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Nonlocal theories or gradient-type theories:
a matter of convenience?(*)

G. A. MAUGIN (PARIS)

THE PURPOSE of this contribution is twofold: i) to point put obvious fields of application of
nonlocal theories which need to be developed, and ii) to place in evidence, with the help of
examples borrowed from different fields of physics (normal conduction in metals, superconducti-
vity, radiative fluid dynamics, theory of dielectrics, surface phenomena such as surface tension
and capillarity), the relationships that may exist between continuum approaches relying either
on the consideration of higher order gradients of relevant variables (gradient-type theories)
or on the use of genuine nonlocal theories. In most cases, however, it is conjectured that the use
of oversimplified kernels in nonlocal theories leads many practitioners to prefer an approach
using the concept of a “gradient theory” which yields “nice” (although of an increased order)
differential equations instead of integrodifferential equations with seemingly and physically
equivalent solutions at the output.

Cel pracy jest dwojaki: i) wskazaé oczywiste dziedziny zastosowania teorii nielokalnych, ktére
powinny by¢ rozwijane, ii) wykaza¢ za pomocg przykladéw zapozyczonych z réinych dziedzin
fizyki (zwykle przewodnictwo w metalach, nadprzewodnictwo, dynamika cieczy z radiacyjna
wymiana ciepla, teoria dielektrykow, napiecie powierzchniowe i zjawisko kapilarne) zwigzki,
jakie moga istnie¢ pomigdzy podejéciami kontynualnymi, badZ wprowadzajacymi do rozwazah
gradienty wy#szego rzedu odpowiednich zmiennych (teoria gradientowa), badZ opartymi na
teoriach istotnie nielokalnych. JednakZze moina przypuszczaé, ze w wigkszosci przypadkow,
w konsekwencji uZycia zbyt uproszczonych jader w teoriach nielokalnych, praktycy preferuja
podejécie wykorzystujace koncepcje ,,teorii gradientowej”, ktére daje ,,tadne” (cho¢ zwigkszo-
nego rzedu) réwnania réiniczkowe, w miejsce rownan rézniczkowo-catkowych dajacych réwno-
wazne rozwigzania.

Pabora umeer nBoiicTBenHyIo Henb: (1) yrasaTs oueBHAHBIE 06/12€TH IPRIIOXKEHH S HENOKANEHEI
Teopuif, KOTOpLIE CJIEyeT PasBHBATH H (2) JOKA3aTh C MOMOIBIO MPHMEPOE 3aHMCTEOBAHHBIX
H3 pasnuuHeIX obnacrell dusuin (06bIuHAsK MPOBOJMMOCTE H CBEPXIPOBOAHMOCTE, MHHAMHKA.
M3IYYAIOLNX SKHAKOCTEH, TEOPHA IHINEKTPHKOB, HOBEPXHOCTHBIE 3(deKThI TaKHe KaK mo-
BePXHOCTHO® HATSDKEHHE M KaImTMIAPHOCTH) B3AMMOCBASh, KOTOPaA BO3MOMKHO CYLIECTBYET
MY KOHTHHYAIBHEIMYE ITOZXOJAMHY OCHOBAHHBIMH HUIM HA PACCMOTPEHMH BBICHIMX rpajHeH-
TOB COOTBETCTBYIOLIMX NEPEMEHHBIX (IPajMeHTHbIE TEOPHH) HIIH e Ha HCIIOIb30BAHMH THCTO-
HEJIOKAJTBHOTO Moaxoja. B GoNBLIMHCTBE Cy4YaeB OMHAKO, KAK CaeAyeT NpeamoJiarars, Hc-
II0JIB30BaHMe UPE3MEPHO YNPOIUEHHBIX AP B HeJOKAILHBIX TEOPHAX NPHBOIHT K TOMY, YTO-
MHOTOKDPATHO ITPAKTHYECKH OTHAIOT TPeIOYTEHHE ,,TPAfHEHTHEIM TeOpHAM’’; KOTOPbIe MpH-
BOJAT K ,,OPHATHEIM’ (XOTA M MOBBILEHHOTO mopsaaxa) maddepeHIHANLHEIM YPaBHEHHAM
BMECTO HHTerpo-muddepeHIHanbHbIX YPaBHEHH T, KOTOPble OUEBH/THO NPHBOAAT K (HIHIeCKR
IKBHBAJICHTHBIM pelleHHAM.

