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Microscopic foundations of the Barkhausen effect
M. SABIR and G.A. MAUGIN (PARIS)

THE THERMODYNAMICAL, phenomenological approach to coupled magnetomechanical hysteresis
effects recently proposed by the authors with a view to justifying the use of the Barkhausen
effect for measuring states of residual stresses is reviewed and the strong analogies between the
rate-independent elastoplasticity with hardening and the magnetic part of the modelling are
emphasized. In addition, a semi-microscopic model of magnetic hysteresis accounting for the
irreversible motion of magnetic domain walls is presented. Here also a mechanical analogy with
the micromechanics of dislocations and crystal plasticity are used whenever possible. However,
the natural outcome of this modelling, after passing to the scale of the sample, resembles visco-
plasticity in that a time characteristic is involved (the mean transit time of domain walls between
the successive structural defects on which they anchor). In the limit of vanishing transit time
the above, thermodynamically described, rate-independent behaviour is recovered.

W pracy przedstawiono termodynamiczne i fenomenologiczne podejscie do sprzezonych efektow
histerezy magnetomechanicznej zaproponowane ostatnio przez autoréw w celu wykorzystania
efektu Barkhausena do mierzenia stanéw napr¢zen resztkowych. Podkre§lono silne analogie
migdzy niezalezna od predkosci elastoplastycznoscia ze wzmocnieniem i magnetyczng czgscia
modelowania. Ponadto zaprezentowano poéimikroskopowy model histerezy magnetycznej
uwzgledniajacej nieodwracalny ruch scian domen magnetycznych. W przypadkach, gdzie to byto
mozliwe, zastosowano mechaniczne analogie z mikromechanika dyslokacji i plastycznoscia
krysztatu. Jednakze przez wprowadzenie charakterystycznego czasu ($redni czas przejicia
scian domen miedzy kolejnymi defektami struktury, na ktorych one kotwicza) naturalny wynik
tego modelowania po przejiciu do rozmiarébw probki jest podobny do lepkoplastycznosci.
Gdy czas przejscia dazy do zera, uktad wraca do opisanego wyzej, termodynamicznie niezaleznego
od predkosci zachowania.

B palore mpe[cTaBieHbl TepMOAMHAMHYECKHE H (EHOMEHOJIOTHYECKHE IOAXOALI K CONps-
JKEHHBIM 3G (heKTaM MarHeTOMEXaHIYECKOr'0 THCTEpEe3Kca, IIPeIJIOKEHHOTo B IIOCIeAHee BPeMsI
ABTOpaMH C LEJIbIO HMCIONb30BaHUA 3¢dekra BapkrayseHa oA HM3MEpEeHHS COCTOSIHHMM OCTa-
TOYHBIX HanpmKeHHi. IIoqYepKHYTBI CHIIBHBIE AaHAJIOTMH MEXKIY HE3aBUCALIEH OT CKOPOCTH
9JIACTOIIACTHYHOCTRIO C YIIPOUHEHHEM M MATHHTHOM YacThIO MojenvpoBaHusa. Kpome artoro
MpencTaBieHa IOJYMHKPOCKONKYECKast MOOEJb MarHMTHOTO THCTEPE3HCa, YUHMTHIBAIOLIAs
HeoOpaTHMoe JBHM(EHHE CTEHOK MAarHHTHBIX JoMeHOB. B ciyuasx, worma sTto ObLio Boamo-
KHO, IIPHMEHEHbI MEXaHHYECKHE aHaJIOTHH C MﬂKpOMEXaHHKOI‘;I OUCIIOKauIIM U C ILJ1IaCTH4-
HOCTBIO kpucTanna. HecMoTps Ha BBeJeHME XapaKTEPUCTHUECKOro BpeMeHH (CpefHee Bpems
[epexo/ia CTeHOK [OMEHOB MeYKIy MOoCIeNoBATENLHBIMY NedeKTaMH CTPYKTYpPBI, Ha KOTOPBIX
OHM 3aKpeIUIEHbI), €CTECTBEHHBI pe3yJbTaT 3TOTO MOJEIHpOoBaHus, IOCNIe Iepexoaa K
pasmepam ofpa3na, aHaJoTHUeH BA3KOIIACTHUHOCTH. Korja BpeMmst mepexofia CTPEMHTCA
K HYJIO, CHCTEMa BO3BpAlIaeTCA K ONMHCAHHOMY BBINIE TEPMOOUHAMHUECKH ITOBEIICHHIO,
HE3aBHUCHAIIIEMY OT CKOPOCTH.

