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Homogeneous solutions and energy
of a linear anisotropic elastic strip

R. WOIJNAR (WARSZAWA)

HomoGENEOUs solutions for a linear anisotropic infinite elastic strip are given when the axis
of anisotropy of the strip is not parallel to the boundary line. The solutions are then used to
obtain the Airy stress function for a rectangular anisotropic disc subject to tension.

Przedstawiono rozwiazania jednorodne dla liniowego anizotropowego nieskoniczonego pasma
sprezystego, w ktorym o$ anizotropii nie jest rownolegia do brzegu. Rozwigzanie to wyko-
rzystano nastgpnie do otrzymania funkcji naprezeni dla prostokatnej tarczy anizotropowej
poddanej rozciaganiu.

ITpencraBneHs! 0QHOPOAHBIE PEIUEHHA IS JIMHEHHOH aHH30TPOIHOH OeCKOHE4HOH ynpyroit
N0JIOChl, B KOTOPOH OChb aHH30TPOIHMH HE Napajule/ibHa IpaHHIle. JTO PEleHHE HCNOIb30BaHO
3aTeM 1A IOJIyd4eHHs (PYHKUMHA HANpsKEHHH [JIA NPsAMOYIOJBHOIO aHH30TPOMHOrO JHCKA,
TIOJIBEPrHYTOr0 PACTSHKEHHUIO.

1. Introduction

CoONSIDER a classical problem of linear elastostatics for an infinite anisotropic strip when
the axis of the strip does not coincide with the axis of anisotropy (“off axis” case). The
boundaries of the strip are traction-free and loads are applied to the strip at infinity.

To analyse the stresses in the strip let us use the principle of complementary energy
in which the functional is expressed in terms of the so-called homogeneous solutions
s (FADLE [1], PAPKOVITSCH [2], KHACHATRIAN [3]). The solutions meet the required bound-
ary conditions as well as the compatibility equation. Similar solutions were employed
by CHol and HORGAN [4], to study an anisotropic strip in which the geometrical axis
of the strip coincided with one of the anisotropy axis (“in axis” case). It turns out that,
in our case, the energy functional depends explicitly on the three compliance constants
only,

bu = Cuus b12 = Cuzzs bzz = szzz-

This observation allows us to work out simple formulae for stresses in a rectangular disc.

2. Basic relations

The field equations describing the behaviour of the linear elastic homogeneous aniso-
tropic body in the absence of body forces and in the plane state of stress are as follows
(cf. [5] and Appendix A):
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2.1) E.=u, E =v, 2E,=u,+v,,

(2.2) SrxtSey,y =0, Sy+S,,=0,
E.=by;Sx+b1>,8,+b16S5x,

2.3 E, =b,;S:+b5,8,+b36S,,,

zExy = b165x+6265y +b668xy’

where u, v are components of the displacement in x and y directions, respectively, E,, E,,

E,, are components of the deformation and S, §,, S, are the stress components. Coeffi-

cients byy, 012, b2a, b16. bag, bee are components of the compliance tensor.
Between the deformation components the following compatibility relation takes place

24 Ey.yyt Eyux = 2Exy

which, expressed in terms of the stresses, is of the form

2.5) bSyxx—2b16Sx,xy 011 Sx.yy+ 0228, 55— 2026 Sy.x, = 0,
where

(2.6) = 2b,,+bss.

Expressing the stress components by a stress function @ = @(x, y) according to
(27) Sy = ¢,yw S,v = Q.x:u Sxy = —Q.xy,
the following form of compatibility relation is obtained

P ‘D ‘D I*D *®

d
(28) bzz—— aw'*‘baxz—ayz‘—zbls axay3 +b“ ayd' =0.

oxt 2b2

Let the stress function be of the form

a

2.9) D= D(x,y) = ) 0.

