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Microscopic foundations of the Barkhausen effect 

M. SABIR and G. A. MAUGIN (PARIS) 

THE THERMODYNAMICAL, phenomenological approach to coupled magnetomechanical hysteresis 
effects recently proposed by the authors with a view to justifying the use of the Barkhausen 
effect for measuring states of residual stresses is reviewed and the strong analogies between the 
rate-independent elastoplasticity with hardening and the magnetic part of the modelling are 
emphasized. In addition, a semi-microscopic model of magnetic hysteresis accounting for the 
irreversible motion of magnetic domain walls is presented. Here also a mechanical analogy with 
the micromechanics of dislocations and crystal plasticity are used whenever possible. However, 
the natural outcome of this modelling, after passing to the scale of the sample, resembles visco­
plasticity in that a time characteristic is involved (the mean tran"Sit time of domain walls between 
the successive structural defects on which they anchor). In the limit of vanishing transit time 
the above, thermodynamically described, rate-independent behaviour is recovered. 

W pracy przedstawiono termodynamiczne i fenomenologiczne podejscie do sprz~zonych efekt6w 
histerezy magnetomechanicznej zaproponowane ostatnio przez autor6w w celu wykorzystania 
efektu Barkhausena do mierzenia stan6w napr~zen resztkowych. Podkreslono silne analogie 
mi~dzy niezale:ln<t od pr~dkosci elastoplastycznosci<! ze wzmocnieniem i magnetyczfl<l cz~sci~ 
modelowania. Ponadto zaprezentowano p6lmikroskopowy model histerezy magnetycznej 
uwzgl~dniaj(lcej nieodwracalny ruch scian domen magnetycznych. W przypadkach, gdzie to bylo 
mozliwe, zastosowano mechaniczne analogie z mikromechanik<t dyslokacji i plastyczno5ci~ 
krysztalu. Jednakze przez wprowadzenie charakterystycznego czasu (sredni czas przejScia 
5cian domen mi~dzy kolejnymi defektami struktury, na kt6rych one kotwicZ<t) naturalny wynik 
tego modelowania po przej5ciu do rozmiar6w pr6bki jest podobny do lepkoplastycznosci. 
Gdy czas przejscia d<t:ly do zera, uklad wraca do opisanego wyzej, termodynamicznie niezaleznego 
od pr~dkosci zachowania. 

B pa6oTe npe~craBJieHbi TepMo~HHaMWieCKH:e u: <PeHoMeHoJiorHtieCKile noroco~hi I< conp.SI­
meHHhiM 3cP<PeKTaM MarneToMexaHWiecKoro rH:cTepe3H:ca, rrpe.D:JiomeHHoro B nocJie,ll;Hee apeMH 
aBTopaMH: c ~eJibiO u:crroJlb30BaHH:.SI 3<P<PeKTa EapKray3eHa JJ:JI.SI H3Mepemur cocTo.SIHIDi: ocra­
TOtiHhiX HanpameHIIH. IIo~epKH)'Tbi CH:JlbHbie aHaJioru:u: Mem~y He3aBH:CH~eii oT cKopocrH 
3JiacTonJiaCTHtiHOCTbiO c ynpotiHeHH:eM H MarHHTHoii qacTbiO Mo~eJIHpoaamur. KpoMe 3Toro 
npe)];CTaBJieHa llOJIYMHKpOCKODWieCKaR: Mo~eJib MarHHTHOrO ri{CTepe3Hca, ~IBaiO~a.SI 
Heo6paTHMoe .D:BH)l<eHHe creHoK MarHHTHbiX ~oMeHoB. B CJIYtia.SIX, Kor.D:a 3TO 6hmo B03Mo­
mHo, npHMeHeHhi MeXaHWieCKHe aHaJioraH C MHKpoMeXaHaKOH ~I{CJIOKai{~H: If C DJiaCTilti· 
HOCTbiO KpH:CTaJIJia. HecMoTp.SI Ha BBe.D:eHUe xapaKTeplfCTWiecKoro apeMeHU ( cpe~Hee apeMH 
nepexo~a CTeHOK ~OMeHOB Melli~ IIOCJie)];oBaTeJlbHbiMH ~e$eKTaMH: CTpyi<Typbi, Ha KOTOpbiX 
oHH 3ai<perrJieHbi), ecTeCTBeHHbiH pe3yJlbTaT 3Toro Mo~eJIHpoBaHH:H, nocJie rrepexo~a I< 
pa3MepaM o6pa3~a, aHaJioru:tieH BR:3KOIIJiaCTWIHocru:. Kor)];a apeMH nepexo~a crpeMHTCH 
J< HYJIIO, CI{CTeMa B03Bpa~aeTCH K OIIH:CaHHoMy Bbiiiie TepMO)];IfilaMlftieCKI{ IIOBe~emno, 

He3aBHCR:~eMy OT CKOpOCTH. 

