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On the formulation of plane problems of elasticity in terms 
of dislocation layers 

M. MAITI and S. S. PALIT (KHARAGPUR) 

IN nns PAPER two-dimensional boundary value problems of elastostatics are formulated in terms 
of dislocation layers with the help of the Somigliana integral. These formulations, when expres
sed in terms of boundary data, lead to the problem of solving boundary ·integral equations. 
As for illustrations we consider the traction an~ displacement problems for a circular region. 
contact and crack problems. Oosed form solutions are obtained in each case. 

W niniejszej pracy sformulowano dwuwymiarowe zagadnienia elastostatyki za pom~ warst
wy dyslokacji przy uzyciu calki Somigliany. Sformulowania te, uwzgl~ja}ce dane warunki 
brzegowe, prowac:l.zll do zagadnienia rozwia}zania r6wnan calkowych. Dla ilustracji rozwa
zono zagadnienia w napr~niaCh i przemieszczeniach dla obszaru -kolowego, zagadnienia 
kontaktowego i probletriu szczeliny. W kai:dym przypadku otrzymano rozwia}zanie w postaci 
zamkni~tej. 

B Hacro~eit pa6oTe cct»oPMYJDIPOB&Hhi ~yMepHLie ~a'IIH 3JiacrocraTHKH s ct»~u cnos 
~CJIO~ IIpH UOMO~ HHTerpana CoMHJU.mm. 3m <l»oPMYJJHPOBKH, ytDft'bm&JdiiUie 38-
~e rpaJD111Rbie ycnos'WI:, npHBowrr K aa.z:taqe peweHIDI Kpaeso-mrrerpam.HhiX ypasHe
HHit. ,llrur MJimocTp~ paccMOTpem.I 38,Wl'DI B HanpiDKeHWIX u nepeMe~emVIX .ztm~ J<pyro
soii OOJiaCTH, KOHTaKTHOH 3a)l;8lDI B 3a~allll ,ltJIH ~eJIII. B Ka>K,Z:tOM CJiy'lae UO.nytlCHO pememle 
B 3a.MKHyTOM BJJ,ne. 

1. Introduction 

A DISTRIBUTION of dislocations or point forces often provides a powerful means of solving 
boundary value problems in elasticity, where the problems are generally formulated in 
terms of singular integral equations. EsHELBY [I] appears to have first exploited the idea 
in connection with inclusion problems by showing that the displacements due to the crea
tion of inclusions may be expressed in terms of displacements produced by a distribution 
of point forces or, alternatively, in terms of displacements generated by the introduction 
of a Somigliana dis~ocation over the inclusion boundary. He has considered only static 
problems and the corresponding dynamic problems have been considered by WILLIS (2]. 
The dislocation approach has found further application in elastic and elasto-plastic crack 
problems; see, for example, BILBY and EsHBLBY [3]. Though some particular problems were 
solved by this approach, there was no systematic exploitation of this approach in boundary 
value problems until recently. LouAT [4] only asserted that the dislocation method may be 
exploited in solving boundary value problems in elastostatics and he did not consider any 
specific problem to justify his assertion. Resently LARDNBR [5] has justified this assertion 
and exploited the ·dislocation method more effectively to solve two-dimensional traction 
and displacement problems of general ·regions and of half-spaces, crack and contact 
problems. 
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718 M. MAITI AND S. S. PALIT 

A minor shortcoming of this approach is that it is based on heuristic physical arguments 
which may not appeal to mathematicians. Eshelby's formulation of inolusion problems 
has. been provided with a formal mathematical justification by MAITI and MAK.AN [6]. An 
attempt has been made in the present paper . to provide a mathematical justification of the 
dislocation approach given by LARDNER [5] in solving two dimensional boundary value 
problems. In doing. so we have, in fact, developed an alternative method to solve plane 
problems of elastostatics, which appears to be more general than that of Lardner. 

The present approach essentially hinges on the Somigliana integral [7] which expresses 
the displacement field inside a stressed body in terms of boundary tractions and displace
ments. Applying Green's approach [8] to Somigliana's it is possible to derive a "modified 
Somigliana integral" which expresses the displacements inside a region in terms of tractions 
and displacements distributed along the .common boundary of the region and its comple
ment. Interpreted physically, this formulation indicates that a displacement field inside 
a region is due to either point forces or dislocations or both distributed along the boundary 
of the region. This illuminating physical concept, though accepted heuristically for a long 
time, has been provided first with a sound mathem_atical footing by MAITI and MAKAN 
[6]. This formulation has an analogue in potential theory where a harmonic function is 
expressed in terms of a single layer potential or a double layer potential or both (Green's 
formula). We have considered here the displacement field in terms of a "modified Somi
gliana integral" corresponding to the distribution of dislocations along · the boundary, 
whence displacements and the stresses can be computed easily. These displacements and 
stresses, when expressed in terms of boundary data, reduce to integral equations in terms 
of unknown dislocation densities distributed along the boundary. To solve these boundary 
integral equations analytically is, in general, out of the question. However, it has been shown 
that in some cases these equations are amenable to analytical treatment. 

First we have considered the first and second boundary value problems in a circular 
region where these integral equations are of Hilbert type. Then we have considered some 
mixed problems of half-spaces, e.g. contact and crack problems, where these integral 
equations reduce to those of C~uchy, Carleman, Foppl and ''air-foil" type. These equations 
are well known and their solutions can be derived in closed form either by a complex 
variable technique, see GAKHOV [9], or by the Hilbert transform technique; see, for example, 
TITCHMARSH [10] and TRICOMI [11]. In the present study we have adopted the latter approach 
and the solutions of the problems obtained thereby are in perfect agreement with those 
obtained by other methods. 

Singular integrals appear in many places in the paper and are to be understood in the 
sense of the Cauchy principal value. In all the problems discussed the material medium has 
been assumed to be isotropic and homogeneous. 