5=0

Functions f; satisfy the following differential equation

(2.10) BiafN42b g A S +BALS) +2b,6 A3f, +b,, A4S, = 0.
Using the substitution
2.11) [ = Cyet?,

we arrive at the following characteristic equation
(2.12) by pud+2b,6 A pud +bA2 2 +2by6 23 pus+by5 AF =0,

which, after introduction of a characteristic parameter

(2.13) = ";L:»
.takes the form
(2.14) b w*+2b, g3 +bw? +2b6w+by; = 0.
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Since Eq. (2.14) has, in general, four different roots, w;, i = 1, ..., 4, functions f; become

4
@2.15) fo= D Cuetew,
i=1

Constants C,; should be determined from the boundary conditions (cf. Appendix B).

3. Boundary conditions

The boundaries y = +1 of the strip are free of mechanical tractions; thus

(3.1) S,(x,») =0, S,0(x,y»=0 for y= 411, |x|< .
These conditions can be written in terms of the stress function in the form
3.2) D (x, =0, D, (x,»)=0 for y=+1, |x| < o0,
or, using Eq. (2.9), in the form

(3.3) L(£) =0, fi(x])=0,

Functions f; are called homogeneous solutions since they satisfy homogeneous boundary
conditions.

4. Quasi-orthogonality of the homogeneous solutions
Multiply Eq. (2.10) by A2f;, and the same equation taken with index r — by AZf;.

Next, substract the equations and integrate the result over the interval (—1,1). Integrating
the first three terms by parts and using the conditions (3.3) we find

1
@0 [ dyl—b (R f = 1 )+ 2 by RO ] = 3 f 1)
-1

+2by6 M2 AL (A LS fr = M [ S+ b22 A3 A2(A2 = ANV f1f] = 0.
Next, by virtue of (3.3) we obtain

1
(4.2) [av(fi+fif) =0,
-1
1
3) [ a1 =o.
-1

Integrating once more the term with coefficient b;, in Eq. (4.1) by parts and using
(4.2)-(4.3) we arrive at the following relation:
1

10 prr ;*r}'s 1 ger Ang ’ 222
4.4 dy|bi S Sy +ZbIGT—Tf' s +2bs ’ﬁfrfs —by, A AL f] =0,

-1
where A, # A,.
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If by = 0 and b,, = 0 (“in axis” case), we obtain the quasi-orthogonality relation
given by CHol and HorGaN [4],

1
[ dy®u 17 i =baz 2 A21f) = 0.
-1

In an isotropic case, when by, = b,,, we get the relations of generalized orthogonality
found by Papkovitsch, [2],

1
[av(ty s =22 2250 =o.
-1

5. Expression of displacements by homogeneous solutions

Stress components expressed by the homogeneous solutions read

(5'1) Sx o= Zeuhxﬁu’ S,. - Z Aie-—/hxf;, Sx_v - Z Ase—;'”‘fs'.
Hence, according to the constitutive relation (2.3), we have

J 0 '
(5:2) = D e Sl +bia Bfitbio A,

av —Jex " % ’
(5.3) S N AT S AT SN A3

du ov ) ,

(59 Iy +Tx = Ze_l'x(blﬁfs +b16 AT fi+bss ASS).

Integrating (5.2) with respect to x we get

I i
59 wm = Do (bu £ At 4500,
where g(y) is an unknown function. Hence, and in virtue of (5.4), we find

av ' '’ 1 e ’ ' ’
56 2= N eroso i b B b A4t L bbb )—g(y),

and after integration

1 e I s ’ ’
67N v= - Ee-kx[b“ ?fs +2b; Tf‘ +(bi2+bes)fs + b ).,j;] -xg M+,

s

where f(y) is an arbitrary function.
Substituting (5.7) into Eq. (5.3) we obtain

1 1 Ty 4 ! rr 4
- Ze-*ﬂ[bu?ﬂ‘ubm—fﬁ + Bra+bof: +bzsﬂ~¢]—xg O+ 0)
s 'S

== Z e—‘“*(blz _g”+b22 Aﬁf;+b262’&f~’7)’
s
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or, in virtue of Eq. (2.10)
—xg"'(—"(» =0.

Hence

g'Mm=0, f(»=0
and
(5.8) g(») = goy+gi, fO)=ro,

where g,, g; and f, are constants.
Therefore the displacements field reads

_1 l rr 1
(5.9 U= =— S e_l’x(bu i s b6 fs +b12 Asf;') +80Y+81>
1 e l ! ' 4
(5100 v— — _S’e—lsx[b,l—ﬁfs F2byo S+ (i boo)f: +b261d’,]—xgo+fo.

