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Field theoretical approach to fluxes in crystals(*)
J. A. KOBUSSEN (ZURICH)

THE DYNAMICS of a crystal lattice with an internal two-particle interaction is described as a limit-
ing case of a continuous dynamical system with a nonlocal internal interaction. For this kind
of dynamics a variational principle is formulated in terms of a Lagrangian density in substantial
coordinates. These substantial coordinates are similar to the usual Lagrangian coordinates in
hydrodynamics. As in hydrodynamics, a conversion from substantial into local or Eulerian
coordinates can be made. In fact, this conversion is an inversion of the function that descri-
bes the position of the material points as a function of the substantial coordinates. Within
the Lagrangian, the conversion from substantial into local coordinates is carried out to
obtain a Lagrangian in terms of local coordinates. With both Lagrangians, conservation laws
for the linear momentum and for the energy are derived. This is done with a version of
Noether’s theorem which differs slightly from the usual one. In this way explicit expressions
are found for the currents of linear momentum and energy in crystals through points fixed in
the material as well as through points fixed in the laboratory. Additionally, in both coordinate
systems theedbalauoe equation for a quantity which may be identified as the quasi-momentum
is constructed.-

Opisano dynamike siatki krystalicznej z dwuczasteczkowym oddzialywaniem wewngtrznym,
jako graniczny przypadek dynamicznego ukladu ciaglego z nielokalnym oddzialywaniem wew-
netrznym. Sformulowano zasade wariacyjng, wyrazona przez gesto$¢ Lagrangianu we wspbl-
rzgdnych materialnych. Wspoirzedne te s3 podobne do zwykiych wspoirzednych Lagrange’a
w hydrodynamice. Tak jak i w hydrodynamice mozna tu dokona¢ przejécia od wspoirzednych
materialnych do wspdirzednych lokalnych (lub Eulera). Przejcie to jest odwréceniem funkcji
opisujacej poloZenie punktéw materialnych. Aby wyrazi¢ Lagrangian przez lokalne wspoirzedne,
dokonano przejécia od wspéirzednych materialnych do wspéirzednych lokalnych. Wykorzystu-
jacobalasrans:anywypromdmnoprawand}owamapedulenemx Postuzono si¢ w tym
celu nieco. zmodyfikowanymi twierdzeniami Noethera. Znaleziono w ten sposob strumienie
pedu i energii przechodzace przez punkty krysztalu ustalone w materiale oraz w laboratorium.
Ponadto skonstruowano w obu ukladach wspéirzednych réwnania réwnowagi dla pewnej
wielkodci, ktora jest okre§lona jako quasi-ped.

JlaHamuKa KPHCTAJUTHYECKOH PELISTKH ¢ BHYTPEHHUMH GHHADHBIMH B3auMOJCHCTBHAMM OIH-
CBIBAETCA B KaYeCTHE NMpeNeNbHOro CIy4Yasds KOHTHHYANbHON AHHAMHYECHOH CHCTEMBI C HENO-
KIbHLIMM BHYTPEHHMMH B3aHMOJeHCTBHAMM. BapHaumoHHLIT NpHHILMD JIA TaKOro poaa JH-
HamukH opMyHpyeTcs Yepes IoTHOCTE GyHKIun Jlarpamxa B MaTEPHANEHBIX KOODAMHATAX.
IlpoBomurcs mpeobpasopanre BhIpyKeHna WA ¢yrrapm JlarpamKa ¢ HeTBi0 BHIPOKEHHA e
gepes JIOKIBHLIE KoopauHaThl. O6a mpeacrapienns dymxipn Jlarpaia HCIOMBE3YIOTCA A
BBIBOJIa 33KOHOB COXPAHEHHS HMMITYJIECA M suepnm. HcmionsayercA BHIOH3MEHHAA IO CPaB-
HeHrio ¢ oObIuroi Teopema Herep. OTum myrem 6bUmh HaliieHBI ABHbIE BHIPQKEHHA A 0O~
TOKOB HMITYJICa H SHEPTHH B KDHCTA/IAX KaK A (PHKCHDOBAHHON MaTepHANLHON TOUKH,
TaK M A (PUKCHPOBAHHON TOMKHM B NaGOpAaTOpHOM cucTeme oruera. [oGapouno B oBemx
KOODJMHATHBIX CHCTEMaX NONMy4eHO ypaBHeHHe Oananca A/iA BEJMYHMHBI, KOTOPYIO MOMHO
OTOM{/IECTBOBATEL C KASH-HMITYJIBCOM.

