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Pseudocontinuum approach to the theory of interactions between
impurity defects and crystal lattice(*)

J. KAPELEWSKI and D. ROGULA (WARSZAWA)

THE PAPER presents a method allowing for an analytical description of interactions between
the impurity electrons and crystal lattice. The method is based on the quasi-continuum approach
to lattice dynamics and makes it possible to take into account both the finite range of interaction
forces and the discreteness of the crystal structure. As a result, a general description of the pheno-
menon is obtained. The results derived by the two methods known so far {effective mass approxi-
ﬁ“rém and the quasi-molecule approach) constitute two limiting cases of the method presented

Przedstawiono metod¢ pozwalajaca na opis analityczny oddzialywar miedzy elektronami do-
mieszek a siecia krystaliczng. Metoda opa:tajestnapodcjéuuqm ~kontynualnym do dynamiki
sieci i umozliwia uwzglednienie zaréwno skoficzonego zasiegu sit oddzialywania jak i dyskret-
noéci struktury krysztalu. Wyniki otrzymywane za pomocg dwéch znanych dotad metod (przy-
blizenie mas efektywnych i podejicie quasi-molekularne) stanowia dwa przypadki graniczne
uzyskanego tutaj rozwiazania.

IlpencraBnier MeToN MO3BO/IAIONINI AHATHTHUECKH OIMCATL B3AHMONEHCTBHA MEHULY SJIEKTPO-
HaMy IOPHMEII M KpHCTAUmMYecKod pemerkoii. Merox ocHoBa HA KBA3IH-KOHTHHYZITEHOM
TOAXOME K JWHAMHKE PEIleTKH H MMO3BOJAET YUECTh KAK KOHEUHLIH PaJHyC CHIOBOIO B3AHMO-
JOelicTBHA, TAK M MHCKPETHOCTs KPHCTAUIHUECKOM CTPYKTYphl. PesynbraThl nonydeHHEIE
C MOMOINGBI0 ABYX PaHee H3BECTHLIX MeTooB (mprOmbxenHe 3¢h¢deKTHBHBIX MacC H KBa3H-MO-
JICKYJIAPHELX IOAXO0R) ABIAIOTCA ABYMA NPEAETBHBIME CITyYAAMH ITPEJIATacMOro pellleHHd.

1. Introduction

Two different ways to calculate the interaction of impurity electrons with crystal are
known at present. The first one is the effective mass approximation which corresponds to
long range interaction and takes place, first of all, in the case of impurities in semiconduc-
tors. The other one, the quasi-molecule approach, is applied in the case of localized inter-
action and is made use of for some materials utilized in quantum electronics.

In this paper we present a method allowing for an analytical description of these inter-
actions, which is based on the quasi-continuum approach to lattice dynamics. It allows
us to take into account both the finite range of interaction forces and the discreteness of
the crystal from the very beginning. As a result, we obtain a more general description
that involves the above mentioned cases as limiting approximations.

The case of substitutional impurity in the bulk of a crystal is considered in detail. Sect. 2
comprises the pseudocontinuum analysis of interaction between the electron of the impurity
and lattice deformation, and in Sect. 3 we consider the stresses and the statical deforma-
tions due to the impurity defect.

(*) Paper presented at the EUROMECH 93 Colloquium on Nonlocal Theory of Materials, Poland,
August 28th—September 2nd, 1977.
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2. Perturbation of elastic energy of lattice due to substitutional impurity

The interaction between impurity electrons and lattice deformation can be described
(in the linear approximation) by the expression [1]

@1 V@ = ) ViE-RE)Iuw),

where Vis the potential energy of interaction between the valence electron of the impurity
and the atom (or ion) belonging to the sublattice s (site x,) of the unit cell /, #—displace-
ment vector, the dash denotes exclusion of the impurity site itself in the above summation,
o—Cartesian components.