(*) Paper presented at the EUROMECH 93 Colloquium on Nonlocal Theory of Materials, Poland
August 28th—September 2nd, 1977.
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1. Some heuristic principles of formulation of constitutive equations(*)
1.1. Principle of antecedence or causality

If A and B are two time-dependent properties of a material and if A determines B
causally (i.e. in a deterministic or stochastic manner), then B at time ¢ is a functional
of A4 on the time interval (— o, t]. For example for a linear functional

(L1) B(t) = [ drk(, )A(t).

Causality restricts the time interval of integration to (— o0, #]. The uniformity of time
(i.e. the invariance under time shifts) has K depend on the couple (¢, ¢") only through the
variable & = r—1t’ > 0. The principle is also valid at the limit 4 = B. It applies practi-
cally to the whole of classical physics except in some controversial versions of electre-
dynamics. It accounts for hereditary effects. The kernel K measures the influence of past
states of the independent variable 4 on the present value of the dependent variable B.
The axiom of fading memory [2] is one possible formulation of the fact that only recent
past states of 4 influence much the present value of B.

1.2. Principle of contiguity or local action

If A and B are two spatially dependent properties of a material and if 4 determines
B, then B at r is a functional of 4 on the space region that surrounds r, including r itself.
Let D be an open of R® containing both r and r’; then a particular formulation of this
principle (linear functional) reads
(1.2) B = [drka, r)AX),

D

where the value of the kernel K measures the infuence of the local contribution of 4.
The macroscopic homogeneity of the material accounts for the fact that X depends on
the couple (r,r’) only through r—r’. Rotational invariance further imposes that this
dependence reduces to that on |[r—r'| only. The application of this principle is, for in-
stance, classical continuum mechanics where D is reduced to a neighbourhood of r (local
action) and, more generally, the classical theory of fields. The axiom of smooth neigh-
bourhood [3] leads then to the notion of gradient-type-theories for which Eq. (1.2) can be
replaced by the relationship

(1.3) B(r) = B(A(x), VA(X), VVA(®), ...),

the gradient order being n if n-th order gradients of A4, at the most, are taken into account
in the usual function #. The axiom fo attenuating neighbourhood [3] yields the notion.of
nonlocal theories [4] in which relationships of the general type (1.2) are kept but the kerne
K assumes such a form as to privilege the influence of points r’ not far from r. As in the

(1) Because of the lack of proof for the foundation of such principles, M. BunGE [1] qualifies them as
“zero-logical”. They have an ontological nature. Their heuristic value stems from the fact that they place
in evidence the influence of what preceeds and what occurs in a neighbourhood, so that they suggest the
use of integro-differential equations.
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case of the fading memory hypothesis, the axiom of attenuating neighbourhood requires
a clear mathematical statement since it obviously concerns functional continuity and
differentiability.

1.3, Principle of space-time contiguity (or strict local causality [5])

Only regions of the field that can be interrelated by field perturbations can interact
(i.e. regions of space-time which can be jointed by time-like paths). The precise mathema-
tical formulation of this principle depends on the framework chosen. Its obvious field of
application is relativistic physics [S]. In classical field theories it can be expressed in integral
form as a pure space-time generalization of Principles 1.1 and 1.2, e.g.

