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Abstract

Truss-Z (TZ) is a skeletal system for creating free-form pedestrian ramps and ramp
networks among any number of terminals in space. TZ structures are composed of
four variations of a single basic unit subjected to affine transformations (mirror reflec-
tion, rotation and combination of both).

This paper presents a new approach to the optimization of the layout of a single-
branch Truss-Z (STZ) in constrained environment (£). The problem is formulated as
follows: create an STZ from a start (sP) to end point (eP) without self-intersections
and collisions with two obstacles. This is a multi-criterial optimization problem where
three independent objectives are subjected to minimization: the total number of mod-
ules (n), the “reaching error” to eP (&) and the “overlapping error” (g,). All three
criteria are weighted and aggregated to a single cost function (CF).

The calculation of CF is based on image processing of rendered geometry of
individual STZs in E. The optimization is performed by population-based classic
heuristic method - Evolution Strategy (ES). The computation of CF is the most time-
consuming, however, its parallelization is rather straightforward.

Two parallelization methods are presented: distribution over Wolfram Lightweight
Grid™ and application of general purpose graphical processing units (GPGPUs) with
the use of CUDA platform.

Keywords: Extremely Modular System, Truss-Z, discrete optimization, image pro-
cessing, rasterization, GPGPU, CUDA, Mathematica™, Wolfram Lightweight Grid™,

1 Introduction

The idea of Extremely Modular System (EMS) has been introduced in 2016 [1] by the
author. The purpose of EMS is to create free-form objects in a given environment (E)
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without obstacle-, and self-collisions. The concepts of two EMSs: Truss-Z (TZ) and
Pipe-Z (PZ) have been presented by the author in References [3]] and [2]], respectively.

EMS jointly meets the following three criteria:

1. EMS allows for creation of structurally sound free-form structure.
2. The number of module types in EMS is minimal.

3. EMS is not constrained by a regular tessellation of space.

PZ is more “fundamental” and forms spatial single-branch knot-like structures by
assembly of one type of module, called PZM. TZ is a skeletal system for creating
free-form pedestrian ramps and ramp networks among any number of terminals in
space.

2 Truss-Z

TZ structures are composed of four variations of a single basic module (R) subjected
to affine transformations (mirror reflection, rotation and combination of both). The
naming convention follows the right-hand-rule, and R stands for a unit which “turns
left and ascends”. Unit L (left) is a mirror reflection of unit R. By rotation, they can be
assembled in two additional ways (R, rotated R and L, rotated L), effectively giving
four types of units. Some examples are shown in Fig[l]

projection A=

Figure 1: On the left: TZ basic unit (R). Upper row: orthographic views. Lower row:
section A-A showing the slope, top view and axonometric view. On the right: some
basic examples of single-branch TZ structures. Upper row: “straight and flat” with 8
units, “straight up & down” (8). Lower row: a flat ring (12), and a helix (12).



Previous research on TZ system focused on discrete topological and geometric
optimization of Truss-Z module (TZM) [5] and a number of methods (including graph-
theoretic algorithms [6], meta-heuristic [[7]], etc.), for global optimization of sample TZ
structures, have been presented. Moreover, primary analysis of deployable TZM has
been presented in [8]].

As mentioned in the Introduction, all EMS structures, including TZ must be in-
stalled in an environment E without violating given obstacles (O) and without self-
intersections. However, in the previous studies, the environment setups made possible
to ignore the self-intersection prohibition. In all those cases it was intuitive to assume
that the best TZs, that is comprised of the smallest number of units would not self-
intersect. It was natural, as intersection detection is a well known and very difficult
problem in surface modeling [9]], especially that each TZM is considered as an in-
dividual graphical element to be checked against each other. The computations are
performed in Mathematica™ environment.

3 The problem

This paper introduces the problem of self-intersection to the optimization of a two-
dimensional single-branch TZ path (TZP). A specifically arranged environment E*
contains two obstacles, the end terminal (eP) and the position and direction of the
initial TZM. In E* the shorter TZPs cause either self-intersections or collisions, as
shown in Fig[2]

Figure 2: Two possible TZPs in the environment E*. Two obstacles, initial TZM
and the end terminal (eP) are shown in: gray, cyan and green, respectively. From
left to right: both TZPs are non-allowable as they violate either: the obstacles, or
self-intersection prohibition, respectively.

As Fig[2]indicates, the criterion reflecting the self-intersection prohibition must be
embedded in the algorithm in order to generate allowable TZPs and ultimately — the
optimal TZP.