2. Somigliana integrals 

Let D be a plane region bounded by a smooth contour S. The normal n will be assumed 
to be directed outwards from S. The vector variable x will specify the position of a point in 
the entire plane (except on S). The Cartesian coordinates of x will be denoted by (x1, x2) 

and the corresponding primed variables will be used for the points on S. Let Uil(x- x') 
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be the i-th component of the displacement at x produced by a point force (supposed 
to act in an infuiite medium) of magnitude -4n,u(.A.+2,u)/(.A.+3p) applied at x' in the 
j-th direction, then 

(2.1) U;1(x-x') = 6i1logr+Mr,ir.b i,j = 1, 2, 

where r2 = (x1 -x;)2 +(x2 -x2)2 , ~iJ is a K.ronecker delta and M= -(.A.+,u)/(.A.+3,u). 
Here J., ,u are Lame constants and the subscripts preceded by a comma indicate differen
tiation with respect to the corresponding Cartesian coordinates. The corresponding tractions 
Ti1(x- x') at x' on S are given by 

(2.2) Tii(x-x') = {K6;1-4,uMf,ir,1}! (logr)+K{(Iogr),1n1-(logr),1ni}, 

where K = 2,u2 /(A+3,u); the normal components ni and the normal derivative dfdn are 
with respect to x' e S. Then, as quoted by R1zzo [12], the following identities hold: 

(2.3) ex J {ui(x') Tii(x-x')- lt(x') Uli(x-x')}ds = u1(x); x e D, 
s 

(2.4) = 0; X e D., 

where De is the region exterior to D, t1 are the boundary tractions corresponding to the 
displacements ui and ex = (J. + 3,u)/(4n,u)(J. + 2,u). The representation (2.3) of the displace
ment field u is, in fact, the, plane counterpart of Somigliana integral [7]. 

If the displacements Ut and the stresses (JiJ are such that 

(2.5) Ut "" O(r- 1), (Jii "" O(r- 2) 

at a large distance r and u~, ti denote the displacements and tractions arising out of the 
region De (having the same elastic constants as those of D), then it is possible to show that 

(2.6) ex J {u~(x')Tt1(x-x')-t;(x') U11(x-x')}ds = u}(x); xeD., 
s 

(2.7) =0; xeD. 

Adding (2.3) and (2. 7) and choosing the direction of the normal outwards from S we 
obtain 

(2.8) 

for x e D, which is indeed the plane counterpart of the displacement field (3.5) derived 
by MAITI and MAKAN [6] and also valid for x e De. The integral representation of the 
displacement field (2.8) may be called a "modified Somigliana integral", from which it fol
lows that for the ex~stence of a non-trivial displacement field in a region there must be 
a discontinuity either in the displacement or in traction or in both across its boundary. 
This implies physically that a displacement field inside a region is due to a distribution 
of dislocations or of point forces or of both along the boundary. 

If the stresses and displacements have the same behaviour as in (2.5) at a large distance, · 
then corresponding to (2.8) the displacements ui in the upper half-plane y > 0 are given by 

00 

(2.9) u1(x) =ex J {(u1-uDTt1-(ti-t;)UiJ}dx, 
-eo 

3* 
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where ui and r; are respectively the boundary displacements and tractions arising out 
of the stress Jield in tlie lower half-plane y < 0. This is the "modified Somigliana integral" 
for the upper half-plane corresponding to (2.8) for general regions and ha:s the same phy
sical significance as that of (2.8). The same representation is also valid for the lower half
plane. 

We now derive t~e displacement fields due to point forces -and dislocations distributed 
continuously along the boundary. If we set u1 = u; on S or if there is no relative displace
ment of the interface (implying again u1- ui = 0 on S), then (2.8) assumes the form 

(2.10) u1(x) = -ex J p1(x')U11(x-x')ds, 
s 

where p1 = t1-t;. The displacement field (2.10) is as if due to point forces distributed 
continuously along S. Next, if we set t1-ti = 0 on S, i.e. if the common boundary is equilib
rated, then the equation (2.8) reduces to 

(2.11) uj{x) = ex J (u1-ui)T1j{x-x')ds. 
s 

This is exactly the .case when there is a layer. of edge dislocations distributed continuously 
along S and we obtain from (2.11) 

(2.12) uj(x) = a J b1(x')T11(x-x')ds, 
s 

where b is the Burgers vector given by b1 = u1- ui. Thus it is obvious that once the bound
ary sources are known the displacement field may be computed either from (2.10) or from 
(2.12). In a close analogy with single layer and double layer potential representations 
of a harmonic function the representations (2.10) and (2.12) may be termed single layer 
and double layer vector potentials. 

For a half-space we derive the displacements 
00 

(2.13) uj{x) = -ex J p1(x') U11(x-x')dx, 
- 00 

00 

(2.1A) uj{x) = ex J b1{x') TiJ(x- x')dx 
-oo 

corresponding to (2.10) and (2.12), where p 1 and b1 are respectively the distributions of 
point forces and dislocations along the line y = 0. However, it may be mentioned that the 
vector potentials (2.10) and (2.12) were introduced by KUPRADZE [13] on direct grounds 
without a recourse to the present analysis or any other approach. For the purpose of the 
present paper we restrict ourselves to the representations (2.12) and (2.14). 

3. Integral equation formulations in general regions 

Denote the Cartesian coordinates of x and x' by (x, y) and {x', y'). Lets be the arc 
coordinate of x' and fJ be the angle between the directed line from x to x' and the positive 
direction of the x-axis. If r = lx-x'l, then 

(3.1) arjax' = (x' -x)Jr = cosfJ, arfay' = (y'- y)/r = sinO 
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and also it follows from the Cauchy-Riemann equations that 

(3.2) d(Iogr)fdn = d8fds. 

Changing the suffixes l, 2 to x, y and substituting from (3.1) and (3.2) in.to (2.12) we obtain 

(3.3) u.(x,y) = a[ J h.(•){(K-2pM): -pM~ (sin211)}tb 
s 

(3.4) u,(x,y) = a[-J b.(s){K ~ (logr)+2pM ~ (sin211)}tb 
s 

+ f b,(•){(K-2pM): +pM~ (sin211)}tb]. 
s 

Integrating by parts and after a little manipulation we obtain from (3.3) and (3.4) 

(3.5) u.(x,y) = - f /.(•){! + S;~~~~)}tb- f f.{•){~o~~)IOgr+ ,.:~~~~)}do, 
s s 

f { 1-2, sin28 } J { () sin28 } 
(3.6) u1(x,y) = fx(s) 4n(l-P)logr 4n(l-P) ds+ /,{s) -m +8n(l-P) ds, 

s s 

where, is the Poisson's ratio and 

(3.7) fx(s) = db:x:fds, J,(s) = db1/ds. 