1. Introduction 

IN RECENT YEARS several techniques based on the use of electro-magnetomechanical coup­
lings have been devised with a view to developing some aspects of nondestructive testing, 
especially for materials exhibiting residual stresses. Among these techniques we may single 
out the use of the Barkhausen effect to measure residual stresses in magnetizable samples 

http://rcin.org.pl



830 M. SABIR AND G. A. MAUGIN 

[1]. In previous works [2, 3] we have developed some theoretical phenomenological aspect 
concerning a possible description and numerical simulations of this effect. From a pure 
phenomenological point of view the essential problem was a combination of the now well­
established theory of deformable ferromagnets [4, 5] - revisited to allow for nonsaturation 
of the magnetization - and arguments from continuum thermodynamics involving 
irreversible processes of the mechanical plastic and magnetic hysteresis types through 
the concept of internal variables. As a matter of fact, it is observed that the actual shape 
of the magnetic hysteresis loop depends markedly on the level of stresses and, more particu­
larly, on internal stresses [6, 7], hence the necessity of this coupling between these two 
phenomena. In fact, the magnetic part of this rather complex behaviour was built in com­
plete parallelism with the mechanical part (rate-independent plasticity with hardening) 
except for the existence of magnetic saturation and of the first magnetization curve, two 
aspects of ferromagnetism which rarely have mechanical counterparts. Among the variables 
introduced in the phenomenological magnetic description, there was the volume residual 
magnetization MR defined as the vectorial difference between the total magnetization and 
the thermodynamically reversible magnetization Mr, that is: 

(1.1) 

This relation is analogous to the one for small strains in an elastoplastic body, I. e. 

(1.2) 

where ee and eP are the elastic and plastic contributions to the total strain e. Elements 
of the phenomenological theory of stressed ferromagnets exhibiting magnetic hysteresis 
will be recalled in Sect. 2. The purpose of the present contribution is to provide a semi­
microscopic justification of this macroscopic magnetic behaviour by examining the ferro­
magnetic sample at the scale of magnetic domain walls and then passing to the macroscopic 
level. Obviously, it is already known that the irreversible magnetization of a sample results 
from a succession of jerky motions (so-called Barkhausen jumps) of the many domain 
walls (of various types) in the sample. These magnetic domain walls are anchored on 
structural defects and there is a "flow" (motion) of a domain wall only if enough magnetic 
dipole energy is injected in the system to overcome the anchoring energy. We briefly 
introduce this type of model for one magnetic domain wall in Sect. 3 and pass to the resul­
ting macroscopic state of magn~tization, or rather the time evolution of this state, in Sect. 
4. Although the mechanical analogy continues to exist as in the pure continuum approach, 
and this is used whenever possible at the different steps of the semi-microscopic modelling, 
the best analogy which can be drawn is the one with a viscoplastic body (say, Bingham's 
fluid) in Sect. 5 since a characteristic time is necessarily introduced, contrary to rate­
independent effects (such as rate-independent plasticity) which served as models in the 
thermodynamical theory of Refs. [2] and [3]. 

2. Phenomenological thermodynamical theory 

In this reminder we focus our attention on the "magnetic part" of the model and the 
influence of mechanical effects such as stresses on it. The main elements of the continuum 

http://rcin.org.pl



MICROSCOPIC FOUNDATIONS OF THE BARKHAUSEN EFFECT 831 

thermodynamical model of magnetic hysteresis built in Refs. [2, 3] are as follows on account 
of the additive decomposition (1.1): 

Dissipation inequality: 

(2.1) 

Free energy and state laws: 

(2.2) 

and 

(2.3) 

Normality rule (evolution equations): 

(2.4) • R ~ of 
M = 1

' oH' 
. · of 
w =-A. oJt, 

with ~ ;;?: 0 iff= 0 and j = 0 and i = 0 iff< 0 and j < 0. In the above set of equations H 
is the magnetic field vector, 'Pis the free energy (thermal influences are ignored; the missing 
argument in 'I'm may be a strain), ~ is a multiplier (analogous to the plastic multiplier 
of elastoplasticity), w is a scalar magnetic internal variable, Jt (with the physical dimension 
of a magnetic field) is its conjugated force, and f is the magnetic loading function. The 
latter defines a convex set, C = {H, £1f(H, £') ~ 0} in the three-dimensional space 
of magnetic fields. The following two results hold true [2, 3]: 

(2.5) 

and 

(2.6) 

of which the first is an orthogonality relation between time rates and the second expresses 
the magnetic equivalent of "Drucker's postulate" for plasticity with hardening. The latter 
relation holds good only if the "stocked" magnetic energy 'Po> is concave in its argument w. 
The modelling is completed by the data of the magnetic loading function f(H, J'f) and 
the equation of the first magnetization curve H = tp(MR) that defines how one starts from 
a virgin state and tends toward magnetic saturation for large intensities of H: 