4 Meta-heuristic approach: Evolution Strategy

In two-dimensional case, each trapezoidal unit can be placed in two alternative orien-
tations (0 or 1). Therefore the number of all possible solutions grows exponentially,
namely as 2", where n is the number of units. For example, there are 1,125,899,906,842,624
possible solutions for a 50-unit TZP. If the evaluation of each TZP took one millisec-
ond, the entire process would require almost 36 millenia. Thus it is rational to use

a population-based meta-heuristic method. In this paper it is the classic Evolution
Strategy, which is based on intensive mutation and does not employ recombination.

4.1 Encoding of TZP in base-36 numbers

Although TZ structures are three-dimensional, in this paper, the problem is reduced
to the projection on the 2D plane. A single trapezoid, called 1, which corresponds to
units R and L,, and its rotation, called 0, which corresponds to L and R;, allow creating
a path of virtually any trajectory. For a corresponding interactive demonstration, see
[4]. The encoding of a TZP is straightforward. It is a binary string of Os and 1s, cor-
responding to: the left- and right-turning trapezoids, respectively. The genetic opera-
tions are performed directly on such binary lists. This encoding can be “compressed”
by simple conversion to the numbers of higher base. The higher is the numerical base,
the shorter is the notation. Base-36 is the most compact case-insensitive alphanumeric
numeral system which uses ASCII characters. In base-36 the digits are represented by
the Latin letters a. ..z, and the Arabic numerals 0...9. Since some TZPs have Os in
the beginning of the list of units which would be truncated in conversion to base-36
equivalents, a 1 is added at the beginning of each sequence. This compact encoding is
particularly practical in comparisons among various TZPs, e.g.:

{0,0,0, 1,1} —{1,0,0,0, 1, 1} — 1000115 — z36

4.2 Mutation types

Two types of mutation have been defined:

e “Flip mutation” changes the value at randomly selected loci to the opposite
values. Its probability is controlled by parameter mr : 0 > mp > 1, where 0 and
I return: no change at all and mirror reflection of entire TZP, respectively.

e “Length alteration” changes the length of a genotype. One of three actions is
randomly selected:
— Remove the last unit from the genotype.

— Append a unit to the genotype. The value of appended unit is randomly
selected from {0,1}.

— “Do nothing”.



This type of mutation is controlled by probability m4. The probabilities of re-
moval and addition of a unit are equal. This means that for my =0 and my = 1:
the genotype will not be altered, and will certainly be either shortened or ex-
tended, respectively.

The following subsection shows that both types of mutation are necessary for the
convergence of the algorithm.

4.3 Quasi-experiment

In this quasi-experiment the convergence of algorithm from a random population to a
given genotype is examined.

e Populations size: 100.

e Genotypes in the population: the sequences of random lengths between 20 and
50 integers from set [0,1].

e The target genotype is a sequence of random integers [0,1] of length 40.
e Selection type: “roulette”.
e 200 iterations unless the ideal solution is found.

e The selection is based on Hamming Distance between the target genotype and
each individual in the population. If the compared genotypes have different
lengths, that difference is added to the dissimilarity. The lower the dissimilarity,
the higher is the probability of selection for the next generation.

Fig. |3 shows two plots with only one type of mutation applied compared to a plot
where both mutations are applied.
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Figure 3: 10 trials of quasi-experiment in three set-ups. From the left: no “flip muta-
tion” (mr = 0), no “length alteration” mutation (m4 = 0), and both types of mutation
combined. Red, black and gray indicate: O dissimilarity to the target genotype, the
minimal and mean dissimilarities in each generation, respectively.

As Fig. [3|indicates, both types of mutation must be applied in order for the algorithm
to converge.



4.4 The Cost Function

Proper formulation of the objective function is usually the most challenging issue in
optimization. Here it measures three independent variables: the total number of units,
the distance to the terminal eP and degree of collisions (both self-intersections and ob-
stacle violations). Since all three are to be minimized, the objective function is called
the cost function, CF for short. The number of units is obvious for each genotype
since it is simply its length. The computation of the minimal distance to eP (called
“reaching error” &) and the collision violation (&) are based on image processing of
the rendered image of each individual TZP. The motivation for such decision was as
follows:

1. According to preliminary experiments, this method seemed faster than combi-
natorial analysis of geometrical intersections.

2. Ultimately the same approach is to be applied to fully 3D Truss-Z optimization,
with the use of Mathematica’s Image3D function.

3. The problem of quantitative measurement of intersections is even more discour-
agingly difficult with 3D solids than 2D convex polygons.

4.4.1 Collisions

The quantitative measurement of collision violation (&) is based on the image pro-
cessing of rendered potential solution (TZP) in the environment E*. Fig/4] shows an
example of a candidate solution.

acP

Obstacle 1 Obstacle 2

\/

Figure 4: RGBA (red, green, blue and alpha) image of the environment £* with two
obstacles (shown in light red and blue), end terminal eP, initial unit outlined in black,
and a sample TZP shown in light green. In other words, TZP uses green channel, and
the obstacles use red and blue channels. Alpha channel is used of opacity.