Returning to Cartesian coordinates we obtain, apart from rigid body displacements, 
from (3.5) and (3.6) 

f [ 1 _1 y-y' 1 (x-x')(y-y') ] 
{3.8) u:x:(x,y)=- fx(s) 2ntg · X-x' + 4n{l-P) (x-x')2+(y-y')2 ds 

s 

f '"( >[ l-2P I {( ')2 (y ')2i 1 (y-y')2 ]d 
- Jy .s 8n(l-P) og x-x + -y J+ 4n(l-P) (x-x')2+(y-y')2. 3 ' 

s 

(3.9) u1(x, y) 

-J r ( >( 1-2P I {( ')2 (y ')2} 1 (x-x')2 ]ds 
- s Jx s 8n(l-P) og x-x + -y + 4n(l-P) (~-x')2 +(y-y')2 

f [ l _1 x-x' 1 (x-x') (y- y') ] 
+ J,(s) h tg y-y' + 4n(l-t~) (x-x')2+(y-y')2 ds. 

s . 

The displacements (3.8) and (3.9) correspond exactly to those obtained by the superposi
tion of two displacement fields due to layers of edge dislocations of densities-hand/, 
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distributed along S as shown respectively in Figs. 1 and 2, see EsHELBY [14], H!RTH and 
Lonm [15]. 

Flo. 1. FIG. 2. 

The stresses alb computed from (3.8) and (3.9), are given by 

- P [J {y-y'){3(x-x')2+(y-y')2} 
(3.10) Gxx(x,y)- 2n(l-") s fx(.s) {(x-x')2+{y-y')2 } 2 ds 

f (x-x'){(y-y')2 - (x-x')2 } ] 

+ /,(s) {(x-x')2+(y-y')2}2 ds ' 
s 

(3.11) 

(3.12) 

From the above expressions we derive 

(3.14) axx-a,-2iax1 

= p [Jt(s)(x-x') 2(x-x')(y-y')+i{(x-x')2-(y-y')2} ds 
n(l-") s x { (x- x')2 + (y- y')l }2 

+ J.t;(s)(y- '). 2(x-x')(y-y')+i{x-x')2 --{y-y')2} ds] 
1 Y {(x-x')2+(y-y')2}2 ' 

s 
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where i 2 = - 1. Introducing complex variables z = x + iy and z' = z' + iy' we obtain 
from (3.13) and (3.14) 

(3.15) -p, [ Jf1(s)-ifx(s) ] 
O'xx+O'n = n(l-v) Re z-z' ds ' 

s 

(3.16) . p,i [ J (x- x')ds J (y- y')ds ] 
O'u-0'71-2lO'xy = n(l-v) s fx(s) (z-z')2 + s .f,(s) (z-z')2 ' 

where Re stands for the real part of the integral. We now derive the boundary values of 
O'xx+0'71 and O'xx-0'11 -2iO'x1 as z-+ z0 on· S. Denoting the point z0 by the arc coordinate 
s0 we obtain 

(3.17) (O'u+ O',,)so = 

= n(~ ~~) [Re J /,(•;:= ~(s) ds- n{l.(s0)cos0(s0) + J,.(s0)sinO(s0)}]. 

s 

(3.18) • p,i [J (x0 -x')ds 
(O'u-0'11 -2lO'x1) = (I ) /x{s) ( ')2 + so n -v s Zo-z 

+ J J,.(s) ~;.~):, -ni{f.(s0)cos0(s0)+ /,(s0)sin8(s0)}e-21B!-l]. 
s 

FIG. 3. 

where() (s0 ) is the angle between the tangent at s0 and the x-axis (Fig. 3) and the integrals .. 
are to be interpreted as Cauchy's principal values. If the noqnal and tangential tractions 
at s0 be denoted by N(s0) and T(s0 ) respectively, then we know that 

N(so)+iT(Jo) = ~ (O'xx+0'17)so- ~ e'-iB(so>(O'x:x-0'71 -2iO'x1)so' 

whence we obtain from (3.17) and (3.18) 

(3.19) N(s
0
)-iT(s

0
) = -p [Re /,(J)-i~(J) ds 

2n(1-v) z0 -z 

+ ie'-i8(so) f (xo-x')fx{s)+ (yo- y')/,(s) ds]. 
(zo-z')2 

s 
Separating real and imaginary parts from (3.19) we obtain a pair of coupled boundary 
integral equations in fx and!,. 
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Alternatively, we derive directly from (2.12), in the limit as x-+ x0 on S, 

(3.20) u1(x0) = . ~ b1(x0) +IX J b;(x') T,j(x0 - x')ds, 
s 

which also gives two coupled boundary integral equations in hx and b1 • We note here that 
the first boundary value problems may be formulated in terms of integral equations derived 
from (3.19) whereas the integral equations (3.20) are suitable for formulating second 
boundary value problems. Further it may be noted that the integral equations (3.19) 
and (3.20) are not, in general, amenable to analytical treatment. However it will be shown 
in Sect. 4 that these equations reduce to Hilbert type in the case of a circular boundary, 
where analytical solutions can be derived easily. 

4. First and second boundary value problem for a circle 

Let us consider a circular region D of radius a where the normal traction Nand shearing 
traction T are prescribed along its boundary. Setting z' = ae1«, z0 = aeiP and s = aiX 

we derive from (3.19) 
2n 2n 2n 

(4.1) N(/J)- iT(/f) = 
4
,(I -v) [f G( a.)ct/; a. da.- 2 J F( a.)da. + i J F( a.)ctl; a. da.]. 

0 0 0 

where 

(4.2) 
G(IX) = fxCOSIX+ /,"sin IX, 

F(IX) = fxsin<X- /,cos <X. 

In the derivation ( 4.1) it has been assumed that 
2n 2n 

(4.3) J fx(s)ds = J /1(s)ds = 0, 
0. 0 

which are required for the single-valuedness of displacements both in D and De. Separating 
real and imaginary parts from (4.1) we derive 

2n 2n 

(4.4) N(fJ) = 4n(t"__v) [f G(a.)ctg a.;P da.+2f F(!X)da.]. 
0 0 

2# 

T(/J) = 4n(I-vJ F(a.)ctg a.;p da., 
0 

(4.5) 

which are Hilbert integral equations, the solutions of which are given by 

2n 

(4.6) 1-v J P-IX F(1X) = F0 - --. T(p)ctg-
2
-dp, 

Tfl' 0 

2n 

(4.7) 1-v J P--IX G(cx) = G0 + -n- N(/J)ctg-2-d{J, 
JJ 0• 
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where F0 and G0 are constants to be determined. To determine F0 we integrate both sides 
of ( 4.6) and obtain 

2n 

J F(a.)da. = 2nF0 
0 

which, when substituted in (4.4), yields 
2.11 

F0 = - (1-y)(2n~t)- 1 J N(/J)d{J. 
0 

The constant G0 cannot be determined in this manner and, in fact, is indeterminate, but 
it can be taken to be zero since it corresponds to a rigid body displacement. The functions 
F(a.) and G(a.), when substituted form (4.6) and (4.7).into (4.2), .determine the boundary 
functions f:J& and h. This shows that the first boundary value problem can be solved for 
a circular region. 