5.1. Alternative expression for the displacement component v

Let us integrate both sides of the Eq. (2.10) from y = —1 to y. Taking into account
the boundary conditions, we get

(Byy [ +2b, A S +BALSS +2b26 A3 [y + 022 A3 jf,dn = (by1fs +2bi6 Afy Viy=—1)-
-1
Hence, taking also into account the definition (2.6) of b, we find

; - l ., , . : -
by ZZfs +2b, A*f; +(b12+b66)fs +ba6 Asfy = hy—byofy —bag Afs— b2y AS ffsd”i,
s 'S _l

where
P l oy 1 r
hs= bll"}?fs +2b15“'2s'fs (y:—l).
Therefore
y

(5.11) v = X e 5 (b fitban A2 [ fidntbis Afi) —h—gox+fo,

s -1
where

h=h(x) =D e=h,.

5

6. Energy of a rectangular strip element

Elastic energy contained in a strip element between x = L, and x = L, (cf. Fig. 1)
is equai to
La 1

(6.1) E:%j dx [ dySyE, ij=12

Ly -1
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FiG. 1. Rectangular element of the strip with boundary I
or, making use of the divergence theorem,

(6.2) E= % f alS;ju;n;,
F

where n; represents the outward normal to the contour I" of the element. Here t:nsor
notation of the components is used and

uy = u, U, =0,
(6.3) E,=E, E;,=E, E,=E,,

Shie =8  Se=8 Si= S
On the segment P, P, of the contour we have d/ = —dy and n = (-1, 0).
Similarly,

on P,Py: dl= dx and n= (0, —1),
on PyP,: dl= dy and u=(1,0),
on P,P: dl=—-dx and n=(0,1).

Thus the energy expression is of the form

p= LS Camsuniv]., o[ [ aesiucn],
1 L,

+[ fldySnui(H)]x:Ler[f (—dx)Sizui(+l)]J=l}.
-1 L,

However, according to the boundary conditions (3.1), the integrals taken along the »aths
P, P, and P, P, vanish and

1

1
64 E=s f] A (Six sty = (S e

Denoting

(6.5) [ = (o dear,— (o dxatyo
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we write
1

(6.6) E= ;— fa'y[S,,u%—S,y'v]fjf.

=
Here
©.7) 5. =Re Y enfl,
(6.8) S.y = Re ) Aeb=f),
and

l rr ’
(6.9) u= —Re Z e_l”‘(bu _Z_fs +b;, lsf:v'i'blﬂf;) +8oV+8&i1s

5

1 1 s 1 H ’
(6.10) v = —Reze%x{buﬁf; $2by6 i+ (it beo)f: +bszs] ~gox+fo,

s

or, alternatively,
y
6.11) v =Re Y e (b, fi+bs A2 [ fidy+brsifs) —Reh(x)—gox-+fo.
s -1

After integration by parts and using the free boundary conditions (cf. relations (4.2)-(4.3))
we obtain

1
1
(6.12) E-—ré—— 2’2 _fl dY{bu[Re(e'l'xﬂ')Re(—}; e—sxf’

r

+Re(1,e""‘ﬁ”)Re( ‘ e"“f;’)]—bea[Re(e“'*i,fr’)Re(e"*"f;)]

A3

x=Ly
—2bye [Re(e—""l,.f,') Re (e"“x%fs”)]} ;

S x=1L,

when Egs. (6.7)-(6.8) and (6.9)-(6.10) are inserted into Eq. (6.6), or alternatively

1
1 T\ [ 1
—— = —dex g1 _ —Agx £
613) E=- E 2 _jl dy{ by, Re(e f,)Re(Ase J;)
x=L,

+2b12Re(e""xﬂ')Re(lse“‘sxf;')—bzzRe(e—""l,.f;)Re(lsze"*"f;)} )
X=L
when Eq. (6.10) is replaced with expression (6.11). In both expressions (6.12)-(6.13)
only three compliance constants are present explicitly. Moreover, for the special case
of anisotropy, i.e. orthotropy, the energy given by Eq. (6.13) is formally the same as that
expressed in the principal axis.
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7. Complementary energy principle

In order to solve a boundary value problem for the rectangular anisotropic elastic
disc shown in Fig. 1, the vertical boundaries of which are subject to prescribed displacements
u and 9, while its horizontal boundaries are stress-free, we use the principle of complemen-
tary energy expressed by the homogeneous solutions introduced in the previous sections.

