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Some further investigations on non-unique solutions 
of the Navier-Stokes equations for the Karman swirling flow 

D. DIJKSTRA and P. J. ZANDBERGEN (TWENTE ENSCHEDE) 

THE ROTATING disc problem is considered in terms of von Karman similarity variables. Recently 
the authors have solved the problem occuring near a ratio between the angular velocity of the 
fluid at infinity and the angular velocity of the disc of -0.16 when other numerical methods 
seemed to faiL We have found, by applying special numerical solution techniques that the so­
lution branches at the critical values= -0.160538613, at that a second branch occurs which 
ranges backwards to positive values of s. The structure of the solutions obtained is discussed. 

Problem wirujl!cej tarczy rozwazono w zmiennych -podobienstwa Karmana. Ostatnio autorzy­
rozwil!zali problem dla przypadku stosunku pr~dkoSci kl!towej cieczy w nieskonczonoSci do­
pr~dkoSci kl!towej tarczy bliskiego 0.16, tj. dla przypadku, gdy r6zne metody numeryczne 
zawodzl!. Stosujl!C specjalfll! technik~ numerycml! wykazano, ze rozwil!zanie rozgal~zia si~­
przy wartoSci krytycznej s = -0.160538613,' przy kt6rej pojawia si~ druga gall!i skierowana 
do tylu w stron~ dodatnich wartoSci s. Przedyskutowano struktur~ otrzymanych rozwi~n. 

3a,z:~;aqa Bp~aromerocH ;nt:CI<a paccMoTpeHa B nepeMeHHbiX no~o6IDI KapMma. B noCJie~ee 
BpeMH aBTOpbi peiiiHJIH 3a~aqy HMeiOIUYro MeCTO ,I(JUI OTHOWeHWI yrJIOBOH CI<OpoCTH >KH~-­
KOCTH B 6ecKOHeliHOCTH K yrJIOBOH CKOpOCTH ;nt:CKa 6JIH3Koro 0,16, T. e. WJH CJIY'tlaH, KOr~a 
paaHbie 'tlHCJieHHbie MeTO~I HenpHI'O~I. ilpHMeiDIH cne~am,HYIO 'tiHCJJCHHYIO TeXHHKy, 
noKa3aHo, 1.1'1'0 pememre pacmerumeTcH npH KpHTH'tlecKoM 3Ha'tleHHH s = -0,160538613, 
npa KOTOpOM fiOHBJIHeTCH BTOpaH BeTBb, HanpaBJieHHaH Ha3a~ B CTOPOHY fiOJIO>KHTeJibHbiX 
3Ha'tlemtit: s. 06cym~eHa CTpYKTYPa nonyqeHHhiX pemeHHH:. 

1. Introduction 

THE PROBLEM which we want to consider is that of the flow of a rotating fluid above 
an infinite disk which is itself rotating. An important quantity in the analysis is the ratio ­
s of the angular velocity of the fluid and of the disk. 

Solutions to this problem can be found by solving a set of two ordinary nonlinear ­
differential equations· to which the Navier-Stokes equations can be reduced in this case 
together with appropriate boundary conditions. 

There is, however,_ a range-of s values for which no solutions can be obtained: -0.! 6054 . 
> s > -1.4355. For s = -1.4355 it has been proved by BoooNYI [1] that the solution 
of the equations becomes singular. Quite recently the present authors have clarified the 
situation for s = -0.16054 [2]. By means of carefully designed computational methods, 
we have shown that at that point branching of the solution occurs. In this way it turns 
out that a second solution branch can be constructed which ranges back to positive values 
of s. In the meantime we have found that at s = 0.074526 another branching point occurs . 
and that it is possible to construct a third branch, which again passes s = 0. 
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We will start by giving a brief outline of these results and the way in which they were 
obtained. It will become clear then that it is becoming more and more difficult to obtain 
further computational results, due to the rather singular behaviour of the solutions. So as 
to gain further insight into the nature of the solutions we used analytical methods. It turned 
out that most of our needs were already covered in literature, especially in the papers 
by KuiKEN [3] and OcKENDON [4]. Taking this into consideration we were able to derive 
some interesting results for our present case. 