For the sake of simplicity, we shall restrict our discussion to the case of crystals whose
space groups of symmetry contain nejther the screw axes nor the glide planes. The last
assumption enables us to identify the symmetry group of the impurity centre and the
point group of the crystal. We also assume that the extremum point of the nearest energy
band (with respect to the localized level of impurity to be considered) is the point I" of the
Brillouin zone.

The above specification, in view of the well-known fact that the symmetry of a shallow
impurity centre (that means of a large radius) is the same as the symmetry of a band at
the extremum point allows for a generalized description with group—theoretical considera-
tion of the both limiting cases.

The expression [1], in terms of symmetrical displacement (with respect to the point
groups), can be written as

@2) V@ = 3 Vi@ uz0)»

where I and 7 denote the irreducible representation and its row, respectively. The electron
state of impurity can be expressed in the form of superposition of the generalized (symmetri-
zed) Wannier functions (instead of a Bloch function) since they are specially fitted to this
aim. Given the above assumptions, the subset of these functions, connected with a single
unite cell yields a set of basic functions of irreducible representations of the point group.

According to the above remarks, the wave function of impurity belonging to the rep-
resentation (I, ) (in a general case, its projection into subspace (I, ¥)) may be expressed
in the form

23) > = Y BDaGE-Kr),
]

as far as the B, () is a totally symmetrical function of 7 (see below).
Hence we get for the matrix elements of the operator (2.1)

@4 YVIyy =8V, = DIVl ig(D,

where

@5) YWy = D BY@E)B,®) [ G- RV @ a,G— R &

= DB () B,@ V55 73 Dy

n,nt
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The eigenvalues of the matrix (2.4) determine the shift and the possible splitting of the
impurity level caused by interaction between its electrons and lattice deformation.

Here we assume that the coefficients B,,(T) are known. They are determined from the
solution of non-perturbed impurity electron problem (the perturbation is given by Eq.
(2.1)). In the pseudopotential model these coefficients have the meaning’ of the eigen-
functions of the impurity electron energy problem (as the pseudowave functions). As
we see from Eq. (2.3) B,(/) plays the role of a “slowly varying” envelope of the cell func-
tions a,(f—ﬁ,—).

Neglecting the dependence of the “periodical” factor #}(7) of the Bloch function on
the wave vector k (this corresponds to the commonly used Kohn-Luttinger approximation,
in our case with respect to poiut I"), we have from the definition

@O aE-Re) ~ i@ J R = OG- R,

Gn

where B denotes the first Brillouin zone and dg(7) is the pseudocontinuum 4 function.

For slowly varying V’ff;(i) as a function of 7, we get from othogonality of the Wannier
functions

Q.7 Vig@, 73 1) = Vig@, #';Dé55 = Vig@, Dé5z .
From the general relation
2.8 W5 *@uh @) = 0,0, + ), CK, '™,

K0

where X is a vector of reciprocal lattice (taking into account Eq. (2.6)), it follows that if
we neglect the oscillations of the Wannier functions, the non-diagonal matrix elements
of arbitrary potential will vanish.

The approximation which corresponds to pseudocontinuum approach is equivalent to
neglecting. the second term in Eq. (2.8). It is reasonable to apply that conclusion to the
matrix elements (2.7) which combine the different cells 77, provided the potential is
varying slowly enough.

Finally, we obtain

@9)  Wisli Dy = WigG—Dlyy = 20)%0,.,, [ 85— 1) V@) 07

= 2n)8,.,Vis(-1), (R; =n).
This result gives an explicit form of the dependence on 7#—1 if the potential of inter-
action between the impurity electrons and lattice ions (or atoms) is known.
When / = n the relation (2.9) is invalid; the matrix elements are then determined by
the shape of the wave function within the unit cell according to the definition
2.10) V5. DYy = Wiy = [abG-DVEs@a,G-Ddv

and

@.11) V50, Oy = Wiy = [ @@V e ®a,@dr.
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The matrix elements (2.10)-(2.11) do not vanish only under the condition
(2.12) Ie[ry,,

where ([I?],) denotes a symmetrical part of the direct product of the representations I".
As it follows from group theory considerations in the case of non-degenerate states
the contribution given by Egs. (2.10)-(2.11) is determined by the totally symmetrical (with
respect to the point group) distortion only.
Having applied the Wigner-Eckart formula to the right parts of the relations (2.9~
(2.11) we finally get, after some calculations,

2.13) V5@, Dlyy = CT,IWF &5, 61+ Wi b+ (27)°0,, Vi (= 1),

where C denotes the matrix of the Clebsh-Gordan ccefficients and Wy —can be thought
to the phenomenological parameters.