1. Introduction

IN RECENT YEARS several techniques based on the use of electro-magnetomechanical coup-
lings have been devised with a view to developing some aspects of nondestructive testing,
especially for materials exhibiting residual stresses. Among these techniques we may single
out the use of the Barkhausen effect to measure residual stresses in magnetizable samples
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[1]. In previous works [2, 3] we have developed some theoretical phenomenological aspect
concerning a possible description and numerical simulations of this effect. From a pure
phenomenological point of view the essential problem was a combination of the now well-
established theory of deformable ferromagnets [4, 5] — revisited to allow for nonsaturation
of the magnetization — and arguments from continuum thermodynamics involving
irreversible processes of the mechanical plastic and magnetic hysteresis types through
the concept of internal variables. As a matter of fact, it is observed that the actual shape
of the magnetic hysteresis loop depends markedly on the level of stresses and, more particu-
larly, on internal stresses [6, 7], hence the necessity of this coupling between these two
phenomena. In fact, the magnetic part of this rather complex behaviour was built in com-
plete parallelism with the mechanical part (rate-independent plasticity with hardening)
except for the existence of magnetic saturation and of the first magnetization curve, two
aspects of ferromagnetism which rarely have mechanical counterparts. Among the variables
introduced in the phenomenological magnetic description, there was the volume residual
magnetization M® defined as the vectorial difference between the total magnetization and
the thermodynamically reversible magnetization M’, that is:

(L. MR = M-M".
This relation is analogous to the one for small strains in an elastoplastic body, i.e.
(1‘2) e — E—Ee,

where €° and € are the elastic and plastic contributions to the total strain €. Elements
of the phenomenological theory of stressed ferromagnets exhibiting magnetic hysteresis
will be recalled in Sect. 2. The purpose of the present contribution is to provide a semi-
microscopic justification of this macroscopic magnetic behaviour by examining the ferro-
magnetic sample at the scale of magnetic domain walls and then passing to the macroscopic
level. Obviously, it is already known that the irreversible magnetization of a sample results
from a succession of jerky motions (so-called Barkhausen jumps) of the many domain
walls (of various types) in the sample. These magnetic domain walls are anchored on
structural defects and there is a “flow” (motion) of a domain wall only if enough magnetic
dipole energy is injected in the system to overcome the anchoring energy. We briefly
introduce this type of model for one magnetic domain wall in Sect. 3 and pass to the resul-
ting macroscopic state of magnetization, or rather the time evolution of this state, in Sect.
4. Although the mechanical analogy continues to exist as in the pure continuum approach,
and this is used whenever possible at the different steps of the semi-microscopic modelling,
the best analogy which can be drawn is the one with a viscoplastic body (say, Bingham’s
fluid) in Sect. 5 since a characteristic time is necessarily introduced, contrary to rate-
independent effects (such as rate-independent plasticity) which served as models in the
thermodynamical theory of Refs. [2] and [3].

2. Phenomenological thermodynamical theory

In this reminder we focus our attention on the “magnetic part” of the model and the
influence of mechanical effects such as stresses on it. The main elements of the continuum
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thermodynamical model of magnetic hysteresis built in Refs. [2, 3] are as follows on account
of the additive decomposition (1.1):
Dissipation inequality:

2.1) H-Mf—#% > 0.
Free energy and state laws:
(2.2 V="M, )+¥;Hw
and
(2.3) H = d¥,/oM", # = d¥,/dw.
Normality rule (evolution equations):
(2.4) MR = 3—6{1’ W= — —a%,

with 2> 0if f=0and f=0and A=0if f < 0 and f < 0. In the above set of equations H
is the magnetic field vector, ¥ is the free energy (thermal influences are ignored ; the missing
argument in ¥,, may be a strain), lis a multiplier (analogous to the plastic multiplier
of elastoplasticity), w is a scalar magnetic internal variable, # (with the physical dimension
of a magnetic field) is its conjugated force, and f is the magnetic loading function. The
latter defines a convex set, C = {H, #|f(H, ) < 0} in the three-dimensional space
of magnetic fields. The following two results hold true [2, 3]:

25 H MR- =0
and
(2.6) H-M- >0,

of which the first is an orthogonality relation between time rates and the second expresses
the magnetic equivalent of “Drucker’s postulate” for plasticity with hardening. The latter
relation holds good only if the “stocked” magnetic energy ¥y, is concave in its argument w.
The modelling is completed by the data of the magnetic loading function f(H, #) and
the equation of the first magnetization curve H = ¢(MX) that defines how one starts from
a virgin state and tends toward magnetic saturation for large intensities of H:

Example of magnetic loading function (by analogy with the Hubert-Mises plasticity
criterion)

(2.7) fH, #) = (|H||,—#)?—-HZ, |H|,= (Ha,H)"?
or the two branches
(2.8) f* = (H|l.—#)F H,,

where H, is the so-called coercive field and a;; accounts for magnetic anisotropy.
First magnetization curve (this is the result of another modelling involving the motion
of domain walls that shall be given in a further work):

29) [Hll, = o(M®), M* = |MF||s-
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such that
(2.10) p(M®) = —p(—=MF), @ '(|H||, » £ 0) = + M},

where MPE is the saturation value of the residual magnetization.
It follows from Eq. (2.7) that Egs. (2.4) are consistent if and only if

@11 w(r) = [ (ME(R)a; MA())de < MR(D)
0

which is the so-called cumulated residual magnetization in strict analogy with Odqvist’s
parameter of plasticity with hardening. Thus we have a model that reproduces the formation
of magnetic hysteresis loops [3] and includes the effects of transients from a virgin state,
magnetic hardening and magnetic saturation. Stresses can also be accounted for in the
following manner.

Influence of stresses on the magnetic hysteresis loop

Since the formation of the final magnetic hysteresis loop (so-called major loop) depends
on both the function f and ¢, the influence of stresses & must be felt through these two
functions, i.e. we should write f = f(H, #, ¢) and ¢ = ¢(MZ~, ). For f a sensible general-
ization consists in replacing H by an effective magnetic field which accounts for the coupling
with stresses through a term of the magnetostriction type (piezomagnetism is not envisaged

! I

FiG. 1. Formation of the major magnetic hysteresis loop from a virgin state via an alternating magnetic
loading.
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being seldom met and altogether forbidden in isotropic and cubic structures of interest).
For instance, the components H; of H are replaced by

(212) ﬁi == Hl' e ZquU SpqmnMjR Omn s

MR

o e D T LR E TR R L

FiG. 2. Qualitative influence of uniaxial stresses on the major magnetic hysteresis loop.

oMon T

F1G. 3. Qualitative influence of uniaxial stresses on the instantaneous magnetic susceptibility for residual
magnetization.

23 Arch. Mech. Stos. 5—6/88
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where Sy 18 the tensor of elastic compliances and B,,;; is a tensor of “magnetostriction”
coefficients. For the one-dimensional model (obtained by projection — indicated below
by the subscipt (d)— along a direction d) the influence of stresses on ¢ is felt through the
limit (saturation) condition (2.10), by writing an equation of the type

(2.13) M? — MSR(G == 0) (1 —K(,”H(sd)o‘(d)).

where K, may be either positive or negative, depending on the material. This concludes
the reminder on the phenomenological thermodynamical model in which — this must
be emphasized — there appears no characteristic time, and which qualitatively reproduces
correctly the formation of the magnetic hysteresis loop (Fig. 1) and the influence of stresses
on the major hysteresis loop and the instantaneous magnetic susceptibility for residual
magnetization (Fig. 2 and 3).

