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Nonlocal theories or gradient-type theories: 
a matter of convenience?(*) 

G. A. MAUGIN (PARIS) 

THE PURPOSE of this contribution is twofold : i) to point put obvious fields of application of 
nonlocal theories which need to be developed, and ii) to place in evidence, with the help of 
examples borrowed from different fields of physics (normal conduction in metals, superconducti­
vity, radiative fluid dynamics, theory of dielectrics, surface phenomena such as surface tension 
and capillarity), the relationships that may exist between continuum approaches relying either 
on the consideration of higher order gradients of relevant variables (gradient-type theories) 
or on the use of genuine nonlocal theories. In most cases, however, it is co{\jectured that the use 
of oversimplified kernels in nonlocal theories leads many practitioners to prefer an approach 
using the concept of a "gradient theory" which yields "nice" (although of an increased order) 
differential equations instead of integrodifferential equations with seemingly and physically 
equivalent solutions at the output. 

Cel pracy jest dwojaki: i) wskazac oczywiste dziedziny zastosowania teorii nielokalnych, kt6re 
powinny bye rozwijane, ii) wykazac za pomo~ przyldad6w zapozyczonych z r6mych dziedzin. 
fizyki (zwylde przewodnictwo w metalach, nadprzewodnictwo, dynamika cieczy z radiacyjnl\. 
wymiaiUl ciepla, teoria dielektryk6w, napi~ie powierzchniowe i zjawisko kapilarne) zwi~zki, 
jalqe mog~ istniee pomi~ podej8ciami kontynualnymi, b~df wprowadzaj~cymi do rozwai.a.D 
gradienty wytszego r~u odpowiednich zmiennych (teoria gradientowa), b~df opartymi na 
teoriach istotnie nielokalnych. Jednakie moma przypuszczac, ·ze w wi~kszo8ci przypadk6w, 
w konsekwencji uzycia zbyt uproszczonych j~der w teoriach nielokalnych, praktycy preferuj~. 
podejScie wykorzystuj~ce koncepcj~ .~teorii gradientowej", kt6re daje ,ladne" (choe zwi~kszo­
nego r~u) r6wnania r6Zniczkowe, w miejsce r6wnan r6Zniczkowo-calkowych daj~cych r6wno­
wame rozwi~ia. 

Pa6oTa HMeeT ,qBOHCl'BeHHylO l.leJIL: ( 1) yi<a3aTL otieBI(!:Uibie OOJiaCTH npHJio>KeHMH HeJIOKaJILHbOC 
Teopd, KOTOpbie CJie,tzyeT pa3BHBaTL K (2) ,IJ;OKa3aTh C llOMOII.lhiO npHMepoB 3aHMCTBOBamn.IX. 
H3 pa3JIKtmbiX o6JiaCTeii !i>H3HKK (OOblliHWI npoBO,IJ;I{MOCTL H CBepmpOBO,IJ;HMOCTL, ,D;HHBMUKa. 

H3JIYllaiOILUOC >KM,IJ;I<OCTeit, TeopWI ,IJ;K3JieKTpKKOB, llOBepXHOCTHbiC 3cP$eKTbi TaKHe KaK no­
BepXHOCTHoe llaTIDI<eHHe K Ka:nnK.JmpHOCTL) B3aHMOCBH3h, KOTOpWI B03MO>I<HO ~eCTBYeT" 
Me>K,D;y KOHTHHyaJILHbiMH llO,IJ;XO,IJ;aMH OCHOBaHHbiMlf H.n:K Ha paCCMOTpeHHH BbiCIIIKX rpa,zp!eH­
TOB COOTBeTCTBYIOII.lHX nepeMeHHbiX (rpa,D;KeHTHbie Teopi(H) K.IIH >KC Ha HCllOJih30BaHKH ttirCTo. 
HenoKam.Horo no,D;Xo,D;a. B 6om.IIIHHCTBe cnyqaes o,D;HaKo, KaK CJJe,tzye:r npe,IJ;IIoJiaraTL, · Hc­
nom.aosamt:e llpC3MepHO ynpoll.leHHbiX H,D;ep B HeJIOKaJILHbiX TeopWIX npHBO,IJ;KT K TOMY, llTO· 
MHoroKpaTHo npaKTHtiecKH OT,D;aiOT npe,D;notrreHHe ,rp~eHTHbiM TeopWIM", KOTop~:>Ie npu­
Bo,D;HT K ,npKHTHbiM" (XOTH H llOBbWieHHoro nopHAIQl) ,IJ;KcPcPepC~HbiM ypaBHeHWIM 
BMCCTO HHTerpO-,IJ;KcPcPepeHI.lHaJILHbiX ypaBHemm, KOTOpbie OliCBif,ItHO npHBO,IJ;HT K cPit31AecKB: 
3KBHBaneHTm.IM pemeHHHM. 