We now consider the second boundary value problem. Setting x 0 = (acos{J, asin{J) 
and x' = (acosy, asiny) we derive from (3.20) 

2.11 

I a.K f y-{J (4.9) g 1 ({J) = 2 hJt({J)+-y b,(y)ctg-2-dy+a.~tM(Acos{J-Bsin{J)+C, 
0 

2.11 

1 a.K I y-{J (4.10) g1 (/J) = 2 h,(/J)-2 bJt(y)ctg-2-dy+a.~tM(Asin{J+Bcos{J)+D, 
0 

where g 1 (/J), g 2 (/J) are prescribed boundary displacements . and A, B, C, D, are constants 
to be determined. These integral equations are obviously of Hilbert type. By applying 
Hilbert's inversion formula to (4.9) and (4.10) we obtain after a little manipulation 

2n 

3-4v 1-2Y J {J-y 
(4.11) 4(}-y)l b:t(/') = 2g1(y)- 2n(l-Yj g2(/J)ctg-2 -d{J 

0 

1 . 5 - 12Y + 8v2 

+ Sn(1_,)2 (Acosy-Bsmy)- 20 _,)2 C, 

2n 

3- 4Y 1-2Y I {J- y 
(4.12) 4(1_,)2 b1 (y) = 2g2 (y)+ 2n(1_,) Kt ({J)ctg-2-d{J 

0 

1 . 5-12Y+ 8Y1 

+ Sn(l-Y)2 (Asmy+Bcosy)- 2(1_,)2 D. 

The constants A, B, · C and D may be determined from ( 4.9) and· ( 4.1 0), and are given by the 
following: 

2.11 

(4.13) A= 
2f_~;) J {g1(/J)cos{J+g2 ({J)sin{J}d{J, 

0 
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(4.14) 

2n 

(4.15) D = 4~ f g2 (p)dp. 
0 

With these constants the functions bJl and b, are completely determined from ( 4.11) and 
(4.12) and hence the second boundary value problem can be solv~d easily. However, th~ 
constants C and D may be taken to zero as they contribute only to the rigid body displacement. 

5. Integral equation formulations in half-planes 

Consider the .upper hidf-plane y > 0. Setting x' = (x, 0) and n = (0, - I) we derive 

from (2.14) 
-eo ·J b ( ')[ Ky 4 M y(x-x')2 ]dx' 

(5.1) uJl(x, y) = IX Jl x (x-x1)2+ y2 - I' {(x-x')2+ y2}2 
CO 

-eo 

+a: J b,(x')[(x-:.:.+y• 4pM {(x-~:+yl}•]dx', 
CO 

whence, corresponding to (3.8) and (3.9), we obtain 

(5.3) u,(x,y)= - j f,(x')[~ tg-•(x!x' )+ 4n(!-7) (x~:;.x;y.]dx' 
-eo 

CO 

f. " ')[ 1-2v 1 ·c· ')2 2} 1 y2 ]d , 
- J,(x 8:n(1-v) og{ x-x + y + 4:n(1-v) (x-x')2+ y2 x' 

-eo 

00 _ J , [ 1-2v · {( ')2 2 } 1 (x-x')
2 ]dx' 

(5.4) u,(x,y)- fJl(x) S:n(l-v)log x-x +Y + 4:n(1-v)(x-x')2+Y2 . 
-eo 

fco 1 [ 1 · _1 ( x-x~, 1 y(x-x') ] 1 
+ /,tx) 2:n tg -y- + 4n(l-v) (x.....;xl)2+y2 dx, 

-eo 

http://rcin.org.pl



ON THE FORMULATION OF PLANE PROBLEMS OF ELASTICITY 727 

wherefx = dbxfdx', etc. The corresponding stresses are given by 

The boundary values of the displacements and stresses are obtained, in the limit as 
y-+ 0, in the following forms: 

00 00 

(5.8) Ux(x, 0) = - ~ J fx(x')dx'- 4!0~,) J /1(x')loglx-x'ldx', 
-oo -oo 

00 00 00 

(5.9) u,(x, 0) = 4~0~~) J fx(x')loglx-x'l dx' + 4n(: -P) J fx(x')dx'- ~ J J,(x')dx', 
-oo -oo x 

00 

p, J }; (x')dx' 
(5.10) a11(x, 0) = 2n{l-P) 'x'-x ' 

-oo 

00 

p, J fx(x')dx' 
(5.11) O'x1(X, 0) = m(l-P) X' -X ' 

-oo 

which are standard results in dislocation theory. Further, we derive from (5.8) and (5.9) 

00 

(5.12) dux(x, 0) = _!_ h (x)+ l-2P J /,(x')dx', 
dx 2 " 4n(l-P) x' -x 

-00 

00 

(5.13) du,(x, 0) = _!_ f,(x)- l-2P J fx(x')dX'. 
dx 2 - 4n(l-P) . x'-x 

-oo 

The above boundary quantities provide the basis for formulating boundary value problems 
in terms of integral equations. 
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5.1. First boundary value problems 

Consider the upper half-plane y > 0, where the normal traction and shearing traction 
are specified along the boundary y = 0, i.e. 

