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Global solution of the initial value problem
for the discrete Boltzmann equation

H. CABANNES (PARIS)

IN THE discrete kinetic theory the initial value problem has a local solution. When the local so-
lution is bounded by a number which depends only on the initial values, the solution exists glob-
ally. The first global existence theorem of this type has been obtained by Nishida and Mimura
for a Broadwell gas (three-dimensional model with six velocities) when four of the six densities
are equal. In the following work a similar theorem is proved for a more complex model: three-
dimensional model with 14 velocities, obtained by joining the center of a cube first to the center
of each face, then to each vertex. The theorem is proved first when the initial densities are small,
then, following a method by Crandall and Tartar, when the initial densities are bounded. As
a starting point certain properties of the local solution are shown to be satisfied.

W dyskretne;j teorii kinetycznej problem poczatkowy ma rozwiazanie lokalne. Gdy rozwigzanie
lokalne jest ograniczone przez liczbe, ktéra zalezy tylko od wartofci poczatkowych, istnieje
rozwiazanie globalne. Pierwsze tego typu twierdzenie o istnieniu otrzymali Nishida i Mimura
dla gazu Broadwella (tréjwymiarowy model z szeScioma predkosciami) w przypadku, gdy cztery
z szedciu gestosci sa sobie rowne. W niniejszej pracy zostalo udowodnione podobne twierdzenie
dla bardziej zlozonego modelu — modelu trojwymiarowego z czternastoma predkosciami,
otrzymanego z polaczenia §rodka szescianu najpierw ze §rodkiem kazdej Scianki a nast¢pnie
z kazdym wierzcholkiem. Twierdzenie udowodniono najpierw dla przypadku matych gestosci
poczatkowych, a nastepnie poshugujac si¢ metodg Crandalla i Tartara — dla ograniczonych
predkosci poczatkowych. Jako punkt wyjécia pokazano, Ze niektére wlasnoci rozwigzania lo-
kalnego sg spelnione.

B muckpeTHO! KHHETHWecKON TEOPHH HAUAILHAS 3a/auya HMEeT JIOKaubHoe peirerme. Korma
JIOKAbHOE PellieHHE OTPAHHYEHO YHCIIOM, KOTOPOE 3aBHCHT TOJLKO OT HAYAJIBHBIX SHAYCHHH
TOrJa CcylecTByer riobansHoe peienne. [lepByio 9TOro THIA TEOPEMY CYILECTBOBAHHA IONY-
upms Humpa 1 Mumypa fnis rasa Bpoyasenna (TpexmepHas MofieNb ¢ IIECTBIO CKOPOCTAMH)
B CjIydae, KOrjja HeThIpe M3 LUECTH IUIOTHOCTeH paBHBI Opyr Apyry. B Hacrosmuel paGore
OKa3aHa aHAIOTHYHAA Teopema A Gosee CIOXKHON MOJENH — TPEXMEPHOH MOJEIH C e~
TBHIPHAJUATEIO CKOPOCTAIMH, MOJNYUeHHBIMH H3 COe/MHeHHS HeHTpa KyDa cHauaia ¢ LIEHTPOM
KX/I0M CTEHKH, 4 3aTeM ¢ KaxIo# BepiwHoi. Teopema JoKasaHa cHAYANA JUISA CIIYUAA MAIBIX
HARYATbHBIX TUIOTHOCTelH, a 3aTeM, ochy»mpasce merogom Kpannanna i Taprapa, fia orpa-
HAYEHHBIX HAYANBHBIX cCKopocTel. Kak MCXofHAR TOWKA IOKA3AHO, UTO HEKOTOPhIE CBONCTBA
JIOKATTBHOTO PellleHHs YIOBJIETBOPEHBI.