We will not give full details here, but rather give an outline of some of the esse·ntial 
.steps taken. 

2. The construction of the solution branches 

In a cylindrical coordinate system (r, cp, z) the disk is the plane z = 0 and the corre­
·sponding velocities are (see· Fig. 1) 

,(2.1) 
u = rfJj'(x), v = rfJg(x), 

w = - 2(vfJ) 112f(x). 

sQ 

z 

FIG. 1. 

1 

'The angular velocity of the disk is Q and x = z(fJiv)2. The Navier-Stokes equations in 
this case reduce to 

(2.2) 

{2.3) 

1"'+211" =f'2+s2-g2, 

g" +2fg' = 2/'g. 
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The boundary conditions are 
X= 0: f= 0, f' = 0, 

(2.4) 
X = CO : f' = 0, g = S. 

g = 1, 

As it has been proved by ROGERS and LANCE [5] and Me LEOD [6], the asymptotic solu .. 
tion for x -+ co is given by 

{
bp+cq . cp-bq } f,...., a+epx smqx+ cosqx , 
p2+q2 p2+q" 

(2.5) 
f' "'ePx{bsinqx+ccosqx}, 

g,...., s+epx {csinqx-bcosqx}. 

The relations between a,p, q and s are given by p2 -q2 = -2 ap,pq = -aq+s. 
This means that the asymptotic character is detellllined by the three quantities a, b 

and c. 
For the construction of the solution various methods can be employed. Originally 

Rogers and Lance used a shooting method from x = 0 onwards. It turned out this is a very 
troublesome method~ because of the instabilities occurring in the method. 

A second method consists in using .. a finite difference technique on a finite interval by 
applying the boundary conditions at x = oo at a suitable chosen value x = x0 • 

A third method makes use of a shooting technique from essentially x = oo towards 
x = 0. This can be done by using the asymptotic formulae (2.5), asuming values for the 
quantities a, b and c and trying to fulfill the boundary values at x = 0. 

A combination of the second and the third method proved to be very successful. The 
finite difference technique was used as a kind of scout, whereas very accurate calculations 
could then be made with the last method, which made use of a stabilized highly accurate 
solution method. 

Using these methods we discovered that a branching of the solutions occurs fors = 

-0.1605387613. 

-F{oo) 

0.2 

0.1 

-Scr 
0 oz -s 

-0.1 

-0.2 

FIG. 2. 
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This is illustrated in Fig. 2 where we give the vatue of - /( oo) as a function of the 
quantity s. 

For precise details as to how the solution was obtained in the vicinity of the critical 
value of s we should like to refer to our paper [2]. 

Quite naturally the question arises how this graph would proceed, giving thereby insight 
in further possible solutions of the Navier-Stokes equations. Now, in the meantime, we have 
produced further solutions for the third branch, which are also given in Fig. 2. It is perhaps 
interesting also to give the quantities /"(0) and g'(O) as a function of s for the various 
branches (Fig. 3). An important remark to be made here is that these quantities 
have become practically constant for the third solution branch. To gain an insight in the 

F'(oJ 
-g'(o) 

a2 

-l'(x) 

2 
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FIG. 3. 
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difference between the various solutions we will consider the graph for f as a function 
of x for the cases which have been calculated for s = 0. 

As it follows from Fig. · 4 the second solution differs from the first by the addition 
of a large hill with strong upward velocities, whereas the third solution can be said to 
add a second much larger hill to the already existing first one. 

Now it becomes clear at once why it is practically impossible to proceed with the solu­
tions. We . must_ expect that each branch will add ev~ry time a still larger hill to the ones 
already existing. In this way the ranges over which the calculations have to be made 
increase dramatically. . 

In order to obtain a deeper knowledge of this rather singular behaviour, it. seems that 
we ought to study at least three different phenomena analytically: 

the behaviour of a large hilJ, 
the behaviour of the region· between two hi11s, 
the connection between two hi1ls. 
Of course this will not solve the whole problem quantitatively, but it may be expected 

that qualitatively, at least, a fair picture of the situation can· be obtained. 
In the rest of this paper we will therefore study these three problems and conclude 

with some final remarks. We will only give a rough outline of the results. 