As FigH] indicates, the objects are rendered with opacity, so the collisions can be
easily detected and evaluated quantitatively. The collision violation (&.) is measured
by the number of pixels of different colors. Fig[5|shows the collection of considered
“collision colors”.
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Figure 5: RGBA colors used for the Cost Function CF. Each cell of this table contains
the following: small sample of color/s in full opacity, the result of their overlapping
and its RGBA value.

Detailed and quantitative information about objects overlapping can be derived from
simple counting of the pixels of certain values. E.g. pixels of RGBA value: {0, 1, 0,
0.188235} indicate areas where TZP units overlap once. RGBA values: {0.478431,
0.517647, 0, 0.188235} and {0, 0.517647, 0.478431, 0.188235} indicate the areas
where TZP collides with obstacles 1 and 2, respectively, etc.

4.4.2 ‘“Reaching error”

The distance of TZP to eP is also measured by an image processing method. Firstly,
an analog of potential distance field, (DF), is generated for E* as shown in Fig@

Obstacle 1

Figure 6: The analog of DF created with radial gradient fill spanning from eT to the
farthest corner of considered E*. The TZP “mask” and eP are shown as: transparent
white and white disk, respectively.



Secondly, a “mask” is created from the considered TZP. The smallest value of DF
within that mask measures the distance to eP.

4.4.3 Aggregate Objective Function

Finally, all three measurements are combined to a single Aggregate Objective Func-
tion (AOF) as follows:

AOF =n+w, X & +w, X & (D)

where n, €., and €. are: the number of TZP units, the “reaching error” and “collision
error”’. & has values from the range: [0,1] and does not require normalization. & is
normalized to the reference non-self-intersecting TZM of the same number of units,
so that 0 > €. > 1. w, and w, are parametric weights corresponding to &, and &,
respectively.

4.4.4 Calibration of weights for AOF

Firstly, a number of TZPs of various quality have been generated. Secondly, they have
been ordered according to the author’s intuition to reflect their decreasing quality, as
shown in Fig[7]
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Figure 7: 11 TZPs ordered from the best to the worst according to the author’s judg-
ment. On the top of each TZP its base-36 encoding and the list of {n, &, &} are
given.

The weights w, and w. have been “manually” adjusted, so that AOF is monotoni-
cally growing along with worsening quality of TZPs, as shown in Fig[8]
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Figure 8: For w, = 1000 and w, = 10000 AOF grows approximately monotonically.

5 The experiment

The experiment has been carried out with various combinations of mutations’ (flip &
length alteration) probabilities, populations sizes, selection types, etc. The values of
the parameters which produced repeatedly the most reasonable solutions are collected
in Tabl1l

Table 1: The final set-up for the experiments

Population size 400

Selection type Roulette

Mutations’ probabilities my = 0.6, mp =0.3
Maximum number of iterations | 50

Fig. [0 shows a sample trial with the parameter set-up listed above and the best result
with its base-36 encoding.
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Figure 9: On the left: the convergence on the algorithm. Minimal and mean values in
each generation are shown by black and gray lines, respectively. On the right: the best
solution after 50 iterations.



6 Parallelization

The calculations described above take advantage of Mathematica functionality. Pro-
gramming in this environment is very intuitive, however, the computation of the CF
for a single TZP takes approximatively 1 second on an Intel i17-3517U CPU @ 1.90
GHz 2.40 GHz notebook. As a result, a single generation of a population of size
400 takes approximately 6.5 minutes. Consequently, a 50-iteration experiment takes
approximately 5.5 hours, which is far from satisfactory or comfortable.

Parallelization is the most natural direction, especially that the TZPs in every pop-
ulation form a table which can be easily split among several kernels. Our institution
is equipped with a HPC cluster of four six-core Xeon X7460 CPUs @ 2.66 GHz with
Mathematica installed. Theoretically, approximately a 24-times acceleration could be
expected, which would result in less than 14 minutes experimentation time.

Unfortunately, in this case it is not possible. The graphics rendering functions used
for CF calculation require Mathematica’s front end (i.e. graphical user interface, GUI
for short). In other words, this process can not run on a headless server. Usually, due to
licensing, the number of front-ends is much lower than for kernels. Therefore, in order
to make use of several computers with Mathematica front-ends Wolfram Lightweight
Grid must be used.