Example of magnetic loading function (by analogy with the Hubert-Mises plasticity 
criterion) 

(2.7) 

or the two branches 

(2.8) f± = (11HIIa-£)+Hc, 

where He is the so-called coercive field and ail accounts for magnetic anisotropy. 
First magnetization curve (this is the result of another modelling involving the motion 

of domain walls that shall be given in a further work): 

(2.9) 
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such that 

(2.10) 

where M: is the saturation value of the residual magnetization. 
It follows from Eq. (2.7) that Eqs. (2.4) are consistent if and only if 

t 

(2.11) w(t) = J (Mf( r)ai/Mf( r) )dr ~ MR(t) 
0 

which is the so-called cumulated residual magnetization in strict analogy with Odqvist's 
parameter of plasticity with hardening. Thus we have a model that reproduces the formation 
of magnetic hysteresis loops [3] and includes the effects of transients from a virgin state, 
magnetic hardening and magnetic saturation. Stresses can also be accounted for in the 
following manner. 

Influence of stresses on the magnetic hysteresis loop 
Since the formation of the final magnetic hysteresis loop (so-called major loop) depends 

on both the function f and q;, the influence of stresses a must be felt through these two 
functions, i.e. we should write/= f(H, Yf, a) and q; = q;(MR, a). Forf a sensible general­
ization consists in replacing H by an effective magnetic field which accounts for the coupling 
with stresses through a term of the magnetostriction type (piezomagnetism is not envisaged 

FIG. 1. Formation of the major magnetic hysteresis loop from a virgin state via an alternating magnetic 
loading. 
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being seldom met and altogether forbidden in isotropic and cubic structures of interest). 
For instance, the components Hi of H are replaced by 

(2.12) 

...... ·.·.· 

... . .. . ... 0 • ••• •••••• • • • • ::. : ~ ,, •• • • • •••• •• ••••• cs<O 

--------~~-------6=0 

.. ·· ····-··· ····· ··· ::: ..... ·· ·:::::.:::· ........... ..... o>D 

H 

.... , ... ·.·.: ....... ... .... .... ......... . 

FIG. 2. Qualitative influence of uniaxial stresses on the major magnetic hysteresis loop. 

6<0 
: :,...........--

6==0 :' y-
f................ :"_..····· ... ··. 6>0 

.:::;:~~:::-:::://_.:::·.~.:.}::;:~E~c:-!, : ...... :~~::; .. . 
H 

FtG. 3. Qualitative influence of uniaxial stresses on the instantaneous magnetic susceptibility for residual 
magnetization. 
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where Spqmn is the tensor of elastic compliances and Bpqii is a tensor of "magnetostriction" 
coefficients. For the one-dimensional model (obtained by projection- indicated below 
by the subscipt (d)- along a direction d) the influence of stresses on cp is felt through the 
limit (saturation) condition (2.10h by writing an equation of the type 

(2.13) 

where K<d> may be either positive or negative, depending on the material. This concludes 
the reminder on the phenomenological thermodynamical model in which - this must 
be emphasized - there appears no characteristic time, and which qualitatively reproduces 
correctly the formation of the magnetic hysteresis loop (Fig. I) and the influence of stresses 
on the major hysteresis loop and the instantaneous magnetic susceptibility for residual 
magnetization (Fig. 2 and 3). 

3. Magnetization by motion of magnetic domain walls 

3.1. Mean free path of a domain wall 

We now consider a totally different avenue based on considerations of the individual 
motion of magnetic domain walls. This motion is relatively easy in the absence of obstacles. 
With such obstacles present, impurities or defects, the motion becomes more difficult 
since it is hindered by a field of pinning pressure (the analogy for domain walls of the 
Peierls-Nabarro force for dislocations). The most characteristic parameter of the motion 
of a domain wall is the mean free path. Following an evaluation by L. NEEL [8], on a line 
segment of length Lon which Nd obstacles are randomly distributed, the mean free path Lw 
of a wall W is given by 

(3.1) 

and this obviously yields Lw = L for Nd = 0 and Lw = L/Nd for large Nd. 