1. Introduction

IN THE LITERATURE on solid state physics, a lot of rather unclear and apparently contra-
dictory remarks have been made about the densities and fluxes of energy, linear momentum

(*) Paper presented at the EUROMECH 93 Colloquium on Nonlocal Theory of Materials, Poland,
August 28th—September 2nd, 1977.
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and quasi-momentum in crystals. Nevertheless, the knowledge of the explicit expressions
for the densities and fluxes of energy and linear momentum are of great importance for
the calculation of transport coefficients such as the coefficients for heat conduction and
viscosity.

In order to try to keep the analogy with photons as close as possible in solid state physics
one usually works already from the beginning with phonon variables. This method does
not elucidate much because besides the many analogies between the theory of crystal
vibrations on the one hand and the electro-magnetic theory on the other hand, there are
also essential differences:

(i) The theory of the electromagnetic field is a covariant theory ; consequently, the energy
flux and linear momentum density are proportional to each other.

(ii) In most descriptions of crystal vibrations, waves with an infinite wavelength (k = 0)
may appear. For the electromagnetic field such waves do not have any meaning.

In the field theory, the current of some conserved quantity as energy and linear mo-
mentum is defined as the flux term of the local conservation law for this conserved quantity.

For example, if the equation of motion yields(")

(1.1) d/dtE+dldxS = 0,

and E is the energy density, then S is the energy flux or energy current. If the equation of
motion is derivable from a variational principle (Hamilton’s principle or action principle),
relations of the form (1.1) can be derived systematically with Noether’s theorem.

2. Substantial coordinates

Let us consider a continuous dynamical system. (For simplicity, we assume here the
system to be one-dimensional). Let the state of the system be defined by the field u(m) and
the field velocity &(m) as a function of the coordinate m. The coordinate m itself will be
interpreted as a substantial coordinate, indicating material points of the system. For
example, one can take the position at t = 0 or at equilibrium as the corresponding sub-
stantial coordinate. The coordinate m labels material points of the medium analogous
to particle indices in usual lattice dynamics and Lagrangian coordinates in hydrodynamics.

The system dynamics is described by a function u(m, t). This function gives the time
evolution of the field u(m). The field velocity then is & = (d/dt u),,. We assume that the
equations of motion can be derived from a Lagrange functional. This functional must
be taken such that the equations of motion describe the crystal lattice dynamics as a limiting
case. Therefore, we assume the dynamical system to be inhomogeneous and to have a non-
local internal interaction. Then, a reasonable “ansatz” for a Lagrangian is

@.1) 2 = [ Lomyam,
(2.) Lm) =~ oy m)~ [ duV(ztom, ), m ),
2.3) ) z(m, p) = p+u(m+ p)—u(m).

(1) The weak identity = is used to indicate that the equality only holds for solutions u of the equation
of motion.



FIELD THEORETICAL APPROACH TO FLUXES IN CRYSTALS 37

The two terms in Eq. (2.2) are the kinetic and the potential energy density, respectively.
Both densities are densities in m-space. The function V{(z, m, u) describes the interaction
between the material points m and (m+ u) of distance z(m, ). The function gq(m) is the
substantial mass density.

From Eq. (2.2) one obtains in the usual way the equation of motion

(2.4) 0o(m)ii(m) = f dulV' (z(m, ), m, w)—V'(2(m—p, p), m—pu, p),
where
2.5)  V'(z,m, p) = dldzV(z, m, u).

With a suitable choice for go(m) and for V(z, m, u), Eq. (2.4) yields the equation of motion
for an arbitrary crystal lattice with an internal two-particle interaction.

3. Local conservation laws

Usually, one applies Noether’s theorem to systems with a local internal interaction
only [1, 2]. The use of the formula

0
@.1) F(m)—F(m—p) = djdm [ F(m+n)dn
2 ;
allows us to extend the method to systems with a nonlocal internal interaction. Thus

Noether’s theorem can be applied to Lagrangians of the form (2.2).
From Egs. (3.1) and (2.1) one deduces directly the “strong” identity

(32 L= —{Qo(m)ii(m)— f aulV'(z(m, p), m, p)—V'(z(m—p, p), m—pu, #]} Ou
+d]dt(eo(m)it(m)du) — djdm [ du [ dnV’ (2(m+n, g), m+n, wou(m+p-+n).
—H
Using the equation of motion (2.4), Eq. (3.2) becomes the “weak” identity

0
(3.3) oL = d/dr(go(m)ﬁ(m)&u)+d/dmfdp qulf’(z(m+n,p), m+n, p)du(m+p+n).