It is essential, however, to emphasize that the above consideraticns are concerned
with the case of sufficiently slowly varying potential.

Generally, its explicit analytic form is unknown and, for instance in the investigations
of the localized impurity states, the model potential is often used. The last one is in.fact
a local approximation (in the sense of a multiplying operator) of the nonlocal (as the
integral operator) pseudopotential which is determined by substracting frocm the real
potential its projection into a subspace of the core (i.e. inner) states. Owing to this the
shape of that one is usually smeoth (in general much smoother than the real potential).
As it is known, the above fact is connected with the almost general applicability of the
free electron approximation in investigations of the band structure.

This circumstance is the main reason for which we can enlarge the range of validity
of Eq. (2.13), provided ¥(7) denotes a concrete model potential.

Basing on Eq. (2.13), we can write the matrix (2.5) in the form

@14) 8V, = D {CHIBOBOWF um )+ D B0 B,OWiurs ()
v T

+(27)%8,., D) |B,@IPV 55 —Dur@)}.

Lasl
Introducing the notations
BY(DB,()W5CE — (22)*V5:(0)8, 1B, (D1 = wilvrs(Dlyry
(2.15) B}.(0)B,(0)C, = [ofs)yy »

(27')3 ]By(f)lzay'y = Ib(i)]y’y .
We shall write Eq. (2.14) in the (convenient for further considerations) operator form:

(2.16) o = DoV,
T

where

@11 00 = Do wiun®d.o+ 0 wrurs O+ Y bV isG-Dus®}
s n
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The diagonalization of the last matrix gives the interaction energy between impurity and
deformation of the /-th cell.

In the particular case of non-degenerate impurity level, it immediately gives the ex-
pression for the interaction energy

@18)  AB() = Yo% weiuw, Do+ o, Owe,u, O+ X 6@V, G-Dus B},

which is due to totally symmetrical displacements only.

3. Pseundocontinuam model of statical deformations

The above mentioned properties of both the model potential ¥ and the envelope func-
tion B, (7) indicate the applicability of the pseudocontinuum model to a description of the
interaction determined by the relations (2.16) and (2.17).

The relation (2.16) can then be written in the integral form

(3.1) W= [V ar,

where

(32) W) = ) o wrurs b (D + oD wiurs @+ [ 3(?’)1’};(?'—-?)0’?’:4;;(?)}.
s

Since the last matrix is of the scalar type in the point group, one can express it imme-
diately in the initial (Cartesian) frame of coordinates and obtain the result in the form

33 WO =) PO+ PuPual)+ [ BF WA —Ddrub)},

where
L
[Belyy = U2, ID)[055),y5
U*—the unitary transformation matrix.

The identificaticn of », with s in Eq. (3.3) is a consequence of the assumpticns presented
in Sect. 2.

It is important to note that if the last (diagonal) term dces not-vanish, then the non-
totally symmetrical lattice deformations due to the interaction determined by Eq. (3.2)
and (3.3) can be obtained only when the matrices @ (or 9) also have a diagonal form.

In the case of one-dimensional representations I, as can be seen from the conditions
(2.13), the displacement has to be totally symmetric.