(*)Paper presented at the EUROMECH 93 Colloquium on Nonlocal Theory of Materials, Poland 
August 28th---September 2nd, 1977. 
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16 G. A. MAUOIN 

1. Some heuristic principles of formulation of constitutive equations(!) 

1.1. Prladple of antecedence or causality 

If A and Bare two time-dependent properties of a material and if A determines B 
causally (i.e. in a deterministic or stochastic manner), then B at time t is a functional 
of A on the time interval (-<X>, t]. For example for a linear functional 

I 

(1.1) B(t) = J dt' K(t, t')A(t'). 
-00 

Causality restricts the time interval of integration to (- oo, t]. The uniformity of time 
(i.e. the invariance under time shifts) has K depend on the couple (t, t') only'through the 
variable ~ = t-t' ~ 0. The principle is also valid at the limit A = B. It applies practi­
cally to the whole of classical physics except in some controversial version~ of electro­
dynamics. It accounts for hereditary effects. The kernel K measures the influence of past 
-states of the independent variable A on the present value of the dependent variable B. 
The axiom of fading memory [2] is one possible formulation of the fact that only recent 
past states of A influence much the present value of B. 

1.2. Prlndple of contiguity or local action 

If A and Bare two spatially dependent properties of a material and if A determines 
B, then Bat r is a functional of A on the space region that surrounds r, including r itself. 
Let D be an open of R 3 containing h9th r and r'; then a particular formulation of this 
principle (linear functional) reads 

(1.2) B(r) = J d 3r'K(r, r')A(r'), 
D 

where the value of the kernel K measures the infuence of the local contribution of A. 
The macroscopic homogeneity of the material accounts for the fact that K depends on 
the couple (r, r') only through r-r'. Rotational invariance further imposes that this 
dependence reduces to that on lr-r'l only. The application of this principle is, for in­
stance·, classical continuum mechanics where D is reduced to a neighbourhood of r (local 
.action) and, more generally, the classical theory of fields. The axiom of smooth neigh­
bourhood·[3] leads then to the notion of gradient-type-theories for which Eq. (1.2) can be 
replaced by the relationship 

(1.3) B(r)::::: .c?I(A(r), VA(r), VVA(r), ... ), 

the gradient order being n if n-th order gradients of A, at the most, are taken into account 
in the usual function fJI. The axiom fo attenuating neighbourhood [3] yields the notion.1of 
nonlocal theories [4] in which relationships of the general type (1.2) are kept but the kerne 
K assumes such a form as to privilege the influence of points r' not far from r. As in the 

(1) Because of the lack of proof for the foundation of such principles, M. BUNGE [1] qualifies them as 
"zero-logical". They have an ontological nature. Their heuristic value stems from the fact that they place 
in evidence the influence of what preceeds and what occurs in a neighbourhood, so that they suggest the 
use of integro-differential equations. 
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NONLOCAL THEORIES OR GRADIENT·TYPB THEORIES 17 

case of the fading memory hypothesis, the axiom of attenuating neighbourhood requires 
a clear mathematical statement since it obviously cqncems functional continuity and 
differentiability. 

1.3. Prlndple of space-time coadgulty (or strict local causality [5]) 

Only regions of the field that can be interrelated by field perturbations can interact 
(i.e. regions of space-time which can be jointed by time-like paths). The precise mathema­
tical formulation of this principle depends on the framework chosen. Its obvious field of 
application is relativistic physics [5]. In classical field theories it can be expressed in integral 
form as a pure space-time generalization of Principles 1.1 and 1.2, e.g. 

, 
(1.4) B(r, t) = J dt' J d 3rK(r, r'; t, t')A(r', t'). 