—H
On the other hand, a strong identity for 8L can be derived directly with Eq. (2.1) and an
explicit expression for du. If one takes for instance éu = e, then.
(3.9 6L =10
and one has the local conservation law

0
(3.5) djdt (go(myit) — djdm [ du [ dnV" (z(m+n, §), m+7, ) = 0.

More generally one can state the following: For any variation du that leaves the Lagrangian
density L invariant up to a total derivative (Noetherian variation), a local conser-
vation law of the form (1.1) can be derived. One can show [1] that this formulation is
equivalent to Noether’s theorem.
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Obviously, the quantity go(m)% is the linear momentum density in m-space. Then

0
- f du fa‘qV’(z(m+n, #), m+mn, u) is the substantial linear momentum flux, i.e. the
—u

linear momentum current through a point m fixed in the material (material point),
and Eq. (3.5) is the local conservation law for the linear momentum. Analogously, the
variation 8¢ = ¢ leaves the action [ Zdt invariant, or the variation ou = eit leaves L
invariant up to a term ed/dtL. This yields the local conservation law

(3.6) djdt [% 0o(m)is® + f de(z.m,p)]

0
—dfdf"fdﬂ fng’(Z(mﬂ,ﬂ). m+7, py(m+p+n) =0

which is clearly the local conservation law for the energy. The quantity

0
— Jdu _{JYJV'(Z(M'HJ»F)» m-+, wyi(m+p+n)

is the substantial energy flux.

4, A local balance equation

For homogeneous media, i.e.

.1 V(z,m, p) = "z, #);  eo(m) =g,
there is another Noetherian variation, namely dm = ¢ or equivalently du = edu/dm = eu'.
The corresponding local conservation law is

4.2 d!df[—éfm'Hd/dm[% ou*— f duV(z, p)
0

+ [ [P emen, ), #)u’(m+#+n)] 0.
Without further explanation in the literature, equations equivalent to Eq. (4.2) are some-
times called the conservation law for momentum [3]. However, this terming is misleading
because of the following reason: The only argument for the terming lies in the analogy
with the electro-magnetic (e.m.) theory, but there are also many essential differences. For
example, the e.m. theory is a Lorentz-invariant theory and the theory cf condensed matter
is usually treated non-relativistically. Therefore, in the e.m. theory (linear) momentum
pensity and energy flux are proportional, whereas in condensed matter these quantities
are physically not related. We obtain a more precise terming by calling Eq. (4.2) the local
conservation law for the “quasi-momentum”. Then, with suitable phonon variables, the
“total quasi-momentum” — f pia/dm can be written as ), kN, N; being the classical anal-
ogue of the number operator of phonons with the wave number k. In the e.m. theory,
the total linear momentum as well as the energy flux can be written in this form. In the
general inhomogeneous case, neither the variation du = eu’ nor dm = ¢ are Noetherian
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variations. Then, the same methods which have lead to Eq. (4.2) lead to the local balance
equation

(4.3)  d/dt[—go(m)uw']+d[dm [%eo(mr't’— f duV(z(m, p), m, p)
0
+fa'# fng’(Z(mM,#),m+mﬂ)u'(M+#+n)]

& 5 mic*~ [ duo(alm, ), m, ),
where
44) Va2, m, ) = djdm¥(z, m, ).

In analogy to the relation (4.2), Eq. (4.3) is interpreted as the local balance equation for
the “quasi-momentum”.

For the application to crystal lattices, we note that for lattices the derivatives u’are
not defined. Thus, strictly speaking, Eq. (4.3) cannot be applied to crystal lattices. Never-
theless, in the literature on crystals the quasi-momentum k of a phonon is a familiar con-
cept. Therefore, it is worthwile to study whether it is possible to define ' in a discrete
lattice such that Eq.(4.3) makes sense.

With periodic boundary conditions a usual decomposition of u in Bloch functions is
(again we assume a mono-atomic lattice)

u(la) = ), w(kyexpikia,

ke@ "
where

B = {klk = 2nn|/L,ne Z, —Nj2 < n < N/2},
and N is the number of lattice points, a the interatomic distance, L = Na and Z is the set
of all integers.
The restriction of k to the first Brioullin zone @ is arbitrary. We can drop this restriction,

but then w(k) is not defined uniquely anymore. We obtain a continuum representation
u(m) of u(la) for example by taking

u(la) — u(m) = ) w(k)expikm.
kel

For such a‘continuum representation the total quasi-momentum [ ia’'dm reads YkN;
and the total production [ Qdm = 0. Thus, globally the quasi-momentum is conserved,
but its definition is not unique.