(1.4) Bee,1)= [ar [ &K, ¥;t, VAW, 1).
—t0 D

Since the dependent variable B participates in differential field equations (balance laws)
and only simple K's yields manageable equations (1.2), the question arises as to whether
constitutive equations of the type (1.2) or (1.3) should be used, the former yielding integro-
differential equations while the latter yields “nice” differential equations. Furthermore,
simple K's may result in solutions of the field equations that do not differ much from,
or even are identical to, the solutions obtained on the basis of a description (1.3). The
present contribution, of a rather descriptive nature, aims (i) at pointing out some physical
theories (mainly electrodynamics) where equations of the type (1.2) intervene, so that
they offer a potential field of study to the tenants of nonlocal theories and (ii) at exhibit-
ing some examples where the mathematical point just raised shows up. We offer no solu-
tion of this dilemma, the choice between gradient-like theories and nonlocal theories
appearing in these examples as a matter of mathematical convenience and personal taste.

2. A model equation

Retrospectively, we should not force upon the genius of giants of science to find in
their most hidden works the germ of all concepts arising now in science. However, the
following fact is quite remarkable. Writing to H. A. Lorentz in 1909(%>) about the appli-
cation of the quantum concept to the photoelectric effect, A. Einstein outlined his thoughts
of the moment in detail: In analogy with electrons surrounded by electrostatic fields,
light quanta could be singular points (not necessarily mathematical singular points) which
are surrounded by extended vector fields, diminishing with distance and somehow capable
of superposition. The essence of the theory, however, would not be the assumption of
singular points, but rather the assumption of linear homogeneous field equations whose
solution would permit the propagation of small, localized, and directed bundles of energy
at velocity ¢ (photons). Einstein thought that such a goal should be obtainable by slightly
modifying Maxwell’s theory as, for instance, by considering to start with, in the case of

(2) Letter from Einstein to Lorentz dated May 23, 1909; See [6], pp. 48-50.

2 Arch. Mech. Stos. or 1/79



18 G. A. MAUGIN

statics, the following fourth-order differential equation which clearly is a medificaticn of
Laplace’s equation:

@.1) Vip— A2V2V2 = 0.
The solution
2.2) - g%ﬁ'm

of Eq. (2.1) is the only solution that goes over to the Coulomb potential ¢ = ¢/4nr at
large distances r » 4and hasno mathematical singularity atr = 0. Einstein then speculated
that the dynamical case would be obtained from Eq. (2.1) by replacing V2 by the d’Alem-
bertian operator[]. Although Einstein’s proposal (2.1) now appears quite futile as regards
the photoelectric effect, we know that Eq. (2.1) can be considered as a model equation
which, by taking account of higher order derivatives, (i) enables one to avoid field simgular-
ities at peculiar points; (ii) places in evidence the role played by a characteristic length
scale A; and (iii), in the dynamical case, yields a dispersive character for the medium (non-
homogeneous polynomial of differentiation). Indeed, an example of mechanical theory
where an equation of the type (2.1) is encountered is the indeterminate couple-stress theory
of elasticity (strain-gradient theory or second-order gradient theory according to the for-
mulation 1.3) in which the equation that governs transverse (or shear) elastic waves has
the form [7]

2
2.3) Vip— V22 = c5? %Tf*

where the field ¢ is the vorticity vector w = —:1!— V xu, ¢ = ufg is the usual transverse-

wave velocity and A = /n/u is a characteristic length where 7 is a new material modulus
that accounts for couple stresses. The dispersion effect arising from the presence cf 4
is of interest if A is of the order of the wave-length of the wave.

However, the presence of the parameter A in Eq. (2.1) and the type of solution (2.2)
are also germane to nonlocal theories. Thus it is possible, for instance in'electrostatics,
that solutions of the type (2.2) arise not from a modification of Maxwell’s equations as
suggested by Einstein, but from a different assumption concerning the constitutive equa-
tion that is carried in the unmodified Maxwell field equations. We shall return to this
special case in Sect. 4.