-oo D 

Since the dependent variable B participates in differential field equations (balance laws) 
and only simple K's yields manageable equations (1.2), the question arises as to whether 
constitutive equations of the type (1.2) or (1.3) should be used, the former yielding integro­
differential equations while the latter yields "nice" differential equations. Furthermore, 
simple K's may result in solutions of the field equations that do not differ much from, 
or even are identical to, the solutions obtained on the basis of a description (1.3). The 
present contribution, of a rather descriptive nature, aims (i) at pointing out some physical 
theories (mainly electrodynamics) where . equations of the type (1.2) intervene, so . that 
they offer a potential field of study to the tenants of nonlocal theories and (ii) at exhibit­
ing some examples wh~re the mathematical point just raised shows up. We offer no solu­
tion of this dilemma, the choice between gradient-like theories and nonlocal theories 
appearing in these examples as a matter of mathematical convenienf;e and personal taste. 

2. A model eqQation 

Retrospectively, we should not force upon the genius of giants of science to find in 
their most hidden works the germ of all concepts arising now in science. However, the 
following fact is quite remarkable. Writing to H. A. Lorentz in 1909(2) about the appli­
cation of the quantum concept to the photoelectric effect, A. Einstein outlined his thoughts 
of the moment in detail: In analogy with electrons surrounded by electrostatic fields, 
light quanta could be singular points (not necessarily mathematical singular points) which 
are surrounded by extended vector fields, diminishing with distance and somehow c.apable 
of superposition. The essence of the theory, however, would not be the assumption of 
singular points, but rather the assumption of linear homogeneous field equations whose 
solution would permit the propagation of small, localized, and directed bundles of energy 
at velocity c (photons). Einstein thought that such a goal should be obtainable by slightly 
modifying Maxwell's theory as, for instance, by considering to start with, in the case of 

(2) Letter from Einstein to Lorentz dated May 23, 1909; See [6], pp. 48-50. 
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18 G.A. MAUGIN 

stalks, ~e following fourth-order differential equation which clearly is a modificaticn of 
Laplace's equation: 

(2.1) 

The solution 

(2.2) c/J=e 1-exp(-r/l) 
4nr 

of Eq. (2.1) is the only solution that goes over to the Coulomb potential c/J = ef4nt at 
large distances r >- A and has no mathematical singularity at r = 0. Einstein then speculated 
that the dynamical case would be obtained from Eq. (2.1) by replacing V2 by the d'Alem­
bertian opera torO. Although Einstein's proposal (2.1) now appears quite futile as regards 
the photoelectric effect, we know that Eq. (2.1) can be considered as a model equation 
which, by taking account of higher order derivatives, (i) enables one to avoid field singular­
ities at peculiar points; (ii) places in evidence the role played by a characteristic length 
scale A; and (iii), in the dynaJD.ical case, yields a dispersive character for the medium (non­
homogeneous polynomial of differentiation). Indeed, an example of mechanical theory 
where an equation of the type (2.1) is encountered is the indeterminate couple-stress theory 
of elasticity (strain-gradient theory or second-order gradient theory according to the for­
mulation 1.3) in which the equation that governs transverse (or shear) elastic waves has 
the form [7] 

(2.3) 

where the field c/J is the vorticity vector w = ~ V x u, cr = y ,u/t!.is the usual transverse­

wave velocity and A = y 1JIP is a characteristic length where fJ is a new material modulus 
that accounts for couple stresses. The dispersion effect arising from the presence cf A 
is of interest if l is of the order of the wave-length of the wave. 

However, the presence of the parameter A in Eq. (2.1) and the type of solution (2.2) 
are also germane to nonlocal theories. Thus it is possible, for instance in· electrostatics, 
that solutions of the type (2.2) arise not from ~ modification of Maxwell's equations as 
suggested by Einstein, but from a different assumption concerning the constitutive equa­
tion that is carried -in the unmodified Maxwell field equations. We shall return to this 
special case in Sect. 4. 