(5.14) a11(x, 0) = p(x), 

(5.15) O'x1(x, 0) = s(x), 

where p(x) and s(x) are prescribed. Substituting from (5.14) and (5.15) into (5.10) and 
(5.11) we obtain two Cauchy integral equations 

00 

(5.16) 
I' J}; (x')dx' 

2n(1-P) 
1
x'-x = p(x), 

-oo 

00 

(5.17) p, J fx(x')dx' = ( ) 
2n(1-v) x'-x sx, 

-oo 

the solutions of which are given by 
00 

(5.18) 
2(1 v) J s(x')dx' fx(x) = - -

np, x' -x ' 
-oo 

00 

. (5.19) }; (x) = _ 2(1-v) J p (x')dx' , 
1 np, x'-x 

-oo 

see TiucoMI [11]. Thus the functions.fx(x) andf,(x) are known for all x and hence the first 
boundary value problem can be solved easily. It is also easy to derive the following boundary 
relations: 

00 

(5.20) dux = l-2v s(x)- 1-v J s(~')dx' , 
dx 2p, np, X -X 

-oo 

00 

(5.21} du, = _1-2, s(x)- 1-v J p(x')dx'. 
dx 2p, np, x'- x 

-oo 

These important relations are due to MusKHELISHVILI [16], who has utilized complex 
variable formulations to derive them. It has been shown here that these relations can also. 
be established from dislocation considerations. 

Now substituting from (5.18) and (5.19) into (5.3) and (5.4) we derive the displacements, 
apart from rigid body displacements, 

(5.22) u%(x, y) = ~p [ j {(l-•)log{(x-x')2 +y2}+ (x-;;2 +y2 }s(x')dx' 
-oo 

- Joo{·(1_;2,\tg-1(_·_Y_) + y(x~x') }p(x')dx'].' 
' x-x' (x-x')2 +Y2 

-oo 
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00 

(5.23) u,(x,y) = ~I' { J {(l-27)tg-• (x!x' )- (x~:;;'].y• }s(x')dx' 
-oo 

00 

+ J{<1-v)log{(x-x')2+y2}+ (x-_x')
2 

lfp(x')dx'], 
(x-x')2+y2 

-oo 

whence, in the limit as y -+ 0, we derive 

00 00 

(5.24) 1-v J 1-2vf u.¥(x, 0) = -- s(x')logt~-x'ldx'- -
2
- p(x')dx', 

np. - oo - - I"~ .¥ 

00 00 00 

(5.25) 1-2vJ· 1-v J . l J · u1(x, 0) = -
2
- s(x')dx'+-n- p(x')log/x-x'/dx'+~ p(x')dx'. 
J.l .¥ p. -oo P, -oo 

These boundary displacements were first derived by MusKHELISHVILI [16] and are utilized 
in formulating some boundary value problems. From (5.22) and (5.23) the stresses (]ii 

are derived as follows: 

00 00 

2 [ J y2(x-x')s(x')dx' J . y3p(x')dx' J 
(5.27) (],(x,y) = n {(x-x')2+y2}2 + {(x-x')2+y2}2 ' 

-oo -oo 

00 . 00 _ ~ [ J y(x- x')2 s(x')dx' J y2(x- x')p(x_ ')dx'] 
(5.28) (]x1(x, Y)- . n {(x-x')2+y2}2 + {(x-x')2+y2}2 · 

-oo -oo 

5.2. Second boundary value problems 

Suppose that the displacements are prescribed along the line y = 0, i.e. 

(5.29) u.x(x, 0) = U(x), u1(x, 0) = V(x). 

Then, substituting from (5.29) into (5.12) and (5.13), we obtain the coupled integral equa-
tions , 

00 

(5.30) U'(. ) = _!_ J' ( ) 1-2v J J,(x')dx' 
X 2 J X X + 4 (1 ) I ' 7£ -V X -X 

-oo 

00 

(5.31) V'(x) = _!_h(X)- 1-2v Jfx(x')dx' 
2 1 4n(1-v) _x'-x 

-oo 
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in /:f; an4.t;, whence~ by applying Hilbert transform, we derive the solutions in the following 
forms: 

()() 

(5.32) 
3-4P 1 1-2P J V 1(X1)dx1 

8(1-P)2 .h(x) = U (x)- ln(l-P) X 1 -x ' 
-oo 

00 

3-4P 1 1-2P J U 1(X1)dx' 
'8(1-P)2 fy(x) = V (x)+ 2n(l-v) X 1 -x 

-eo 

Since U(x) and V(x) are specified, the unknown functions fx and/, can be determined 
cqmpletely from (5.32) and (5.33). Further, these will lead to the determination of the 
displacements and stresses in a half-plane. 

5.3. Mixed boundary problems 

We now discuss some mixed problems of a half-plane, which can be easily dealt with 
the present method. 
Case (1). Suppose that u;J;, u, are prescribed over a region Sx, of the x-axis and (Jx1 , (Jn are 

prescribed over the complementary region Sx. Then the unknown functions fx and/, can 
be determined. 

Since ux, u1 are known in Sx and (Jx,, (]11 are known in Sx, then (5.10), (5.11), (5.12) 
and (5.13) provide a pair of integral equations to be solved for f;J; and/, in Sx. Now fx is 

known in Sx and (Jxy is known in S:f;. Then it is possible to determine_h in S:f; from (5.11). 

Similarly, the knowledge of/, in S:f; and (Jn in Sx leads to the determination of h in Sx 
from (5.10). Thusfx and.(, can be determined for all x. This case has a direct bearing on 
a crack problem discussed recently by LowENGRUB [17] and will form the basis of a sepa
rate publication. 
Case (11). Suppose that (J:f;7 is prescribed over a region Sx of the x-axis and . that Ux is pre-

scribed over the complementary region Sx. Further, (]11 is prescribed over s, and Uy is pre

scribed over s,. From the given boundary conditions we observe the following: 
a) over the region Sx n S,, (Jxy and (Jn are known; 

b) over the region Sx n S,, (]11 and Ux are known and hence fx is known; 

c) over the region Sx n S7 , (Jxy and u, are known and hence h is known; 

d) over the region Sx n s,, ux and u, are known and hence (5.10), (5.11), (5.12) and (5.13) 

provide a pair of integral equations to be solved for .h and/, in Sx n S,. Now fx is known 

in Sx and (Jxy is known in Sx. Then_h can be determined in Sx from (5.11). Similarly,/, can 

be determined ins, from (5.10), since (J" is known ins, and/, is known in Sy. Thusfx 
and / 1 are determined for all x. · 

It may be noted that a large number of physical problems follow from Case (ii) as par
ticular cases as will be seen in subsequent sections. 
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6. Traction and displacemet problems 

Problem l 

Consider the boundary value problem for the upper half-plane y > 0, where the 
stresses and displacements satisfy the boundary conditions 

(6.1) Ux(x, 0) = U(x), O'yy(x, 0) = 0. 