1. Introduction

THE DISCRETIZATION of the velocity space in the kinetic theory of gases allows the replace-
ment of the Boltzmann equation, an integro-differential equation, by a system of semi-
linear partial differential equations [I1]. For those equations, called kinetic equations,
the initial value problem has a local solution when the initial values are bounded and
differentiable; the local solution possesses the main properties listed in Sect. 2. Among
the models with discrete repartition of velocities, one of the simplest is the Broadwell
model [2] for which the velocities are obtained by joining the center of a cube at the
origin of the velocity space to the centers of the faces. Using this model, and assum-
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ing a one-dimensional motion parallel to one of the velocities and equality of the densi-
ties of the four velocities orthogonal to that direction, NiseIpA and MIMURA [3] have prov-
ed the global existence of the solution of the initial value problem, provided the initial
values are small in a certain sense. For a similar model TARTAR and CRANDALL [4] have
proved the global existence of the solution when the initial values are no longer small,
but periodic. The method of Nishida and Mimura, a proof of the global existence, consists
in proving that the local solution is bounded by a constant which depends only on the
initial values. The bound is obtained by the integration of conservation equations over
triangles, each having an edge which corresponds to the axis ¢t = 0, the other edges being
characteristics of the system of kinetic equations. The purpose of the present work is to
extend the proof and conclusions first of NisHIDA and MIMURA, then of TARTAR and CRAN-
DALL, to more complex model. The model considered is a three-dimensional model with
14 velocities obtained by joining the center of a cube at the origin of the velocity space to
the centers of the faces and to the vertices [5]. For this model the generalization is possible,
because the components of the velocities in the direction of motion are smaller in number
than the number of conservation equations. Section 2 is devoted to a summary of the prop-
erties of the local solution. The subsequent sections are concerned with the global exist-
ence theorem when the initial densities given for xe R are successively “small”, periodic
and bounded.

2. Properties of the local solution

The general evolution equations of a gas with a discrete repartition of velocities appear
in the form

oN, 1
@2.1) U VN = - 2 AYNN~NN) (i=1,2,..,p).
¢ Jki

The unknown functions Nj(x, #) denote the densities of different velocities u;, represented
by p constant vectors w,,w,, ...,u,. The coefficients 4¥, the transition probabilities,
are positive constants (or zero). x is the position vector, with components x, y, z in a Car-
tesian rectangular system Oxyz; ¢ is the time. The Cauchy problem consists in finding a so-
lution of a system of Eq. (2.1) which, at the initial time, is equal to given values

2.2 Ni(x,0) =Noyy(x) (=1,2,..,p).

THEOREM 1. If the functions Noy(x) are continuous and differentiable, there exists a po-
sitive number &, such that, in the interval 0 < t < &, the problem (2.1), (2.2) has only
one solution.

This theorem, classical in analysis, assures the existence and uniqueness of a local so-
lution, the properties of which can be studied by a method of successive approximations.
We can, for example, put

3N;l+l
at

s UNFHLEANT = AN - D) AN - NI,
Ikl

@3 NT+1(x, 0) = Noi(x);
(2.4) . N,l(x, t) = N(x).
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We deduce from Egs. (2.3)
]
(2.5 N+ (x, 1) = e *Nos(x—w 1)+ f Hi(x—w;s, t—s)e~*ds,
0

where 4! is the right-hand side.of Eq. (2.3). Considering in the four-dimensional space
the point A(x4, t,) and the points B;(x,—u;t4, 0), we denote by 2, the smallest convex
domain of the hyperplane ¢ = 0 containing all the points B;. From the formula (2.5) we
deduce

TuEOREM 2. The values of the functions Ny(x, t) at the point A depend only ‘on tke tnitial
values Noy(X) in the domain 94.

THEOREM 3. If the initial densities satisfy the inequalities 0 < Noy(x) < K,, the solution
of the problem (2.1), (2.2) satisfy the inequalities Ni(x, t) > 0 for allx € R® and 0 < t < &,.

TuEOREM 4. If the initial densities are independent of one of the space variables,

% Nio(x) = 0, the solution of the problem (2.1), (2.2) satisfies the relations

%N;(x,r) =0 forall xeR® and 0<t< .

THEOREM 5. If the initial densities Noy(X) are periodie functions with the period m, the
solution Ni(x, t) of the problem (2.1), (2.2) is, for x e R3, 0 < t < 8¢, periodic in x with
the period .

The proofs of Theorem 2, 4 and 5 are trivial. Theorem 3 is proved by choosing for 1
in Eq. (2.3) a large enough positive constant. The solution of the problem (2.1), (2.2) can
be majorized by the solution M; of the associated problem:

.19 3_M_+ w- VM, = 1 ZA*'M*M;,
at e
(2.2) Mi(x,0) = K,
and the solution of this new problem is again majorized by the solution L;(¢) of the problem
2
@17 i AQAL+ o+ LR, A=Doup Al
2.27) Li(0) = Ko. =
We have therefore
K,
2. S L i p—r s
(2.6) Ni(x, t) < Li(¢) T

THEOREM 6. If the initial values No(X) are continuous and differentiable functions sat-
isfying the inequalities 0 < N; (X) < Ko, then the unique solution of the problem (2.1),

2
(2.2) exists for xeR® and 0 < t < 6, , Where A = f——sup AY.