3. Early examples of DODioca.l theories in physics 

3.1. Nornm eledrlcal coadudlooln metals 

First we note that·in perfectly conducting metals where normal conductivity is due to 
conduction . electrons the following characteristic length, lL, can be constructed: 

(3.1) ( 
2 ·)1/2 

AL = 4:e2 ' 
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NoNLOCAL 1HJ!OIUES oR. GllADIENT-1YPE nttoRIES 19 

where m, e and n are the mass, charge and number density of electrons, respectively. 
Typically, ).L ~ 10-6 cm. Another characteristic sma111ength is the electrcnic mean free 
path, /. In isotropic normal conductcrs Ohm's constitutive equaticn can be written as 

(3.2) J(r) = a(l)E(r). 

This is valid only if E(r) varies slowly over a distance cf ft.e order of I. Otherwise, i.e. at 
low temperatures. and high frequencies, Eq. (3.2) becomes inadequate. The current at the 
point r must then be the integrated effect· of the field over distanc(s of the order of 1 [8] 
(nonlocal theory with attenuating neighbourhood!). If a4c is the d.c conductivity, then 
REuTER and SoNDHEIMER [9] have sho'\\n that Eq. (3.2) had to be replaced by (R = r-r') 

(3.3) J(r) = ~~~ J" R- 4 [R(R.E)exp( -IRI//)]d3r'. 
R3 

More generally ([10], pp.10-12), the current density J .at rand timet is determined by the 
time-varying electric field e(r), not only by its value at the same point (r, t), but al~ at 
all other points and times. We have thus a representation of the type (1.4): 

I 

(3.4) Ji(r, t) = J dt' J d3r'K,1(1r-r'l, t-t')e1(r', t'). 
-oo Rl 

Using a monochromatic plane-wave representation of the type 

(3.5) A(r, t) = (2n)- 4 J A(k, w)exp[i(k · r-wt)]d3kdw, 
R4 

yields then an algebraic relationship between the Fourier components J(k, w) and e(k, w): 

(3.6) J1(k, w) = a,1(k, w, H)ej(k, ro), 

where His the static magnetic field and a11(k, w, H) are the Fourier components of the 
conductivity tensor: 

00 

(3.7) a11(k, w, H) = J d3r J dtK11(r, t)exp[i(wt-k · r)]. 
R3 0 

The k-dependence of a11 is called the spatial dispersion of the conductivity and is due to 
spatial inhomogeneities of the wave field, whereas the w-dependence is called the tempora 
dispersion and is due to effects of retardation. An expression for a11(k, w, H) can be found 
in electronic kinetic-theory arguments (Cf. [10], pp. 18-20): the spatial dispersion effect 
will be important if wavelengths are of the order of the electronic mean free path /. 

3.2. Supercoaductblty 

In London's phenomenological theory of superconductivity {see, e.g. [11]), the mag­
netic field H is governed in statics by an equation of the type 

(3.8) 

2* 
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20 G. A. M.AUGIN 

while the current J and the magnetic vector potential A are related by the equation 

(3.9) 
c 

J(r) = - 4nJ.L A(r)' 

where ;.L has been defined in Eq. (3.1). Note that Eq. (3.8) yields the model equation 
(2.1) if we apply to it the operator V2• Equation (3.8) teJls us that upon penetrating into 
a superconducting specimen, an externally applied field H decays exponentially (Meissner 
effect), i.e. H(r) ~ 0 for lrl ~ '-L· ).L depends on temperature and has a behaviour of the 
type J.La(1- t)-112, (t = 0/0c), in the neighbourhood of the phase-transition critical 
temperature Oc.· The superconducting state is an ordered phase and a typical length known 
as the range of coherence ,E, can be introduced which corresponds to lengths over which 
the order parameter changes gradually (it is the typical size of Cooper's pairs in the micro­
scopic BCS theory). In low mean-free-path alloys and in certain pure metals E ~ 10-4 cm. 
In general, E is a function of the electronic mean free path /: E = E(/). Equation (3.9) 
can be re-written as J = -(ne2/m)A(r) in virtue of Eq. (3.1). The influence of E can be 
introduced by modifying the latter equation so that it reads 

(3.10) J(r) = - ne
2 

e{l) A(r), 
m Eo 

where Eo is a constant of the superconductor. On this basis PIPPARD [12] proposed; in 
view of the analogy of Eqs. (3.10) and (3.2), a basic relation for the· electromagnetic re­
sponse of a superconductor of the form [compare Eq. (3.3)] 