3. Magnetization by motion of magnetic domain walls

3.1. Mean free path of a domain wall

We now consider a totally different avenue based on considerations of the individual
motion of magnetic domain walls. This motion is relatively easy in the absence of obstacles.
With such obstacles present, impurities or defects, the motion becomes more difficult
since it is hindered by a field of pinning pressure (the analogy for domain walls of the
Peierls—Nabarro force for dislocations). The most characteristic parameter of the motion
of a domain wall is the mean free path. Following an evaluation by L. NEEL [8], on a line
segment of length L on which N, obstacles are randomly distributed, the mean free path L,,
of a wall W is given by

(3.1) L,= Nid(l—eXP(—Nd))

and this obviously yields L, = L for N; = 0 and L,, = L/N, for large N;.

3.2. Motion of a magnetic domain wall in a region containing obstacles

A ferromagnetic sample is built of many magnetic domains D separated by domain
walls W of thickness d,, (cf. [9]) across which the change in magnetization is supposed
to occur through rotation in a smooth manner. To facilitate the analysis, we isolate one
domain wall W that separates two magnetic domains D~ and D* as indicated in Fig. 4.
The wall is schematized mathematically by a discontinuity surface of zero thickness.
Let m~ and m* be the magnetic dipole densities on each side of the wall, m~ and m*
being spatially uniform in D~ and D*, respectively, and of equal magnitude. With the
convention of hydrodynamical discontinuities, the jump of m across W is defined as

(3.2) [m] = m*—m-~.
The moments m* and m~, in general, may have any orientation relative to W. To simplify

the presentation, however, we assume that they have no components in the z-direction
and this will clearly apply satisfactorily to structures such as a thin film or a whisker with
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F1G. 4. Magnetic domain wall in motion.

a piane parallel to the z = O-plane. Ultimately the walls wiil belong to two families of walls,
the so-called 180° walls and 90° walls and this will fix the orientation of moments in adjac-
ent domains. When a particular wall W moves by an elementary distance Ax toward
positive x (along the n-direction) the increase in magnetization due to this displacement is
proportional to the area S swept by the wall and we can write in an obvious manner

3.3) Am = —[m] S4x.
34 m® = —[m]Sv,,

where 9, = v-n is the normal speed of displacement of the wall, v being its velocity.
Equation (3.4), transcribed per unit volume, is the magnetic analog of the celebrated
formula of OrowaN [10] that relates the rate of plastic strain &7 to the density of mobile
dislocations p,,, the (scalar) Burgers vector & (a discontinuity in the elastic displacement)
and the mean velocity », of dislocations by

(3.5) & = p,bvp.

For a one-dimensional model the speed v,, appearing in Eq. (3.4) can be estimated in the
mean as

L,

T;’

where L,, is the mean free path (3.1) and T, is the mean transit time of a wall between two
rest points. T, is zero if the motion is instantaneous and finite and non-zero when some
“viscosity” (obstacles) slows down the wall motion. An increase m® in magnetization will
occur only if a magnetic field, h at the microscopic scale, is applied. The magnetic dipole
energy in general is defined by E, = —m - h. The difference in such an energy on the two
faces of the domain wall W acts as a motive pressure for the motion of the wall. Thus in
agreement with L. NEeL [8] this pressure p, (W) is introduced by

(3.7) (W)= [E,] = —[m]-h

23+

(3.6) Ty =
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since h is the same on both sides of W. But impurities and structural defects have for effect
to generate inhomogeneities at a small scale and these, in turn, create antagonist “pressures”
which oppose the motive pressure in the course of the wall motion. As a simple model
we accept to represent this antagonist, pinning (anchoring) pressure field by an expression
formally similar to Eq. (3.7) but with h replaced by an inhomogeneous pinning or anchoring
“magnetic” field h,(x), that is, we write

(3.8) P4(W,x) = —[m] - h,(x).

By analogy with the mean time that is necessary for a dislocation to overcome an obstacle
(compare ZARKA [l1]), we propose that T, — which depends on both p, and p, — be the
larger, the closer p, is to p, from above (i.e. T; is inversely proportional to the gap between
the motive pressure (3.7) and the anchoring energy (3.8) on the condition that the former
be greater than the latter, otherwise there is no motion and thus m® = 0). Hence we propose

the expression

Co
3.9 T, =-—Q,
(29) Y )

where C, is a characteristic parameter of the magnetic material and we adopt the convention
that

A if A0,
(3.10) <A>:{o it 4<o0.