1
T 4K, 2
For certain particular models it is possible to show that in the domain x € R® and
0 < t < d, and under certain conditions for the initial values the (local) solution satisfies

the inequalities 0 < N;(x, t) < K, where the constant K depends only on the initial values.
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We can consider the instant 7 = §, as initial and repeat the argument; so the solution
exists for dy < t < 0o+, with 6 = 1/4K; and for t = t; = 6,+46, we always have
0 < Ny(x, 1) < K. This proves the global existence of the solution, We will show in the
next section the existence of a number X for a three-dimensional model with 14 velocities.

3. Global solution for *’small” initial values

The model considered is obtained by joining the center of a cube to the vertices and the
centers of faces. The velocities are denoted by wy(i = 1, ..., 8) and v;(j=1, ..., 6), and
their components in the directions Ox, Oy, Oz are

w =c(-1,1,1), w=c¢(,1,1), wy=c(-1,1,1), w,=c¢(l,-1,1),
v; =¢(1,0,0), v, =¢(0,1,0), v3=1¢(0,0,1)
and
w=-w (=1,2,3,49, v,3s=-v (=123
the moduli being given by |v;| = ¢, |u;| = ¢}/ 3. The number density of molecules with the
velocity w, is denoted by N;, that of molecules with velocity v; by M;.

To write the kinetic equations we designate by w;,, u;;, u;; the velocities associated
with the velocity w; so that w;, —u;, u;; —u;, w;;—u; are parallel to the coordinate’ axis.
Then we put

W, = Up+U—l, 2V = W+u,
3.1 Ws = Uyt —w;, 2V, = W+up,

Ui = Uy +U =Wy, 2V3 = W;+ug;.
The kinetic equations, are then (for details see [5]):

1l

- 4
N,
(3.2) 3—; +u; - VN; = “]‘/zi cS 2 (NyNg_s—NNy_y)

s=1

6 s 3
6 wl
+V/2eS {NisNia+ NisNis + NN =Ny D NiJ + '/T ¢S > (NiuMyyiy=NiMi),

a=4 a=1

3
oM 2
(33) Tl vy VM =2 S D My Myores—MyMy.5)

r=1

. 4
6
+ T"—'S 2 , (My43Njp142e—MjNj,25).
g=1

There are 8 equations, (3.2) i =1, ..., 8 and 6 equations, (3.3), (j=1, ..., 6). When
the initial densities are independent of y and z, which we assume, the densities are
independent of y and z. Therefore we look for the solution N;(x, 1), M;(x, ) of the kinetic
equations which satisfy the following initial conditions:

Nl(xs 0) = No:(x) (i = l, seey 8)9

G4 My(x,0) = Mo;(x) (G=1,...,6).
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We assume that the initial densities are differentiable and satisfy the following condi-
tions in which K, and o, are two positive constants:

(3.5 Noi(x) Ko, 0< My(x) <
(3.6) f { ?No.(E)+ZMM(5)} Sdt = a,.

THEOREM 7. When the conditions (3.5) and (3.6) are satisfied, and when a, is less than 3 |4,
the solution of the initial-value problem (3.2), (3.3), (3.4) exists for all x and all t > 0.
To prove this theorem by the method of Nishida and Mimura, we consider the sums
of the densities of the velocities having the same components on the x axis, i.e. we put
Ai(x,1) = N+ N, +Ng+Ng+ M,
3.7 A(x,t) =N;+N3+Ns+N,+M,,
2983(x, 1) = Mo+ M3+ Ms+ M.

We write & = ¢> 0, &, = —¢, & = 0; from Egs. (3.2)-(3.3) we deduce the three
equations

3.9! A

(338) +apt=fin D (=1,2,3,

(3.9 fi=fi=—-f= ‘—CS(MzMs"‘MaMsMs —2M, M,).
Equations (3.8) can be integrated in the form
t
(3.10) Ai(x, 1) = (=&, 00+ [filx—Eis,1-9)ds (i =1,2,3).
]
The functions & ;(x—é&;¢, 0) are bounded by 5K,. And in the domain xe R, 0 < 7 < §,,

the densities being positive, the integrals in the second term of Egs. (3.10),, (3.10), and
(3.10); are bounded by

r
(3.11), %Kch(M2+M5)(x—5,s;!—s)ds (i=1,2),
0

(]
(3.11), —;—KchM‘(x,r—s)ds,
0

K being a bound of the densities in the domain. It is then possible to majorize the last in-
tegrals by integrating the conservation equations

d o ;
(3.12); E;(dt'*'ds)'i'ﬁr—gf =0 (=12
over the triangles 44;4; of the x, ¢ plane. The points 4, and A; have as coordinates
(x,t) and (x—¢&;t,0), respectively. The Stokes theorem gives for i = 1,