3. Large bills 

In fact already KUIKEN [3] studied the case of large hills, but we will use here a some­
what different approach to introduce the subject. If we use the system (2.2), (2.3) assuming 
that /'(0) = 0 and introducing 

A 

(3.1) j fd~ = F(A), 
0 

we can derive the following formulae: 

X A 

(3.2) f(x) = e-F<x> f eF<A>[f (A-p) (3/' 2 +s2 -g2 )d,u+f"(O)A.+f(O)]dA.+f(O)e-F<x>, 
0 0 

X A 

(3.3) g(x) = e-lF<x> f e2F<A>[f 4f'gd,u+.g'(0)+~(0)g(O)]dA+g(O)e- 2F<x>. 
0 0 

Using these formulae we now consider the following situation for s = 0: 

/(0) = A, /'(0) = 0, /"(0) = C, g(O) = I, g'(O) = e, 

where A is large and g(O) has been set equal to unity without loss of generality. The origin 
x = 0 has been taken at the top of a hill so that/'(0) = 0. 

From the conditions above it follows that 

(3.4) I A
. I C 2 I +2AC 3 "' +l X - 6 X' g"' 1 +ex-Aex2

• 
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We now substitute these expressions into the integral expressions (3.2) and (3.3). Thereby 
we obtain better aproximations for the functions/ and g. However, it turns out that this 
expression contains exponential increasing functions. So f contains a term 

I( ) - {2 C 1 } -F(x) -Ax {2 C 1 } x- R+R+ ... e "'e A2+AJ+ .... 

Now we have assumed that A is large and hence such a term should not occur. Therefore 
the coefficient has to be zero which means that there should hold 

(3.5) 

A similar analysis applied to the function g reveals that 

(3.6) 

It will be clear that by inserting more terms better asymptotic formulae can be derived 
for C and e and, in addition, alio a better representation for f and g. 

It pan be shown, see also KuiKEN [3], that 

( I A 2x 2x 
3.7) "' cos 

2
A , g "' cos 

2
A . 

It is evident from the relations (3.5) and (3.4) that the third derivative off is zero and since 
this term represents the viscous term, we can therefore speak of large inviscid hills 
which are apparently due in these solutions. Another remark to be made is that once 
given A (with g(O) = 1) the solution is completely determined locally. For instance, the 
last hill of the third solution branch is already given accurately (4 digits) by this anal­
ysis. 

For reasons of later use we also give the formulae, when g(O) is left free, say equal 
to B. Then 

(3.8) and 2 Bx 
g "'.Bcos 2A . 

Now in order to see how two hills can be connected we first want to analyze the region 
between two.~ hills. 

For obvious reasons it is to be expected that this is a viscous region. 

4. The viscous interlayer 

The viscous interlayer is a region where f is small, while we can assume the origin in 
f' = 0 and again may set g = 1. It then follows from the equations that/" should be large. 
We therefore set 

/(0) = p, /'(0) = 0, /"(0) = L, g(O) = 1 and g'(O) = ~. 
From these conditions it follows that 
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while in this case the quantity F is equal to 

It is obvious that the leading term is ~ x 3
• 

Therefore f will contain an asymptotically increasing term of the form 

ao L 

f = e-F<x>J e6 x
3 

{Polynomial inx }dx. 
0 

n+l 

By using the fact that [ e i-x' X'dx = -} { - ~ )-3

-F { n; 
1
) the coefficient of the func­

tion e-F<x> can be analyzed. 
It turns out that this coefficient contains terms of the form either 1 /L or!' which means 

that Lis of the order 1 I!' since, naturally, this coefficient should vanish. 

A similar calculation for g reveals that there the coefficient is either constant or L~13 
which shows that <5 is of the order L113 • 

Now in this case a complication arises because it turns out that in order to find the cor-

rect coefficients all terms in g induced by the term ~ x 2 in/ are needed. 