The second condition, when applied to (5.10) and (5.12), yields 

(6.2) fx(x) = 2U'(x), /y(x) = 0 

for all x. With these values of fx and /y the displacements and stresses can be computed · 
easily from (5.3), (5.4), (5.5), (5.6) and (5.7) in the upper half-plane. Further, we may 
derive from (6.2) the components of Burgers vector given by 

(6.3) hx(x) = 2U(x), by(x) = 0 

which, when. substituted in (5.1) and (5.2), give the displacement field. 
·If, in addition to the boundary conditions (6.1), the shear traction O'xy(x, 0) is also 

prescribed, i.e. axix, 0) = s(x) along the line y = 0, then from (5.18) and (6.2) we get 

00 

(6.4) . I' ( ) = _ 2(1-v) J s(x')dx' 
Jx X . ' ' 

77:ft x -x 
-oo 

/y(x) = 0. 

Problem 2 

Consider the boundary value problem for the upper half-plane y > 0, when the stresses 
and displacements satisfy the boundary conditions 

(6.5) uy(x,O) = V(x), O'xy(x,O) = 0. 

In this case we obtain from (5.11) and (5.13) 

(6.6) fx(x) = 0, /y(x) = 2V'(x), 

whence we may derive 

(6.7) hx(x) = 0, by(x) = 2V(x). 

Now it is possible, as before, to derive the stress and displacements easily. If, in addition 
to the boundary conditions (6.5), the normal traction is 'specified, i.e. O'yy(x, 0) = p(x) 
then from (5.19) and (6.6) we obtain the functionsfx and/y in the following forms: 

00 

(6.8) fx(x) = 0, J;(x) = _ . 2(1-v) J p(:;')dx' 
Y 7lft x -x 

-oo 

In deriving (6.3) and (6.7) we have omitted the constants of" integration as they will 
give rise to rigid body displacements. The above problems have been discussed by 
LARDNER [5] who has derived the dislocation densitjes (6.2) and (6.6) from physical consid
erations. 
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7. Contact problems 

In this Section we show how the formulations of Sect. S can be exploited in contact 
problems. We consider here firs_t the problem of indentation in a half-plane both in absence 
of friction and in presence of friction. Then the generalized plane problem of Hertz is 
considered. 

7.1. Indentation In absence of frktlon 

Consider the indentation of the half-plane y > 0 by a rigid punch which occupies 
the region lxl < a, y = 0. The normal component of the displacement is known in this 
region from the profile of the punch. Since the punch is smooth, a x1(x, . 0) is zero for lxl < a, 
whereas the regions lxl > a are traction-free. Then the appropriate boundary conditions 
are as follows: 

(7.1) 

u1(x, 0) = U(x), lxl <a, 

a11(x, 0) = 0, 

O'x1(X, 0) = 0, 

lxl >a, 

-oo<x<oo. 

This problem is a particular case of a mixed problem discussed in Sect. 5. Since O'x1 = 0 
for .all x, then (5.11) and (5.13) immediately yield 

(7.2) fx = 0, /, = 2du7 fdx 

for all x, whence by applying second boundary condition to (5.19), we obtain for 

a 

(7.3) U'(x) = _ 1-" Ja11(x',O)dx' 
np, x'-x ' 

-a 

which is an "air-foil" integral equation in a,(x, 0). The solution of this equation is well 
known, see TluCOMI [ 11] and is given by 

(7.4) p, fa ( a2 -x'2 
)'

2 
U'(x')dx' C 

a,(x, O) = n(l-v) a2 -x2 -x-=-,-_-x-+ n(a-2---x-=-2 )--=-11-:-:::-2 

-a 

for lxl < a, where C is a constant yet to be determined. Once C is known, a,,(x, 0) is known 
for lxl < a and/, is also known for all x. The stress and displacement_ field may now be 
computed easily. The expression for a,(x, 0), given by (7.4), agrees with those obtained 
by LARDNER [5] and GALIN [18]. The constant C may be determined from the applied 
pressure P given by 

a 

(7.5) P = - J a,(x,O)dx, 
-a 

whence we derive · C = -f. The case of a shear punch, i.e. when · the tangential displace
ment u" is prescribed over the region lxl < a, can be similarly dealt with. 
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7.2. Indentation in the presence of friction 

Now, in the above case, we assume that the punch is in a state of limiting equilibrium 
under the action of a tangential force equal to the product of the coefficient of friction 
(assumed constant) and the pressure applied to the point of the boundary in contact with 
the punch. As before, in the region lxl < a the normal displacement u, is known from 
the profile of punch, while the regions lxl > a are traction-free. The appropriate bound
ary conditions are 

(7.6) 

u,(x, 0) = U(x), 

<1xy(x, 0) = f<Tyy(X, 0), 

<1xy(X, 0) = <Tyy(X, 0) = 0, 

lxl <a, 

lxl <a, 
lxl >a, 

where t is the coefficient friction. The last condition, when applied.to (5.18) and (5.19), 
yield 

(7.7) 

(7.8) 

fx(x) = - 2(1-Y) 
np, 

a 

f <1x1(x', O)dx' 
x'-x ' 

-a 

a 

J; (x) = _ ~(1-1_ J <Tyy(~', O)fk' . 
y np, X -X 

-a 

Then it is obvious that the dislocation densities fx and [, are known for all x if we can de
termine either <1xy or <Tyy for lxl <a. Setting <Tyy(x, 0) = p(x) for lxl <a, we derive from 
(5.11), (5.13), (7.8) and the second boundary condition 

a 

(7.9) ( ) 2(1-Y) J p(x')dx' 
p X + nt(l-2Y) x' -X 

-a 
t(1 ~2Y) U'(x). 