3. Early examples of nonlocal theories in physics
3.1. Normal electrical conduction in metals

First we note that in perfectly conducting metals where normal conductivity is due to
conduction electrons the following characteristic length, 4., can be constructed:
1/2

_ | mc?
@D o= ()
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where m, e and n are the mass, charge and number density of electrons, respectively.
Typically, 4, ~ 10~% cm. Another characteristic small length is the electrcnic mean free
path, I In isotrcpic normal conductcrs Ohm’s constitutive equaticn can be written as

3.2) J() = o(DE(r).

This is valid only if E(r) varies slowly over a distance of tke order of /. Otherwise, i.e. at

low temperatures and high frequencies, Eq. (3.2) beccmes inadequate. The current at the

point r must then be the integrated effect of the field over distances of the order of / [8]

(nonlocal theory with attenuating neighbourhood!). If g, is the d.c conductivity, then

REUTER and SONDHEIMER [9] have shown that Eq. (3.2) had to be replaced by (R = r—r’)
363:

(3.3) 3@ = 3% [ R-4REE)exp(— RYDId.
R

More generally ([10], pp. 10-12), the current density J at r and time ¢ is determined by the
time-varying electric field e(r), not only by its value at the same point (r, t), but also at
all other points and times. We have thus a representation of the type (1.4):

(.4) e, )= [ar [@rKye-r|, t-1)ew,r).
R3

—t0

Using a monochromatic plane-wave representation of the type
(3.5) A, 1) = @) [ Ak, w)explitk r—o1)]d*kdo,
R

yields then an algebraic relationship between the Fourier components J(k, ») and e(k, w):
(3.6) Jikk, w) = Uu(k, @, H)e.f(k! o),

where H is the static magnetic field and oy;(k, , H) are the Fourier components of the
conductivity tensor:

(3.7 oy, 0, H) = [ [ diKy(r, Nexpli(wt—k- 1.
R3 ]

The k-dependence of oy is called the spatial dispersion of the conductivity and is due to
spatial inhomogeneities of the wave field, whereas the w-dependence is called the tempora
dispersion and is due to effects of retardation. An expression for oy;(k, @, H) can be found
in electronic kinetic-theory arguments (Cf. [10], pp. 18-20): the spatial dispersion effect
will be important if wavelengths are of the order of the electronic mean free path /.

3.2. Superconductivity

In London’s phenomenological theory of superconductivity (see, e.g. [11]), the mag-
netic field H is governed in statics by an equation of the type

(3.8) H-A2V?H = 0,

2%
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while the current J and the magnetic vector potential A are related by the equation

[4
m A(r),

where A, has been defined in Eq. (3.1). Note that Eq. (3.8) yields the model equation
(2.1) if we apply to it the operator V2. Equation (3.8) tells us that upon penetrating into
a superconducting specimen, an externally applied field H decays exponentially (Meissner
effect), i.e. H(r) =~ 0 for [r| > A,. A, depends on temperature and has a behaviour of the
type A a(l—1)"Y2, (¢t =0/0c), in the neighbourhood of the phase-transition critical
temperature 0c. The superconducting state is an ordered phase and a typical length known
as the range of coherence ,&, can be introduced which corresponds to lengths over which
the order parameter changes gradually (it is the typical size of Cooper’s pairs in the micro-
scopic BCS theory). In low mean-free-path alloys and in certain pure metals & < 10~* cm.
In general, £ is a function of the electronic mean free path /: & = £(/). Equation (3.9)
can be re-written as J = — (ne?/m)A(r) in virtue of Eq. (3.1). The influence of & can be
introduced by modifying the latter equation so that it reads
ne? &)

(3.10) Jo) = - — -;—O—A(r),

where &, is a constant of the superconductor. On this basis PIpPARD [12] proposed; in
view of the analogy of Eqgs. (3.10) and (3.2), a basic relation for the electromagnetic re-
sponse of a superconductor of the form [compare Eq. (3.3)]

G.1) I = — ;’;:; fR"‘[R'(.R‘A)e!p(-IRJIE)ld’r’;
R3

(3.9) Io = -

we have thus a nonlocal theory of superconductivity with a hypothesis of attenuating
neighbourhood, the characteristic length involved being the range of coherence &£ The
validity of Eq. (3.11) is strongly supported (i) by the fact that it yields a reversal of the
phase of the magnetic field penetrating into a superconductor, this effect was observed
in 1962, and (ii) by the accepted microscopic theory of Bardeen, Cooper and Schrieffer
(the so-called BCS theory), which yields a relationship entirely equivalent to Eq. (3.11)
if one makes the appropriate identifications.

