to other internal or external flows.
Some work remains to be done in a theoretical and numerical way, but the safety and
efficiency of the method of solution for the model problem are incitements for further
applications.
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