Introducing a constant a such that 

(7.10) 

we rewrite (7.9) as 

(7.11) 

where 

t(1-2Y) 
tgna = ·-2(1-Y) , 

a 

p(x)-;, J p(~')dx' = f(x), 
X -X 

-a 

(7.12) -An = ctg na, f(x) = :...__.LctgnaU'(x). 
1-v 

Thus the main problem leads to the solution of the integral equation (7.11) which is 
of Carleman type. The solution of this equation is well known, see TRICOMI [11] and is 
given by 

(7.13) p(x) 

4 Arch. Mech. Stos. nr 6!78 

(a- x')e-T<x'>J(x')dx' 

x'-x 
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where 
a 

(7.14) C = l.ll J p(x)dx, 
-a 

a 

(7.15) 1 J Odx' T(x) = - , , tgO = .ln. 
n X -X 

-a 

Since tg8 = An = - ctgoi:IX = tg(n/2 + n«), 8 = n ("' + ~ ) and hence 

(7.16) ( 
a-x )«+! T(x) = --
a+x 

Now substituting from (7.12) and (7.16) into (7.13) and noting that 
a 

(7.17) P = - J p(x)dx, 
-a 

we obtain 

(7.18) 
p, . Pcosna. 

p(x) = --y=-- cosna.smna.U'(x)- ! 1 _ 

P n(a+x)2+11(a-x)2 « 

a 1 1 
p,cos2na. J (a-x')2+ 11 (a-x')2- 11 U'(x')dx' 

+ 1 1 +« « x-x' n(l-v)(a+x)2 (a-x)l- -a 

When a. = 0, i.e. when there is no friction this solution agrees with that given by (7.4) 
with C = -P. · 

7 .3. Generalized plane problem of Hertz 

Consider two elastic bodies Band B 1 (approximated as the two half-planes) which are 
in contact along the region lxl < a, y = 0 (Fig. 4). The external force exerted by B to B1 

FIG. 4. 

is known, whereas the region in contact is riot known in advance. The relative displace
ment of the boundaries is known from the given equations of the boundaries. It will be 
assumed that there is no friction and that the regions lxl > a are traction-free. The physical 
quantities and elastic constants for B1 will be provided with superscript 1 in order 
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to distinguish them from . those for B. Then the boundary conditions are given by the 
following: 

u,(x, 0)-u:(x, 0) = U(x), lxl <a, 

(7.19) ~11(x, 0) = u:y(x, 0) = 0, lxl >a, 

O'x1(x, 0) = u!,(x, 0) = 0, -oo < x < oo. 

The last condition implies that fx(x) = f~(x) = 0 for all x. Setting u,,(x, 0) = p(x) and 
noting that u,(x, 0) = -u;,(x, 0) for lxl <a, we derive from (5.19) · 

a 

(7.20) /, (x) = _ 2(1-v) J p(x')dx', 
' np x' -x 

-a 

a 

(7.21) fl(x) = 2(1-vt) J p(x')dx' . 
1 np,1 x' -x 

-a 

From (7.20) and (7.21) we obtain 
a 

(7.22) /, (x)-/t(x) = - 2m J p(x')dx' ' 
' 

1 n x' -x 
-a 

where · 
1-v 1-v1 

(7.23) m= --+-1-. 
I' I' 

From (5.13) and the first boundary condition it is to derive 

(7.24) f,(x)-fi(x) = 2U1(x), 

whence we obtain the integral equation 
a 

(7.25) _!_ J p(x')dx' = __ I U'(x), 
n x'-x m 

-a 

the solution of which is given by 

1 fa ( a2-x'2 )
112 

U'(x')dx' B 
(7.26) p(x) = mn a2-x2 x'-x + n(a2~x2)tf2, 

-a 

where B is a constant. The constant B may be determined frQm the external force P given by 
a 

P = jp(x)dx, 
-a 

whence we get B = P. Thus the unknown functions fx and/, may be determined from 
(7.20) and (7.21) for all x. 

Now (7.26) may be written as 

Ax+B+c yQ(x) fa U'(x')dx' 
(7.27) p(x) = + · -----=== 

n y' Q(x) mn -a (x'- x) y Q(x') ' 

where 

(7.28) 

•• 
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(7.29) 

(7.30) 

A= 
. -a 

a 

U'(x')dx' 

Jl Q(x') 

C = __ 1 J _x'U~x'. 
m -a JIQ(x') 

For the bounded pressure p(x) at x = ±a, we must have 

(7.31) A= 0, B+C = 0. 

The second condition in (7.31) yields 
a 

(7.32) f x'U'(x')dx' 
(a2- x'2)lf2 = mP' 

-a 

which determines the unknown quantity a. 

8. Crack problems 

M. MAITI AND S. S. PALIT 

The present method can be exploited effectively to solve crack problems and we 
consider some .of them here as illustrations. 

8.1. GrJffith crack opened by a thin symmetric wedge 

Consider the entire plane which contains a crack occupying the region lxl < a, y = 0. 
It is assumed that the crack is opened by a thin symmetric wedge which makes contact 
with the crack surface in the region lxl ::::;; s < a (Fig. 5). In general s is unknown; it may 

-a 

FIG. 5. 

be determined from the shape of the wedge and tlie known pressure distribution p(x) in 
theregion s < lxl < a.Iftheequationoftheuppersurfaceofthewedgeis given by y =f(x), 
then the stress distribution in the vicinity of the crack may be determined by solving the 
following mixed problem of the upper half-plane: 

(8.1) 

uy(x, 0) = p(x), 

u,(x, 0) = 0, 

ayy{x, 0) = - p(x), 

O'xy(x, 0) = 0, 

lxl < s, 

lxl >a, 

s <. lxl <a, 
-00 <.X< o.J. 
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Since O'xy(x, 0) = 0, then it follows from (5.11) thatfx(x) = 0 for all x. Also it follows 
from (5.13) that _{y(x) = 2 duy/dx, whence we obtain from (5.10) that 

a 

(8.2) p, J duy(x', 0) dx' 
O'yy(x, 0) = ( ) d n 1-v x' x'-x 

-a 

= -~ [fs duy(x', 0) x'dx' +fa duy(x', 0) 
n(1-v) dx' x'2-x2 dx' 

a 

which follows from symmetry. Setting v(x) = duyjdx for J < x < a and taking account 
of the first boundary condition we rewrite (8.2) as 

(8.3) 

s a 

2p, [J x'f' (x')dx' J x'v(x')dx' ] 
O'yy(X' 0) = (1 ) 12 2 + 12 2 

7l -V X -X X -X 
0 s 

whence, by applying the third boundary condition, we derive the integral equation 
a 

(8.4) _!__ J 2x'v(x')dx' _ _ ·x 
n x'2 -x2 - g( ), 

where 
s 

(8.5) g(x) = ~p(x)+-1 1 J 2x'f' (x') dx' 
1-t n o x'2.....;x2 

If we determine v(x), then duy/dx is known for J < x < a and O'yy(x, 0) is completely de
termined. From (5.9) we obtain 

00 

(8.6) _ J duy(x', 0) d , 
Uy(X, 0) = dx' X 

X 

whence, by applying first and second boundary conditions, we get 
s a 

(8.7) -"'( ) = J duy(x', 0) d , J duy(x', 0) dx'. 
'' x dx' x + dx' 

X 

Now, in the limit as x ..-+ J_, we derive from (8.7) 
a 

(8.8) -f(J_) = J v(x')dx'. 