This can be done following the approach given here, but the procedure becomes labo­
rious. It is preferable to consider the differential equation for g, as has already been done by 
Ockendon. Following OcKENDON [4], calculation reveals that in this case there holds 

L = - 1.03038 ' <5 = -1.06291 (- L)t/3' 
I' 

where p, is a small positive constant. Of course it is possible to furnish further terms in these 
expressions. 

In order to find the connection between two hills it is necessary to know the asymp­
totic behaviour off and g as the solution leaves the viscous interlayer and merges with the 
large hill solution. · 

To leading order the function f is continuous and· equal to Lx2 /2. Hence to leading 
order 

As for g the results are 

(4.1) 

where a is a constant. 

1 
f""" 2 Lx2 as lxl-+ oo. 

g """ ax2
, x -+ oo , 

g""" -2ax2
, x-+ oo, 

By now we have sufficient material to consider the problem of the connection between 
two hills in the first order. 
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5. The connection between two hills 

In order to connect two hills together we make use of the formulae (3.8) and the 
remarks made about the asymptotic behaviour of the viscous interlayer solution. 

If we call the relevant quantities of the first hill A 1 and B 1 and these of the second 
Bx n 

A 2 and B2 we can then remark that we have to analyze f and g when 2A t'-..J T . In that 

case we can put 

(5.1) f A 2 Bx 2 ( n Bx') A . 2 Bx' B2 
, 2 ,..., cos _,...,Acos ---,..., stn -t"-..J-x 

2A 2 2A 2A 4A . 

In the first order x' will be precisely the coordinate of the viscous interlayer. Hence the 
following will hold: 

(5.2) 

The same argument applied to the other side of the lnterlayer yields 

(5.3) 

Hence one condition valid for the unknown A and B is 

B~ B~ 
(5.4) ---A1 - A2. 

Using Eq. (4.1) we obtain with a similar process for . g 

(5.5) 

From these two last equations the remarkable result follows: 

(5.6) 
B2 = -2B1 , 

A2 = 4A 1 • 

Hence, to leading order each large hill has an amplitude which is 4 times as large as the 
preceding one while the range over which the hill extends is two times as large as in 
the preceding hill. Already for the third hill (third branch) the ratio of A 2 and A 1 

is 3.8~ which means that already these first order approximations are fairly good even 
on the branches which we are considering now. It may be added that in a forthcoming 
pu~lication a much more detailed analysis will be given, with second-order corrections 
included. 

6. Final remarks 

So far we have answered the three questions which we stated in this work. But evidently 
this does not put an end to our considerations. The next question which first comes to mind 
is: what occurs after the last hill .on a certain branch, or putting it otherwise: how does 
the solution proceed towards infinity. But this is not a big problem since the question was 
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already answered by KUIK.EN [3] who matched the solution at infinity with a large hill. 
From his analysis it follows that th~ value of/( oo) expressed in the quantities A and B 
of the last hill should be to the first order 

(6.1) I 
B21 1

13 
f(oo) = 1.2096 

16
A . 

It is interesting to compare the numerical value of/( oo) as calculated for the third branch 
(s = 0) with the value calculated from the relation (6.1) with the quantities A and B taken 
from the last hill in the solution. It is found that 

f(oo) as calculated = 0.1937, 

f(oo) from Eq. (6.1) = 0.2022. 

We can therefore conclude that already in this case the first-order terms give a rather accu .. 
rate picture of the phenomena. Summarizing, we can now state the following description 
of what occurs at s = 0. 

The graph off(x) as given in Fig. 2 will be continued indefinitely, that is to say, there 
will be infinitely many solution branches, each branch adding a large hill to the solution, 
whereas these branches will tend to converge to a certain value of/( oo). As can be seen 
from Eqs. (5.4) and (6.1) this value will then be aboutf(oo) = 0.2. :f{ence we may be in 
a position to state that by this analysis we have gained much more insight into the nature 
of possible solutions of the Navier-Stokes equations. 

But of course also a number of interesting further questions arises. One ofthese questions 
is: what is the essential difference between a solution with n hills and one with (n+ 1) 
hills, bearing in mind that there is no difference for the conditions at x = 0 or, putting 
it otherwise: is a large hill a kind of eigenfunction of the Navier-Stokes equations? 
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