3ne
2 J (3.11) J(r) = -

4
neom R- 4 [R ·(R · A)exp( --IRI/E)]d3r'; 

Rl 

we have thus a nonlocal theory of superconductivity with a hyPOthesis of attenuating 
neighbourhood, the characteristic length involved being the range of coherence e. The 
validity of Eq. (3.11) is strongly supported (i) by the fact that it yields a reversal of the 
phase of the magnetic field penetrating into a superconductor, this effect was observed 
in 1962, and (ii) by the accepted microscopic theory of Bardeen, Cooper and Schrieffer 
(the so-called BCS theory), which yields a relationship entirely equivalent to Eq. (3.11) 
if one makes the appropriate identifications. 

3.3. Radladve fluid dynamics 

By its very nature radiative fluid dynamics also is a domain where nonlocal expressions 
appeared quite early. Studying the influence of heat propagation on convective instability 
and convective transport in stars, SPIEGEL [13] proposed in 1957 to add to the heat equation 
a term ofthe following form: 

1 .. 
(3.12) Q(r) =-; j K(lr-r'I)O(r', t)d3r', 

Rl 

where 0 is the small perturbation in temperature, 't' is the characteristic decay time of 
optically thin perturbations, and the kernel K has the expression 

(3.13) K(lrl) =txptt!'.l.)] -d~rl), 
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where A. is the mean free path of photons and ~is Dirac's generalized function. As A.goes 
to zero (all scales optically thick), Eq. (3.12) yields 

(3.14) Q = xV28, " ::: A.2 j3T, 

while in the opPQSite liniit (A.-+ oo), it yields 

(3.15) Q = -8jT. 

The latter is none other than Newton's law of cooling while Eq. (3.14) merely describes 
heat diffusion for an optically thick gas and provides an expression for thermal diffusivity 
when it results from radiation. The intermediate case is more difficult to deal with but 
it represents a nonlocal theory with an hypothesis of attenuating neighbourhood, the charac­
teristic length involved being the photon mean free path A.. 

4. Gradient theory and nonlocal theory of dielectrics 

Maxwell's form of Gauss' law reads (in Lorentz-Heaviside units): 

(4.1) V· D = q, 

where D = E+P is the electric displacement, E is the electric field, and Pis the volume 
electrical polarization. q is the volume density of free charges. For electrostatics we have 
in supplement the equation V x E = 0 from which there follows the existence of an electro­
static potentiall/J, such that E = - Vl/J. In the usual theory of rigid isotropic dielectrics 
one has the linear relationship P = xE, hence D = eE with e = 1 + x > 0. If g now is 
a point charge located at the origin, then Eq. (4.1) yields 

(4.2) V"</> = - ( ~) d(lrl), 

of which the solution l/J(r) = qj4ner is unbounded at r = 0. Non-singular solutions at 
r = 0, which practically do not differ from the Coulomb solution for sufficiently larger, 
can be obtained by considering different and more sophisticated models of rigid dielectrics, 
namely, a nonlocal theory of dielectrics with attenuating neighbourhood [14], a micro­
morphic theory of dielectrics (dielectrics with quadrupoles) [15]--[17], and a first-order 
gradient theory of dielectrics (dielectrics with polarization gradients) [18], [19], all these 
without modifying the original Gauss equation (4.1), but by making specific constitutive 

assumptions as regards P. 

4.1. Nonlocal theory of rigid Isotropic dielectrics [14] 

We then have a constitutive equation of the type 

(4.3) P(r) = xE(r)+ j K(lr-r'I)E(r')d3r'. 
Rl 

Substituting from Eq. (4.3) in Eq. (4.1) for a point-like source at r = 0, we obtain an 

integro-differential equation ( e = 1 +X): 

(4.4) eV2l/J+ J -/-x(lr-r'l) :~ d3r' = -q~(lrl). 
Rl '' r, 
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A plausible form for K that attributes a stro~g influence to points r' in the neighbourhood 
ofr (attenuating neighbourhood) is 

(4.5) K(lr-r'l) = -P2V2 6(1r'-rl), 

where V2 is taken with respect to r. Setting A = y Pfs, the solution of Eq. (4.4) reads 
[compare (2.2)] 

(4.6) 

Then 

(4.7) 

4J(r) = A!. [1-exp( -lrl/l)]. 
"t\1,8, 

lim t/J(r) = q f4ne).. 
lrl~o 

Another example of a possible kernel K is the following one: 

(4.8) . , k ( lr'- rl) 
K(lr-r I) = 4nlr' -rl exp --A- , 

where A is a characteristic length. SetAL = f8f(k+ l-2). Then .the corresponding solution 
of Eq. ( 4.4) is 

(4.9) 

Here we have two characteristic lengths, A and A£, to describe the solution in theneigh­
bourhood of the origin. 