(3.13) fdl(x ‘— s)cd.s-i—f.da(x cs, 1—s)cds = f{d1($ 0)+.5(&,0)}d& < %

x—ct
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and a similar formula for i = 2. We deduce that the integrals (3.11); (i = 1, 2, 3) are

bounded by% oo K, and

(3.14) K< sup oi(x, 1) < 5 Ko+ 40 K

or, for oy < %

5K,
l—im:0

3
which proves the global existence of the solution of the problem (3.2), (3.3), (3.4).

(3.15) K<

4. Global existence for large initial-values

The global existence theorem proved in the former section assumes that the initial
mass in a tube of the cross-section S is sufficiently small. For a plane regular model with 4
velocities, Crandall and Tartar, using the H-theorem, have been able to drop this assump-
tion when the initial densities Ny;(x) are periodic functions [4]. The demonstration of
Crandall and Tartar is valid for all models for which the results of the previous section
are valid: existence of a bound of the local solution.

The initial densities being independent of y and z, the densities Ny(x, t) will also only
be periodic in x; we will designate the period by =. We have therefore to solve the follow-
ing problem:

oN, aN;
4.1 3: Tl ZAﬂ(NkNI'_NUN}) (i=12,..,p),
4.2) Ni(x,0) = Noi(x)
with

0 < Noi(x) < Ko, and  Noi(x+7m) = Noy(x).

By multiplying the two members of Eq. (4.1) by 1+log N; and by adding the equations
obtained for all values of i, we obtain

@43) Z ( 3N' BN,) (NylogN)) = 5 Z Aff log i":; (NeN,—N;N;).

Tkl K4Vl

The right-hand side is negative or zero. Thus the first member will also be negative, as will
be its integral, say, over a period

(4.4) (ZN,log = ) <0;

i=1
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as a consequence,

P o

@.5) 1= f Nitx, ) log % 4 < 10) < 0.
=1 0 Ko
From this inequality we deduce, for 2¢T < =,
p x+cT WK
0 A
(4.6) 2 f Ni(x, dx € ———;
i=1 x—¢T 1—10 T

the detail of the calculation are given in the reference [6].
Returning to the 14-velocity model, we now denote by N;(x,t) the densities (i vary

from 1 to 14), and we consider the functions N(x, t) which satisfy the following conditions:
Ni(x, t;) = Ni(x,t,) for X—cT< x<X+cT,

Ni(x,1,) =0 for |X-x| > cT.

The functions N,(x, t,) satisfy, for all ¢, positive, the condition

@7

] 14
_ 561SK,
38) f {Z N, t,)}SdE <y
—w =l 1-log——
If we choose
(4.9) 2T . xp{l-————:tSKo},

the first member of the inequality (4.8) is less thani , and we can apply:

4

THeOREM 7. Therefore, the functions Eﬁ(x, t) exist for all values of xeR and t > 1,.
In the triangle with the vertices (X, t,+T), (X+cT, t,) the solution N;(x, t) coincides with
the solution of the kinetic equations which takes the values N;(x, t,) fort = t;; as X is arbi-
trary, this proves the existence of the solution for t; < t < t,+ T. The inequality (4.8) is still
valid for t, = t,+T, hence existence also holds for t,+T < t < t;+2T; the argument
can be repeated, and as t, is arbitrary and can be chosen less than d,, global existence
Sollows.

It is now easy to pass from the periodic case to the general case where the initial densi-
ties satisfy only the conditions 0 < No,(x) < K,. We can define new initial values No;(x)
penodlc of period z, with continuous derivatives, and satisfying the conditions N, (x) =

0i(%) for |x—X| < ¢T, with 2¢T < n. The corresponding solution Ni(x, t) exists glob-
ally and coincides with the solution corresponding to the initial densities Nj,(x) in the
triangle (X, T), (X+c7, 0) of the x, ¢ plane. As X is arbitrary, the solution N;(x, ¢) exists
for xeR, 0 <t < T; and as T is arbitrary the existence is global. Hence we have the
following general conclusion:

THEOREM 8. If the initial densities are continuous, differentiable, positive and bounded,
the solution of the initial value problem, for the 14-velocity model, exists globally.

3 Arch. Mech. Stos. 4-5/78
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