Notice that the combination of Eqgs. (3.6) and (3.9) provides a “law of motion” v,, =
= L.{pn—p.>/C, for the domain wall. As a consequence we can rewrite Eq. (3.4) as

: R SLW / ”hA”\
(3.11) i = (=) ((m]@[m]) - h.

This evolution equation for the residual magnetization related to one domain wall clearly
is of the “viscoplastic” type since it involves a characteristic time (through C,) and a
threshold (defined by |[h|| = ||h,||). An interesting limit case is the one where C, goes
to zero while L, remains finite, although small (see this limit procedure below for the
macroscopic magnetization).

In general domain walls belong to one of the two families known as 180° walls for
which [m] = —2me, and 90° walls for which [m] = —}/2me, = —)/2mn in the wall

frame, if m = /m*| = |m~|. Equation (3.11) thus reads
: 28L,m* 4 [lhally
Ri— "W " 4] —2 AN b
(3.12) m] C. \I Th| /) aiih;,

where a;; is a matrix defined in the frame of the wall W, and is such that

000 100
(3.13) a;=1020 for 180° walls, 000 for 90° walls,
001 001
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3.3. “Viscoplastic” potential for one domain wall

We pursue the analogy with the micromechanics of dislocations and crystal plasticity
processes. Let ¢, (h,0, w,, ..., wy) be the “viscoplastic” potential of a wall W, where 0
is the temperature (in fact assumed constant) and w, are internal variables. The wall will
be in motion only if the following inequality is satisfied:

(3.19) pw(h, 0, w) = 0.

This is some kind of activation criterion. In fact, in analogy with Schmid’s law of micro-
plasticity [12], we suggest to take for ¢, the expression

(3.15) @ = @1(h, 0)—g.(0, wy) = 0,

where @, is the limit threshold for the displacement of a wall (this may be zero). In the
present case we obtain agreement with Eq. (3.11) by taking

. SLW 2
(3.16) P = 56 <Pv—Da

and we check that Eq. (3.11) is nothing but

SR __ p,,

(3.17) m = ( o, )(wa} et

In the space of magnetic fields the surfaces with the constant potential ¢,, > 0 are regular,
the surface ¢, = 0 corresponds to the threshold of reversible motion, and the vector
mP~ is always normal to the equipotential surfaces — see Eq. (3.17). If we consider a virtual
magnetic field h* inside the region delineated by the actual potential, then, since the magnetic
domain already favourably oriented (relatively to h) will grow at the expense of the other
one, we have

m® h=—-Sz,[m|-h>0, m* h*=0
and thus
(3.18) mf - (h—h*) > 0,

which provides a microscopic magnetic analog of the Hill-Mandel principle of maximal
dissipation.

4. Macroscopic residual magnetization

Let S’ be the area swept in the mean by the magnetic domain walls in a sample. The
macroscopic magnetic field H is equal to h and the same for all walls in the sample. Let h
be the statistical average of the anchoring field h, and M, the saturation magnetization
per unit volume. We first express the local expression (3.12) in a fixed frame (common
to all walls) through a rotation operator that relates this frame and the frame of the in-
dividual wall. Then we take the average over all walls (i.e. all possible orientations) noting
that the time derivative and average commute. In the process that we do not describe
in detail, one introduces ||H,|| = h, where a superimposed bar indicates the average.
One uses the rule AB = AB (certainly not exactly verified) and has to compute the average
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of the orientation matrix a;; of Eq. (3.12) once the latter has been expressed in the fixed
common frame. We keep the same notation a;; for the resulting average up to a scalar
coefficient. The resulting macroscopic equation for MR is obtained as

: 28'L, M |[Halla
4.0 M = ¢, <] ~HL, >aqu,
where the macroscopic orientation matrix a;; in fact is proportional to unity if the distribu-
tion in orientation of 180° walls or 90° walls in the sample is equiprobable. The macroscopic
evolution equation (4.1) is also of the “viscoplastic” type. A macroscopic “viscoplastic”
potential @ can be introduced by

S'L

(33 P(H) = ﬁ(PH“PAV’
where :
{ 2M||H||, for 180° walls,
Pn = = R
H for 90
(4.3) V2M,|[H||, for 90° walls,