The complementary energy is given by the formula
(7.1 F=E—Ejg,

where

EB = fSUnjaidl
r

or
1
Ey= [dy[us.+0S,Jizk,
-1
with
u(y) = u(x, y)}
n on x=1L or x=1L,, < 1.
S0 = vlx, ») : »
Thus
1
(7.2) Ey=)) [dyliRe(e=#f.")+dRe(e~ 2, f)izk:.
s =1

One can show (cf. Appendix B) that
(7.3) fi=Z¥,,

where Z; is an unknown constant and ¥; is a known function of y. If we introduce the
notations

P, = Py(x,y) = e"**¥ (),

0.= 4P, R=hP, S,=iP,

(7.4)

we get for the stress function (2.9)

(1.5) @ =) ZP,
and the complementary energy takes the form

i
F=D' dy{;—Z [—b1, Re(Z, P)Re(Z,0.) + 2b,, Re(Z, P Re(Z, R)
r ~1 s

x=La

by, Re(Z, R)Re(Zs S)] — [iRe(Z, PL)) + 9Re(Z, Rm}

x=L,
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Further, if we put
ZR—ReZ, Z!'=ImZ,
and
(Ps, 05, RE, S5 = Re(P,, O, R,, S)),
(Ps, 05, R, i) = Im(Py, Q,, R, S)),
and keep in mind that e.g.
Re(Z,P,) = ZRPR—~Z1P),

we find that

1
r= Y [olL D su@rer-zirmaser-zion
r =1 s

+2b1o(ZF PF = Z] PINZE RS — Z3 R) ~ b2, (Zf RY — ZL R(Z3 S8~ Z1 S))]
Z

X= L:
— [W(ZR P}~ ZI PI") + H(ZF RY — ZI R )}} ;
x=Lg
where primes denote y-derivatives, e.g.
PR _ oP¢
5 ay &

The complementary energy minimum conditions read
oF 0 JF
azr 0Z;

and result in the set of equations

Z(Aqszf_qu g) = E,,

(7.6) =0, g=1,2,..

&) .
2 (Cqszf_Dqu:) = Fq-
s

Here A,, By, C;s and Dy, are prescribed real-valued infinite symmetric matrices, expressed
in terms of the four roots of characteristic equation (2.14) resulting from the compatibility
equation, and of the infinite sequence 4,, (s = 1, 2, ...). Also, E, and F, denote prescribed
infinite vectors, cf. Appendix C.

If a solution (ZX, Z!) of (7.7) is found, the elastic state in the rectangular elastic disc
can be obtained by means of the stress function (7.5).
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Appendix A. Anisotropic body in a plane state of stress

The following equations describe a static behaviour of three-dimensional linear aniso-
tropic elastic body in the absence of body forces, [6],

1
(A.1) E;= ‘Z(uij+uji):
(A.2) Slj,j =0,
(A3) Eij = C!jmn Smn'

Here u;, E;; and S;, are, in this order, components of the displacement, deformation and
stress. Moreover,

(A'4) Cl'jmn = Cj!mn = Cijnm = Cmni_r'
are of the components compliance tensor being an inverse of the elasticity tensor().
Consider a linear transformation of coordinates (rotation)

X, = CapXp, Where ¢z = cos(x;, Xp).
Then the components of compliance tensor are transformed according to the rule
Cabed = €aiCbjCcmCan Crjmn-
In a plane state of stress parallel to the (x,, x,)-plane we have
(A.5) Si3=0, S8,;=0, S53=0
and relations (A.3) take the form

Ei1 = Ci111S11+C1122822 +2C1112512,
E;; = Crp11811+Cr22285,+2C521, 512,

(A.6) E33 = Ci311 511+ C3322822 +2C331, 542,
2E;3 = 2C;311811+2C53228,,+4C3312 512,
2E;3 = 2C1311511+2C132252,+4C1315512,
2E;; = 2C1211511+2C1222 822 +4C21,5),.