3.3. Radiative fluid dynamics

By its very nature radiative fluid dynamics also is a domain where nonlocal expressions
appeared quite early. Studying the influence of heat propagation on convective instability
and convective transport in stars, SPIEGEL [13] proposed in 1957 to add to the heat equation
a term of the following form:

(3.12) 00 == [ K(e-rDoce, dvr,
R3

where 0 is the small perturbation in temperature, 7 is the characteristic decay time of
optically thin perturbations, and the kernel K has the expression

—Irl/A
(3.13) ko) = [REHA] s,
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where 1 is the mean free path of photons and 4 is Dirac’s generalized function. As Agoes
to zero (all scales optically thick), Eq. (3.12) yields

3.19 0 = xV*0, =x= 3*/37,
while in the opposite liniit (4 — 00), it yields
(3.15) 0= —0z.

The latter is none other than Newton’s law of cooling while Eq. (3.14) merely describes
heat diffusion for an optically thick gas and provides an expression for thermal diffusivity
when it results from radiation. The intermediate case is more difficult to deal with but
it represents a nonlocal theory with an hypothesis of attenuating neighbourhood, the charac-
teristic length involved being the photon mean free path A.

4, Gradient theory and nonlocal theory of dielectrics

Maxwell’s form of Gauss’ law reads (in Lorentz-Heaviside units):

4.1 V:-D=g,

where D = E+P is the electric displacement, E is the electric field, and P is the volume
electrical polarization. ¢ is the volume density of free charges. For electrostatics we have
in supplement the equation V xE = 0 from which there follows the existence of an electro-
static potential ¢, such that E = —V¢. In the usual theory of rigid isotropic dielectrics
one has the linear relationship P = yE, hence D = ¢E with ¢ = 1+ > 0. If ¢ now is
a point charge located at the origin, then Eq. (4.1) yields

4.2) Vi = — (i) 8(Ir)),

&

of which the solution ¢(r) = g/4ner is unbounded at r = 0. Non-singular solutions at
r = 0, which practically do not differ from the Coulomb solution for sufficiently large r,
can be obtained by considering different and more sophisticated models of rigid dielectrics,
namely, a nonlocal theory of dielectrics with attenuating neighbourhood [14], a micro-
morphic theory of dielectrics (dielectrics with quadrupoles) [15]-[17], and a first-order
gradient theory of dielectrics (dielectrics with polarization gradients) [18], [19], all these
without modifying the original Gauss equation (4.1), but by making specific constitutive
assumptions as regards P.

4.1. Nonlocal theory of rigid isotropic dielectrics [14]
We then have a constitutive equation of the type
(4.3) P() = 2B+ [ K(r—rE@)dr.
R2

Substituting from Eq. (4.3) in Eq. (4.1) for a point-like source at r = 0, we obtain an
integro-differential equation (¢ = 1+%):

4.9 V3¢ + f-é%K(lr—r’l)-g—?;—d’r' = —qd(|r]).
R3
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A plausible form for K that attributes a strong influence to points r’ in the neighbourhood
of r (attenuating neighbourhood) is

45) K(r—r|) = —B*V28(Ir' —x)),

where V2 is taken with respect to r. Setting A = }/fJz, the solution of Eq. (4.4) reads
[compare (2.2)]

46) $(r) = 5 [1—exp(~Irl/A).

Then

4.7 1?3 ¢(r) = g/4ne.