If the dynamics of the crystal with its continuum representation is developed without
the restriction k € 8, w(k) will, in general, not vanish for k ¢ &#.

A restriction of k € &,

w(k) > w(k) = 0 (k ¢ B)
wk) = D wk+K), (ked),
Kext
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X being the reciprocal lattice of the crystal, dces not change the values of u at the lattice
points, but it does for the derivatives 4’ and, consequently, for the total quasi-momentum.
The consequence is that quasi-momentum changes in the same way as by, what is called,
Umklapp processes.

5. Local coordinates

Only a minority of papers in the field of solid state physics concerning fluxes in crystals
deal with fluxes corresponding to the use of substantial coordinates [4]. In most papers
fluxes corresponding to the use of local coordinates are discussed [5-8]. In the present
formalism conversion of the results for a substantial coordinate frame into a local coordi-
nate frame can be performed. Let us discuss this conversion.

The position of a material point is given by

(5.1) x = g(m) = m+u(m).

Now we introduce the inverse function §(x) and put

(5.2). m = g(x) = x+v(x),

where

(5.3 x =g(G@(x), m=q(g(m)).

Then one sees easily that

(5.9 v(X)+u(x+v(x)) =0, u(m)+v(m+u(m)) = 0.

Analogously to the discussion for fluid motion in [9], the Lagrangians (2.1) an¢ (2.2)
can be converted with Eq. (5.4) into a Lagrangian which describes the system in terms
of v(x):

(5.5) & = [Lax,

(5.6) L= % o(x)i*(x) — J(x) f dzJ(x+2)V(z, x+v, z+v(x+2)—v),
where

(5.7 a(x) = — %xgx) ;

J(x) is the Jacobian of the transformation m — x

(5.8) J(x) = det(dm[dx) = 149",

and

(5.9 o(x) = J(x)oo(x+2(x))

is the usual (hydrodynamical) local mass density as a function of the local (Euerian)
coordinate x. In Egs. (5.5) and (5.6) only v(x) can be varied independently. For all other
variations, as for instance g(x) and J(x), the formulae (5.4) have to be used.

Now we are prepared for the discussion of the conservation laws and the balance
equation in local coordinates.
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The Noetherian variation du = ¢ for the system (2.1) is equivalent to the variation
dv = —e&(1+v') which is a Ncetherian variation for Eq. (5.6). The corresponding local
conservation law is

0
(5.10)  o/orlo(xyil+djdx [t~ [ du [ anV'(z(x+o+m), x+v+1, 4)] = 0,

where 0/0t means differentiation with respect to ¢ at constant x. Clearly, o(x)u is the local
linear momentum density. The flux that appears in Eq. (5.10) is the local linear momentum
flux, i.e. the current of the linear momentum trough a point fixed in the laboratory frame.
Analogously, we find with 8t = & or, equivalently, with éu = eu or dv = &v, the local
conservation law for the energy in the local coordinate frame:

(5.11) /ot [é— o(x)i? +J’(x)f duV(z(x+v, u), x+v, lu)]

+d[dx [% go(X)u3 + J(x)it r duV(z(x+v, 1), x+v, @)

-fd# fdnft(x+v+n+#)V’(2(X+v+n,,u),x+w+n.p)] =.0.
-5

The local balance equation for the quasi-momentum, in the local coordinate frame is
obtained by means of the variation ém = ¢ or, equivalently, du = &’ or dv = ev':

(5.12) 6/6:[-9(x)ﬁu’]+d,!dx[ ! -— o(x)i? u+ o(x)u?— fd,uV(z(x+v 1), X+v, @)

+ f du f dqu'(x:}-v+ n+wV (z(x+v+n, p), x+v+1, ,u)]
-8

= 96(x+ﬂ)l(;c)ﬁ3-—.f(x)fde,,.(z(x+t:,,u),x+ﬂ,,u).

The formulae given above may be generalized easily to three dimensions [10] and applied
to non-Bravais lattices [11]. Comparing these results with the literature [4-8], we obtain
the connection between several different more intuitive approaches to the calculation of
fluxes in crystals.
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