If we are interested in a solution of the (x,, x,) in-plane problem only, we ignore Egs.
(A.6)3,4,s. Applying the conditions (A.5) to the Eqgs. (A.1) and (A.2) we arrive at the
set of equations (2.1), (2.2) and (2.3). In these equations notations are used

X = X1, Yy =X, U=y, V= Uy,
E_r:Elis Ey=E22’ Exy =E12!
Sy = S11, Sy = S22, Sx,\' = Si2,

() In the monograph [6] the compliance tensor is denoted by Kijmn.
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and
b1 = Ci111> biz = Ci122, byy = Ciz2a,

bxs = 2C11125 bzs = 202212, bas = 4C1212-

Appendix B. Explicit form of ¥

Substituting (2.15) into boundary conditions (3.3) we obtain the following set of four
equations for every s

Cie+Cre"*+Cie>+ Cyet =0,
(B.1) Cie "1 +Cre "2+ Cye ™+ Che " =0,
Cip e+ Cou,e?+Cypuze*+Cypgets =0,
—Cipe " —Cru,e " —Cyuze s —Cyuse ™ = 0.
Subscript s is omitted for the sake of simplicity. The set (B.1) admits non-zero solutions
if and only if the determinant of C;, i = 1, 2, 3, 4, is identically zero, that is if
(B.2)  (uspta+papua)shiysShpras — (g oo+ ps pa) shpur 2 sh sy
— (@1 pratpopa3)shpashpss = 0.

We have denoted here

By = =ty hi=1,2,3,4.

In view of the relation (2.13) between p and A, the transcendental equation (B.2)
yields an infinite sequence of values A,. We express solutions of (B.1) in terms of C;,
obtaining what follows:

Wy —W; Sh(ﬂ)l—ﬂ)4) As

Cer w,—w; sh(w,—wy) A

l

Csl ]

w;—w, sh(w; —w,)A
C.. =
BT wy—w,  sh(ws—wy) A Cars

wy—w, sh(w;—wj)A4

CS4 - Wy — Wy Sh((D3 —G)4) Zs

Cy.

Thus the homogeneous solutions are of the form (7.3)
f! = Zsyjss
where we have assumed

Z: = Csl:

4
L

P, = ) e ehow,
i=1

and

e.?l' = Csi/Csla i= l’ 23 3a 4,
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Appendix C. The infinite matrices

The explicit formulae for matrices appearing in Eqgs. (7.7) are as follows:

1
Ay = fd}’["bu(P;”Qli”'*‘Pf” f”)+2b12(Pf'Rf’+Pf’R:')“bzz(RszR+RsRSf)]::.IEf,
A
By = [ dyl—bi(PRQM + PI"QL") +2b,,(PX RY + PY'RE') by, (RRS! + RISPEE,
A
E,= [ ay(iPF" +5RR)izE,
4
Co= [ dyl—b,,(PI"OX + PR"QI"y 4 . Jizh,
4
D, = f dy[—b,, (PI'QY" + PO + .. ks,

1
Fo= [dy(PY +oRYYizE:.
1

We see that expression for C,, can be obtained from that for B,, by interchanging the upper
index R with I, and expression for D, can be obtained from that for A4, by replacing R
by I. Now, after performing the integrations we get

1 = i
Ay = 5 Re {&+ 5}

B, = 5 Imditto},

el

1 ~
Cos =+ Im{E,+Zpe},

2
! g _=
Dqs = —2— Re {:q:—'—'q‘s})
where
By = A A(Ag+ Ag) [e~Gat AP i=Fa o
and
4 4
Rl
Xas = _5_, Ze&e?,-Hqsu(—buw?wﬁ +2b12wiwj_b22))
P
with
2 if iqwt = - )‘swj’
Hyy = 2 ;
S AN | RO ; : f i —Aw;.
Agwy+ A Shidwctdog) 3 il b

Moreover, Z,.; is obtained from 5, by replacing 4, by its conjugate A}.
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