Another example of a possible kernel X is the following one:
k Ir— r|

@8) K(e—r) = gt exp - 5

where 4 is a characteristic length. Set 4, = |/ g/(k+ A~2%). Then the corresponding solution
of Eq. (4.4) is

9) 6() = oz (1-22V) {r~* [1—exp(~ el /AD)]}.

Here we have two characteristic lengths, 4 and 4., to describe the solution in the neigh-
bourhood of the origin.

4.2. Rigid dielectrics with quadrupoles [16]

In that case we have separate constitutive equations for he electric dipole moment p;
and the electric quadrupole tensor Q,;, in such a way that

(4.10) pi=2E, Q= KE,0+K.Ey,

while the polarization per unit volume is given by

(4.11) Py = pi—Qy,;.

It follows from Eqs. (4.10) and (4.11) that D is related to E by the equation
(4.12) D = éE—¢,V(V- E)—&,[VZE+V(V: E)],

and Eq. (4.1) for a point-like source at r = 0 reads

(4.13) Vip—A2V2V2p = — (—‘i—) 8(r),

where

4.149) e=145>0, =K, &=K/2>0, ¢&+2,;>0,
and

(4.15) A2 = (g,+28,)/e > 0.

The inequalities follow from the positive definiteness of the potential energy. The solution
of Eq. (4.13) is none other than Eq. (4.6). Another problem can be solved to place in
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evidence the skin effect inherent in the present theory. It is that of a spherical cavity with
uniformly distributed surface charge, embedded in an infinite linear elastic dielectric.
It is then found [17] that a part of the electrostatic potential dies out exponentially at far
distances from the surface of the cavity, an effect quite similar to that due to the Debye
potential in plasma physics.(®)

4.3. Isotropic dielectrics with polarization gradients [18]

In that case Eq. (4.1) yields
(4.16) Vig—-V:P = —qé(x).

But P must also satisfy a new balance law (known as the intromolecular force balance
law [20]) which, on taking account of polarization gradients, reads for isotropy and electro-
statics:

4.17) BV2P—aP—Vé = 0,

where b and a are material constants. Upon combining Eqs. (4.16) and (4.17), we arrive
at an equation of the type (compare Eq. (3.8))

— VR = L.
418) y= RV = s 80,
where y = V- P and the characteristic length 1, is defined by A7 = b/(1 +a). The solution
of Eq. (4.18) again is of the type (4.6). We thus see that three conceptually different models
of rigid isotropic dielectrics yield the same solution (4.6). The relationship either with
the model equation (2.1) or the model solution (2.2) is clear.

5. The example of surface tension

The examples examined in the foregoing sections dealt mainly with the problem of
smoothing out singularities. However, the fact that characteristic lengths intervene makes
it clear that both gradient-like theories and nonlocal theories are of interest in problems
concerned with boundary layer phenomena, thin films, effects of dislocations in elastic
solids, microcracks, the propagation of disturbances of short wavelengths, the penetration
of surface waves and, obviously, surface phenomena of which surface tension and capillarity
are the mechanical tenets. In solids surface tension results from electronic bondig, while
Van der Waals’ forces are résponsible for the phenomenon in liquids. In the case of liquids
a typical approach [21]-[24] relies upon the use of a density-gradient theory, hence a first-
order gradient theory in the formalism of Eq. (1.3) if 4 is none other than the density g.
This sort of approach can be traced back to KORTEWEG [25]. Specializing the equations
of Ref. [22] to the case of non-ferromagnetic liquids and using a potential energy per unit
mass of the Cahn-Hilliard type [23], i.e.

p

(5.1 v = flo)+ % (Vo)?, B = const,

3) Com;are Eq. (5.106), p. 180 [32].
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we obtain the boundary conditions at a surface X' which has a discontinuous tangent plane
(oriented edge I") in the form

[t;Iny = —2Qony+Dy¢ on  X-T,
$a) R+on=0
while along I', (v: binormal to I")

(5.3) E+[ov] = 0.