4.1. Rigid dielectrics wltb quadrupoles [16] 

In that case we have separate constitutive equations for he electric dipole moment . p, 
and the electric quadrupole tensor Q11 , in such a way that 

(4.10) p, = xE, Q,J = K3E"·"611+X..E<,,J>. 

while the polarization per unit volume is given by 

(4.11) P1 = p1-Q11,1• 

It follows from Eqs. (4.10) and (4.11) that D is related toE by the equation 

(4.12) -D = eE-81 V(V· E)-82 [V2E+V(V· E)], 

and Eq. (4.1) for a point-like source at r = 0 reads 

(4.13) 

where 

(4.14) 8 = 1 + x > 0, 81 = K3 , .82 = K4 /2 > 0, 81 +282 > 0, 

and 

(4.15) 

The inequalities follow from the positive definiteness of the potential energy. The solution 
of Eq. (4.13) is none other than Eq. (4.6). Another problem can be solved to place in 
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evidence the skin effect inherent in the present theory. It is that of a spherical cavity with 
uniformly distributed surface charge, embedded in an infinite linear elastic dieleetric. 
It is then found [17] that a part of the electrostatic potential dies out exponentially at far 
distances from the surface of the cavity, an effect quite similar to that due to the Debye 
potential in plasma physics.(!) 

4.3 •. IsotropiC dleledrks with polarization gradients [18] 

In that case Eq. ( 4.1) yields 

(4.16) V2t/J-V · P = -qt5(r). 

But P must al~ satisfy a new balance law (known as the intromolecular force balance 
law [20]) which, on taking account of polarization gradients, reads for isotropy and electro­
statics: 

(4.f7) 

where band a are material constants. Upon combining Eqs. (4.16} and (4.i7), we arrive 
at an equation of the type (compare Eq. (3;8)) 

(4.18) 1p- )..fV2
1p = (l !a) 6(r), 

where"'' = V· P and the characteristic length ).Lis defined by)..£ = b/(1 +a). The solution 
of Eq. ( 4.18) again is of the type ( 4.6). We thus see that three conceptually different models 
of rigid isotropic dielectrics yield the same solution ( 4.6). The relationship either with 
the model equation (2.1} or the model solution (2.2} is clear. 

5. The example of surface tension 

The examples examined in the foregoing sections dealt mainly with the problem of 
smoothing out singularities. However, the fact that characteristic lengths intervene makes 
it clear that both gradient-like theories and nonlocal theories are of interest in problems 
concerned with boundary layer phenomena, thin films, effects of dislocations in elastic 
solids, microcracks, the propagation of disturbances of short wavelengths, the penetration 
of surface waves and,obviously,surface phenomena of which surface tension and capillarity 
are the mechanical tenets. In solids surface tension results from electronic bondig, while 
Van der Waals' forces are responsible for the phenomenon in liquids. In the case of liquids 
a typical approach [21]-[24] relies upon the use of a density-gradient theory, hence a first­
order gradient theory in the formalism of Eq. {1.3) if A is none other than.the density ~· 
This sort of approach can be traced back to KoRTBWEG [25]. Specializing the equations 
of Ref. [22] to the case of non-ferromagnetic liquids and using a potential energy per unit 
mass of the Cahn-Hilliard type [23], i.e. 