6.1 Wolfram Lightweight Grid

The Wolfram Lightweight Grid (LW G) is a system for launching, managing, and using
Mathematica kernels across a network. It is particularly useful for creating an ad hoc
grid built out of a collection of different types of computers. Potential benefits of LW G
have been examined with a local network of just two computers: a notebook with MS
Windows 8.1 and a desktop PC with MS Windows 7. The LWG server has been
installed on the former one. Several combinations of kernel usage has been examined.
The results have been collected in Table

Table 2: Wolfram Lightweight Grid (LW G)

Cores — 1 2 4 6 | 8
Notebook i7-3517U CPU | 6.59 | 4.8 [ 3.7 (2 x 2 logical)
@ 1.90 GHz 2.40 GHz 2.68 1.79 L14 | 1.22
Desktop i7-4790 CPU (1+1) (2+2) (2+4) | (4+4)
@ 4x 3.60 GHz 3.5 | 1.76 |IN@X physical) ™|

As Table 2] indicates, in this particular problem, there was no clear benefit of using
LW G, and the best performance was reached by the most straightforward setup on a
single more powerful machine.
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7 Cost function computation by GPGPU

There are other alternative methods of calculating the cost function (CF). In many
cases the overlapping convex regions could be calculated quantitatively by geometrical
methods, which are incomparably faster.

However, presented here image processing approach has certain benefits which are
practically impossible to implement with other methods:

1. The obstacles can have absolutely free-form shapes including non-convex poly-
gons, B-spline regions etc.

2. The penalty for violating such obstacles does not have to be constant.

As demonstrated above, Mathematica functions are very versatile but also quite
time-consuming. However, high performance general-purpose computing on graphics
processing units (GPGPUs) seem to be perfectly suited for such tasks. A simple pro-
gram has been implemented in CUDA platform for testing. It evaluates all individuals
in each population in two steps:

1. The entire population is rendered as a single image (texture) with the use of
OpenGL.

2. The CF is calculated for all TZPs on that image with the use of CUDA.

Obviously, the size of this texture depends on the required size of sub-image for
each TZP, and their number in population. E.g. assuming that each TZP requires an
image representation of 600 x 600 pixels, and there are 256 of them, the resulting
texture will have 9600 x 9600 pixels.

Since the obstacles are rectangular and TZP units are trapezoidal, all the population
(including obstacles) are rendered with the use of quadrilaterals (quads). It is worth
mentioning, that OpenGL is highly optimized and uses the graphics processing units
(GPUs) very efficiently. As a result, such procedures are practically instantaneous.
Indeed, as our calculations indicate, for a population larger than ~ 100, drawing a
single TZP takes approximately 0.002 ms. For smaller populations the CPU-GPU
memory transfer factor increases this time, however not significantly.

In the subsequent step, appropriate CUDA kernels are deployed to calculate all
the overlapping regions in order to compute the CF. This can be executed in various
ways, and the efficiency of the solution will depend on the reduction mechanism.
In this paper a straightforward approach is analyzed, where a single CUDA block
with threads calculates the overlapping regions for each individual TZP. Therefore
the number of threads is equal to the size of the population, and its size is limited
according to a particular device and CUDA specifications. Normally the maximum
number of threads per block is 1024.

Figure [I0] compares the dependence of the time 77zp required to calculate the CF
for a single TZP to the size of population (P) between CUDA and a serial program
running on CPU.
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Figure 10: The log-plot showing dependence of CF' calculation time (17zp) for an
individual TZP in the population of size P. Hardware used: 17-4790 @ 3.6 GHz
with GeForce GTX 960. The P number of CUDA threads and serial CPU process are
shown by black line and gray dots, respectively. In both cases, the entire population is
drawn with OpenGL and thus the parallel capabilities of the GPU are employed. The
corresponding computation times in Mathematica is indicated by a dashed line.

As Figindicates, for small P, the computation time for 77zp by CUDA decreases
due to the overhead time for copying data between the host and the GPGPU device
being shared among the TZPS. T7zp is minimal at the point where the GPGPU can as-
sign a single thread to all TZPs. Afterwards, the overhead related to switching threads
in the block increases, and finally from P =~ 400, the scaling of Trzp becomes ap-
proximately linear. Further optimization of the CUDA process can be done relatively
easily. Nevertheless, presented here, simple solution speeds-up the CF computations
substantially. As a result, a population of 500 TZPs can be evolved for 100 generations
in approximately one minute.

8 Conclusion

A new, image processing-based optimization method of Truss-Z planar path (TZP) in
an environment constrained by obstacles has been presented. A novel method of quan-
titative evaluation of TZP self-intersections and TZP obstacle violation is introduced.
The optimization is based on a classic meta-heuristics, i.e. Evolution Strategy. The
cost function (CF) used for evaluation of TZP is computationally expensive. Two par-
allelization methods are presented, namely: Wolfram Lightweight Grid, which was not
particularly effective, and CUDA platform, which sped-up the optimization algorithm
by a few ranges of magnitude.
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