{ 2M,||H ||, for 180° walls,
Fy= V2M{H,||, for90° walls,

where the norm of magnetic fields is computed with the aid of «;; in agreement with the
definition (2.7),. It is immediately verified that

. oD
R._ .
4.4 M* = H
The macroscopic maximal-dissipation inequality
4.5 MF- (H-H* > 0

can be shown to hold for any H* inside the region of magnetic-field space delimited by the
actual equipotential surface @ = const > 0.
We rewrite Eq. (4.1) as
T [H.alla\ _ o
(4.6) M~* — C;<1— s H=
This is the form to be compared with the “plastic” type of magnetization incremental law
(2.4),; which, on account of couplings with stresses and of magnetic hardening, reads

. .
@.7) M* = J— f(H, #, 0).

The effect of residual stresses o in Eq. (4.6) can only be felt through H  since this field
accounts in some way for the distribution of structural defects. The relation between H ,
and the field ¢ is presently under study. In the thermodynamical continuum context where
the magnetic loading function is chosen as (2.7), it is found — for ¢ = 0 — that Eq. (4.7)
yields

4.8 * — wrren St s 0
(4.8) MR = M®(7) H] at f :

where MR is the cumulated residual magnetization. We can compare Egs. (4.6) and (4.8)
when C; goes to zero (no characteristic time).
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5. Analogy between the magnetic behaviour and Bingham’s fluid

The evolution equation (4.6) can be deduced from a dissipation potential & as follows
(compare [3]). The magnetic dissipation reads

(5.1 &, =H-MFf >0
in the absence of internal variables. Consider a special case for which
(5.2) D = |H glla-1 - IMF]| + C,|IMF[2-1,

where the first contribution is strictly analogous to the dissipated power of elastoplasticity
(the critical stress level o, and the plastic strain rate € playing the roles of ||[H,|| and M®
respectively), being homogeneous of degree one in MR, while the second contribution is
homogeneous of degree two (in fact quadratic) in MR and therefore resembles the Rayleigh
dissipation potential of viscous fluids (with C, playing the role of viscosity). Using Euler’s
identity for homogeneous functions of degrees one and two, one deduces from Eq. (5.2)
the equation for H in terms of MX and by inversion this yields Eq. (4.6) if |[H||, = |[H,]l.
and zero if ||H||, < |[Hl||,. This situation is entirely analogous to that describing the flow
of a Bingham fluid ([13], pp. 228-230) if one makes the correct identification (see Table

1).

Table 1. Analogy between residual magnetization process and flow
of a Bingham fluid

Residual magnetization Bingham fluid
M?”: rate D: strain rate
C, 2u: viscosity
||[H4||: anchoring field g: threshold
[[H|]: norm of magnetic field I/&TT: (second invariant

of stress)!/?

H: magnetic field o?: deviator of stresses

If C, tends to zero, we are left with the first contribution in Eq. (5.2) and the equation
for H simply reads

R,
(5.3) MR
or
6 o g Bl
M -1

The latter equation expresses the fact that ||H||, = ||H4||, and the vector MZ is propor-
tional to a-H so that, introducing a “plastic multiplier” A, one can write a priori

i ) . H,|,
(5.5) ME — ua,,H,lﬁ
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with 2 = 0 if [H||, < |[Hyll; and A2 > 0if ||H||, = ||H_ ||, in which case Eq. (5.5) reduces
to

(5.6) MF = 2)a,; H;

and

(5.7) = M- /2] H |-
If we set

(5.8) RS Y T

then w = MR(7) in agreement with the definition (2.11), and thus Eq. (4.6) goes into Eq.
(4.8) in the limit of vanishing C, or vanishing transit time, a situation for which the magne-
tization of the sample occurs through instantaneous jumps of a statistic population of
magnetic domain walls. This completes the set of analogies between macroscopic elasto-
plasticity with hardening and rate-independent magnetic hysteresis on the one hand, and
the micromechanics of dislocations and the jerky motion of magnetic domain walls on the
other, together with the passing from the microscopic level to the thermodynamically
governed macroscopic level. A theory of ferroelectric hysteresis can be built along the same
line by using the same kinds of analogies [14] although the underlying microscopic mech-
anisms may be quite different.
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