(5.1) 'P =/(e)+ fe (Ve)2
, P = const, 

(3) Compare Eq. (5.106), p. iSO [32]. 
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we obtain the boundary conditio~s at a surface 1: which has a discontinuous tangent plane 
(oriented edge I') in the form 

(5.2) 
[t,1]n1 = ·-2!Jan,+D1a on E-r, 
R+on = 0 

while along r, (v: binormal to F) 

(5.3) E+[crv] = o. 
Here n is the oriented unit normal to 1:, !J is its mean curvature, and D1 indicates the 
tangential derivative on E. t11 is the Cauchy stress tensor, E is a linear density of force, 
R is a so-called double normal force, and a is the surface tension. t11 and a have constitu­
tive equations derived from Eq. (5.1) in accordance with (of on = n ·V) 

tlj = - (p61j+ Pe.,e.J), 
(5.4) · df oe 

p = f!2 de +e{f-VJ)-efJV2e, a= efJ an· 
The first term in the right-hand side of Eq. (5.i)1 is the classical term of Laplace's theory 
of capillarity. The remaining term does not appear in Laplace's theory although it also 
pertains to a second-order geometrical description of the surface .1:. At rest, the "capilla:. 
rity action" R imposes the value of a. If R is constant on 1:, so is a, hence Dja = 0. TQe 
value of the stress also follows, but not in an extremely thin boundary layer since a being 
fixed by the data R, the value of oe f on follows and density will increase form the surface 
through this layer beyond which it will remain practically constant, so that t11 will then 
reduce to a pressure term. But within this layer where density is strongly non-uniform, 
the stress is no longer spherical. The expression of this stress is corroborated by the kinetic 
theory of gases. The characteristic length involved in the problem above is given by .. P = 
= e~fJ/p0 , where eo and p0 are typical densities and pressures. The above development 
can be generalized to the case of ferrofiuids [23]. In contrast to the present approach, 
ERINGEN [26] provides a phenomenological representation of surface effects in liquids 
on the basis of a non/ocal theory: His expression for a is given by 

(5.5) a 
a(r) = e-l.r(r, r') :;--;-(V'· u)l.z:, re 1:, un I 

where V' and ofon' are computed at r', T(r, r') is a nonlocal parameter whose dimension 
is that of e3 fJ, and a is the displacement field. Similar arguments lead the same author 
to a phenomenological explanation of surface tension in elastic solids on the basis of 
a nonlocal theory [29]-[30], whereas MINDLIN [31] prefers a strain-gradient theory and 
BLINOWSKI f27] and GURTIN and MURDOCH [28] favour an approach using the notion of 
elastic surfaces. 

6. Conclusion 

The following conclusions can be drawn at once from the series of examples dealt 
with in the foregoing sections. First we witness the exemplary value of the model equation 
(2.1) and of the model solution (2.2), the former with respect to an approach dealing with 
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gradient-type theories, and the latter with respect to both gradien~-type and nonlocal 
theories. Closely related to the second· point is the recurrence of typically simple kernel~ 
in the various nonlocal theories set forth [compare Eqs. (3.3), (3.11) and (4.8)]. It is the­
drastic simplicity (one could also say the rather obvious form) of these kernels thatmakest­
in the cases described, the use of either a gradient-type theory or a nonlocai theory appear 
as a matter of personal taste. Thus, in our opinion of a non-specialist, the interest of non­
local theories should stem from two facts: that it be possible to determine the expression 
of the kernel from a microscopic theory; this is the case for Eq. (3.7) on the basis of an 
electronic kinetic theory, and for Eq. (3.11-) on the basis of the BCS theory of supercon­
ductivity; (ii) that the imagination of scientists be such that kernels be constructed so as 
to yield solutions readily different from those that can be obtained from a gradient-type 
theory or a mictomorphic theory and therefore the relative value of each phenomenolo­
gical representation could be determined. Should lack of imagination be the case, one can 
always try to build such kernels as to agree, for instance, with a dispersion curve obtained 
from a microscopic theory, and then use these kernels in .. other applications. This attitude­
is exemplified by the remarkable triariglewise kernel introduced by ERINGEN [29] in non­
local elasticity, namely for a nonlocal elasticity modulus of dimension L-1 : 

(6.1) 

=0 

for 

for 

lxl I 
-y< ' 

lxl I 
;:->' 

which allows a perfect fitting of the dispersion curve over an entire Brillouin zone (of 
width 21.) for elastjc waves, and thereafter is conveniently used in solving problems such. 
as that of Griffith's crack (see recent works by A. C. Eringen). 
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