The integral equation (8.4) is of Foppl type and the solution may be obtained in the 
following manner. Define a transform T of a function cp such that 

(8.9) 

Then setting 

(8.10) 

a 

T[cp] = : J 2x'cp(x')dx' 
.,., x'2-x2 
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in the convolution theorem [11] 

(8.11) 

we obtain the solution of the integral equation (8.4) in two alternative forms: 

(8.12) 

(8.13) 
- 2_(a2-xz)1f2Ja( x'2-..s2 )1/2 x'g(x')dx' Oz 

v(x)- n x2-J2 .. 0 z_x'2 x'2-x2 + {(x2-..s2)(a2-x2)}1f2' 

where a1 and a2 are constants to be determined from (8.8). These constants are given by 

(8.14) 
x'g(x')dxdx' ] 

x'2-x2 ' 

(8.15) 
x'g(x')dxdx' ] 

x'2-x2 ' 

where F1 is the complete integral ~f first kind F [ ~ , a- 1(a2
- J

2
)

1
'
2l 

Substituting from (8.12) into (8.3) we obtain 

(8.16) 2t-t 
a,,(x, 0) = -n(1-v) [f .. x'f'(x')dx' __ (x2-..s2 )

1
'
2 Ja( a2-x'2 ·)

112 
x'g(x)dx' 

x'2-x2 x2_ 0 2 x'2-..s2 x'z-xz 
0 .. 

- 2 { (x2 .:_ 0 2';;2 _ J2)}'f2 ] 

for lxl > a. Similarly, substituting from (8.13) into (8.3) we obtain 

(8.17) 2t-t 
a>'>'(x, 0) = n(1-v) [f .. x'f'(x')dx' + (a2-x2 )

112 fa ( x'2-J2 )
112 

x'g(x')dx' 
x'2-x2 J2-x2 02_~,2 x'2-x2 

0 .. 

na2 ] 
+ 2{(a2-x2)(..s2-xz)p12 

for lxl < ..s. Substituting from (8.5) into (8.17) we obtain after a little manipulation 
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for lxl < s . . If the wedge is smooth at x = ±s, then u11(s-, 0) must be finite, whence 
we derive 

• a 

(8.19) f x'f'(x')dx' 1-, J x'p(x')dx' = na2 
{ (a2- x'2)(s2- x'2) P''- - -1'- {(a'-- x'2)(x''-- s2) }112 .....,2....,..(a-=2:--_...;_s--=,_-:-) , 

0 J 

which determines s. If the wedge is not smooth, then s must be prescribed. 
This problem has been solved recently by TwEED [19] by using triple integral equation 

techniques. 

8.2. The problem of crack extension In an Infinite body 

Consider an infinite body containing a crack which occupies the region lxl < a, y = 0. 
If the body is subjected to an applied stress, then the crack extends i~ general. The crack 
extension condition is determined from the energy of the system. For an innnite body con
taining an internal crack, which is under a non-uniform internal pressure, it is necessary 
to know the displacement of crack surface for the determination of energy of the system. 
We consider this problem when the crack surface is subject to a non-uniform pressure p(x) 
and there is no shearing traction. In this case the boundary conditions are given by 

(8.20) 

uy(x, 0) = 0, 

a,,(x, 0) = p(x), 

lxl >a, 

lxl <a, 

O"xy(x, 0) = 0, - 00 <X< 00, 

where p(x) is an even function of x. 
Since O"xy(x, 0) = 0, then, as before,.fx(x) = 0 for all x. Also it follow from (5.13) that 

f,(x) = 2U'x, if we set u,(x, 0) = U(x). The first and second boundary conditions, when 
applied to (5.10), yield the "air-foil" integral equation 

a 

(8.21) _I'__ = p(x), f U'(x')dx' 
n(l-,) x' -=-x 

-a 

the solution of which is given by 
. a 1 2 

, A 1-, J (a2 -x'2
) 

1 
p(x')dx' 

U (x) = n(a2- x2)1f2 - nl' a2- x2 x'- x , 
-a 

(8.22) 

where A is an arbitrary constant. If A is determined, then f,(x) is determined for all x. 
For (8.22) we get 

a 

(8.23) A= J U'(x)dx = 0, 
-a 

because of symmetry of the crack surface. The physical implication is that the nei resultant 
dislocation content of crack is zero, see BILBY and EsHELBY [3]. It may also be shown that . 
the presence of the constant leads to an infinite total torque in the half-plane y > 0 and 
therefore it must be zero. 

In this case the stress component ayy{x, 0) is given by 
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(8.24) 

for lxl > a. At a point very near to crack tip we observe that 

(8.25) ( )

1/2 

<Tn(x, 0) "' -2 : 

whence we obtain the stress intensity factor kc given by 

(8.26) 

If we substitute (8.26) in the crack extension condition of IRWIN [20], we obtain 

(8.27) 

where y is the surface energy and E is the Young's modulus. The condition (8.27) is due 
to BARENBLATT [21] and is derived also by SMITH [22]. 

It may happen that the non-uniform pressure distribution arises as a consequence of 
normal displacement being specified over a part of the crack surface, the remaining part 
being subject to a prescribed uniform surface pressure. The relevant boundary conditions 
are given by 

(8.28) 

uy(x, 0) = t0 , 

u1(x, 0) = 0, 

lxl < h, 

lxl >a, 

a,(x, 0) = -p0 , h < lxl < a, 

O'.x1(X, 0) = 0, -00 <X< 00. 

These boundary conditions are the same those · given by (8.1) and hence this situa
tion can be dealt with similarly. 

The problem of an external crack (23], wlien the crack occupies the region lxl > a, 
y = 0 and is opened by the application of pressure to crack surface, can be solved by this 
approach. The crack problem under unsymmetrical loadings, discussed by LARDNER [5], 
can also be formulated with the help of (5.24), · (5.25) and the corresponding boundary 
displacements arising out of the lower half-plane. Both of these problems lead to the solu
tions of "air-foil" integral equations and need no special treatment. 
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