Further, we shall restrict ourselves to the above cases. Then for the matrix (3.3) we get

3.4) [6V@D)yy = AE,(1)d,,.
From the above we obtain the following relations for the components of force density,
which induce the statical deformation of the crystal neighbourhood of the impurity:

69 ME = -ZED - o 60+ v+ [ 8,6 ¢ -
5 )
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and

(3.6 2@ = {928+ L)+ [ b,FWLE -P)dF)

for the symmetrized and Cartesian coordinates, respectively. }
In the case of a one-dimensional electronic representation (y = 1, then (I, §) = 4,),
we get from Eq. (3.5) and (3.6),

61 12,7 = — {00 000+, PO, + [ IV, 7~ |
and
— fi®) = ~ {020,004 Do)+ [BEIVF ~7)dF )}

The limiting case of a small radius corresponds to neglecting the two last terms in the
relations (3.5)—(3.8) while the case of a large radius can obtained by omitting the first
term and neglecting the dependence of @ and ¥ on the position vector 7 in the remaining
ones.

We can determine the static displacements by making use of the equilibrium condition
{for general nonlocal elastic interactions)

(9) D [ caE-rue)dr = 26).
B

Taking into account the properties of convolution in the pscudocontinuum description
“we get for the Fourier transforms

(3.10) D Cx@i® =Fr@ = - (9%+ L@ - ig.bDV* (D)}
7]
The solution of this equation is
(311 @@ = D e@ir@,
B’

where the Green’s function ¥ is the inverse matrix of (m;, m,.)‘”’f',‘;'g@)..

The analyticity of the transform V*(g) is due to the limited range of the potential (7).
In such a case the last term in Eq. (3.10) vanishes in the limit g — 0. This situation takes
place if the valencies of both the impurity and replaced ion are the same and in the case
of impurities with an uncompensated charge, provided the crystal manifests perceptible
metallic properties. In each of these cases the typical form of the model potential is the
Yukava type (for the high symmetries).

The transform of the Green’s function, in statical approximation, can be written as

; w(@ilE)
3.12 45 = -9 = s
e == Z, w3@)
where £, is the volume of the unit cell, #' the polarization vector of the j-th mode.

. It follows from the above relation that the main contribution to the statical tensor
% are provided by the acoustical modes only.



PSEUDOCONTINUUM APPROACH TO THE THEORY OF INTERACTIONS BETWEEN IMPURITY ELECTRONS... 33

This circumstance enables us to apply the pseudocontinuum model. The inversion
of the transform u(g) with the aid of the basic pseudocontinuum relation

(.13) W) = ) [ eTu@)dg,
B

(where B denotes integration over the first Brillouin zone), gives immediately the statical
displacements of the perturbed medium. In order to obtain the expression for the contri-
bution to the stress tensor due to impurity, we shall express the relations (3.1)-(3.3) in
terms of the continuum theory. For simplicity we shall restrict ourselves to the case of
a monoatomic lattice. It is convenient to introduce the local strain tensor with the help of
the relation

up; (r) = aer;(r),
where &7, denotes its symmetrized component (belonging to the irreducible representation

of the point group) and a is, in our case, the lattice constant. Taking into account the
main property of the groups scalar, we obtain

(3.14) D onEwius® = Y i) = O, fapPeas®),
7 & @

where ii7; = avF; wr, and, as in the above relations, the sign A denotes a matrix operator
determined in the given electronic irreducible representation. Integrating by parts the
contribution to the right part of Eq. (3.1) due to the last term of Eq. (3.3) and taking
into account the limited range of the potential ¥, we get

T baWu ~Dua@drdr = — [ [ 6@ WG ~PeaalP)dr dr .
Therefore, Eq. (3.3) can finally be written in the form
G15) V) = X (ieesp®) +hapeep®— s BV —P)dF )}
af

Equation (3.15) determines the dependence of the interaction energy on the local strain
tensor and constitutes the generalization of the well-known deformation potential method.

Thus, for instance, in the case of non-degenerate impurity electron state, the contribu-
tion to the stress tensor is given by

_ 0AE| _ _ ;
(3.16) oS (r) = _imauTg)j- = ulp0g(r)+ pap(r) — ti,ﬁfb(r’)VG'—F)dF :

For the degenerate electron state it is necessary to carry out diagonalization of the matrix
(3.15).
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