Here n is the oriented unit normal to 2, £ is its mean curvature, and D; indicates the
tangential derivative on Z. #;; is the Cauchy stress tensor, E is a linear density of force,
R is a so-called double normal force, and o is the surface tension. #, ; and o have constitu-
tive equations derived from Eq. (5.1) in accordance with (8/én = n- V)

ty = —(pdy+Poi0.)),

(54) S 5 do
p=0rtef--efV, o=ef5.

The first term in the right-hand side of Eq. (5.2), is the classical term of Laplace’s theory
of capillarity. The remaining term does not appear in Laplace’s theory although it also
pertains to a second-order geometrical description of the surface 2. At rest, the “capilla-
rity action” R imposes the value of o. If R is constant on Z, so is ¢, hence D;o = 0. The
value of the stress also follows, but not in an extremely thin boundary layer since o being
fixed by the data R, the value of dp/dn follows and density will increase form the surface
through this layer beyond which it will remain practically constant, so that #;; will then
reduce to a pressure term. But within this layer where density is strongly non-uniform,
the stress is no longer spherical. The expression of this stress is corroborated by the kinetic
theory of gases. The characteristic length involved in the problem above is given by A% =
= p%B/po, Where g, and p, are typical densities and pressures. The above development
can be generalized to the case of ferrofluids [23]. In contrast to the present approach,
ERINGEN [26] provides a phenomenological representation of surface effects in liquids
on the basis of a nonlocal theory: His expression for ¢ is given by

(55 o) = 01, ) o (V )z, FEZ,

where V' and d/dn’ are computed at r’, 7(r, r’) is a nonlocal parameter whose dimension
is that of ¢3f, and wu is the displacement field. Similar arguments lead the same author
to a phenomenological explanation of surface tension in elastic solids on the basis of
a nonlocal theory [29]-[30], whereas MINDLIN [31] prefers a strain-gradient theory and
Brivowskl [27] and GURTIN and MURDOCH [28] favour an approach using the notion of
elastic surfaces.

6. Conclusion
The following conclusions can be drawn at once from the series of examples dealt

with in the foregoing sections. First we witness the exemplary value of the model equation
(2.1) and of the model solution (2.2), the former with respect to an approach dealing with
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gradient-type theories, and the latter with respect to both gradient-type and nonlocal
theories. Closely related to the second point is the recurrence of typically simple kernels
in the various nonlocal theories set forth [compare Egs. (3.3), (3.11) and (4.8)]. It is the
drastic simplicity (one could also say the rather obvious form) of these kernels that makes,
in the cases described, the use of either a gradient-type theory or a nonlocal theory appear
as a matter of personal taste. Thus, in our opinion of a non-specialist, the interest of non-
local theories should stem from two facts: that it be possible to determine the expression:
of the kernel from a microscopic theory; this is the case for Eq. (3.7) on the basis of an
electronic kinetic theory, and for Eq. (3.11) on the basis of the BCS theory of supercon-
ductivity; (ii) that the imagination of scientists be such that kernels be constructed so as
to yield solutions regdily different from those that can be obtained from a gradient-type
theory or a micromorphic theory and therefore the relative value of each phenomenolo-
gical representation could be determined. Should lack of imagination be the case, one can
always try to build such kernels as to agree, for instance, with a dispersion curve obtained
from a microscopic theory, and then use these kernels in other applications. This attitude
is exemplified by the remarkable trianglewise kernel introduced by ERINGEN [29] in non~
local elasticity, namely for a nonlocal elasticity modulus of dimension L™*:

K{(x)=1(l—ixj_i—) for Ecl<1,

(6.1) 4 4
=0 for !—}I- >1,

which allows a perfect fitting of the dispersion curve over an entire Brillouin zone (of
width 24) for elastic waves, and thereafter is conveniently used in solving problems such
as that of Griffith’s crack (see recent works by A. C. Eringen).
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