3.2. Motion of a magnetic domain wall in a region containing obstacles 

A ferromagnetic sample is built of many magnetic domains D separated by domain 
walls W of thickness ~w ( cf. [9]) across which the change in magnetization is supposed 
to occur through rotation in a smooth manner. To facilitate the analysis, we isolate one 
domain wall W that separates two magnetic domains D- and D+ as indicated in Fig. 4. 
The wall is schematized mathematically by a discontinuity surface of zero thickness. 
Let m- and m+ be the magnetic dipole densities on each side of the wall, m- and m+ 
being spatially uniform in D-:- and D+, respectively, and of equal magnitude. With the 
convention of hydrodyn~mical discontinuities, the jump of m across W is defined as 

(3.2) 

The moments m+ and m-, in general, may have any orientation relative to W. To simplify 
the presentation, however, we assume that they have no components in the z-direction 
and this will clearly apply satisfactorily to structures such as a thin film or a whisker with 
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FIG. 4. Magnetic domain wall in motion. 
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X 

a plane parallel to the z = 0-plane. Ultimately the walls will belong to two families of walls, 
the so-called 180° walls and 90o wa1Is and this will fix the orientation of moments in adjac­
ent domains. When a particular wall W moves by an elementary distance L1x toward 
positive x (along the n-direction) the increase in magnetization due to this displacement is 
proportional to the area S swept by the wall and we can write in an obvious manner 

(3.3) 

(3.4) 

Llm = - [m]SL1x. 

JiJ.R = -[m]Svw, 

where Vw = v · n is the normal speed of displacement of the wall, v being its velocity. 
Equation (3.4), transcribed per unit volume, is the magnetic analog of the celebrated 
formula of 0ROWAN [10] that relates the rate of plastic strain £P to the density of mobile 
dislocations f!m, the (scalar) Burgers vector b (a discontinuity in the elastic displacement) 
and the mean velocity vD of dislocations by 

(3.5) 

For a one-dimensional model the speed vw appearing in Eq. (3.4) can be estimated in the 
mean as 

(3.6) 
Lw 

Vw = Tr ' 

where Lw is the mean free path (3.1) and Tr is the mean transit time of a wall between two 
rest points. Tr is zero if the motion is instantaneous and finite and non-zero when some 
"viscosity" (obstacles) slows down the wall motion. An increase JiJ.R in magnetization will 
occur only if a magnetic field , h at the microscopic scale, is applied. The magnetic dipole 
energy in general is defined by Em = - m · h. The difference in such an energy on the two 
faces of the domain wall W acts as a motive pressure for the motion of the wall. Thus in 
agreement with L. NEEL [8] this pressure Ph ( W) is introduced by 

(3.7) 
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836 M. SABIR AND G. A. MAUGIN 

since h is the same on both sides of W. But impurities and structural defects have for effect 
to generate inhomogeneities at a small scale and these, in turn, create antagonist "pressures" 
which oppose the motive pressure in the course of the wall motion. As a simple model 
we accept to represent this antagonist, pinning (anchoring) pressure field by an expression 
formally similar to Eq. (3. 7) but with h replaced by an inhomogeneous pinning or anchoring 
"magnetic" field hA (x), that is, we write 

(3.8) 

By analogy with the mean time that is necessary for a dislocation to overcome an obstacle 
(compare ZARKA [II]), we propose that Tt- which depends on both Ph and PA- be the 
larger, the closer Ph is top A from above (i.e. Tt is inversely proportional to the gap between 
the motive pressure (3. 7) and the anchoring energy (3.8) on the condition that the former 
be greater than the latter, otherwise there is no motion and thus inR = 0). Hence we propose 
the expression 

(3.9) 

where C0 is a characteristic parameter of the magnetic material and we adopt the convention 
that 

(3.10) (A)={: if A> 0 , 

if A ~ 0. 

Notice that the combination of Eqs. (3.6) and (3.9) provides a "law of motion" vw = 
= Lw(Ph-PA) /Co for the domain wall. As a consequence we can rewrite Eq. (3.4) as 

(3.11) 

This evolution equation for the residual magnetization related to one domain wall clearly 
is of the "viscoplastic" type since it involves a characteristic time (through C0) and a 
threshold (defined by llhll = llhAII). An interesting limit case is the one where C0 goes 
to zero while Lw remains finite, although small (see this limit procedure below for the 
macroscopic magnetization). 

In general domain walls belong to one of the two families known as 180° walls for 
which [m] = -2mey and 90° walls for which [m] = -y2mex = -y2mn in the wall 
frame, if m = jm+ I = lm-1. Equation (3.11) thus reads 

(3.12) 

where aii is a matrix defined in the frame of the wall W, and is such that 

(3.13) 
(

0 0 0) 
au= 0 2 0 

0 0 1 

for 180° walls, (
1 0 0) 
0 0 0 

0 0 1 

for 90° walls, 
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3.3. "Viscoplastic" potential for one domain wall 

We pursue the analogy with the micromechanics of dislocations and crystal plasticity 
processes. Let (/Jw (h , (), w1 , . . . , wN) be the "viscoplastic" potential of a wall W, where () 
is the temperature (in fact assumed constant) and wa: are internal variables. The wall will 
be in motion only if the following inequality is satisfied: 

(3.14) 

This is some kind of activation criterion. In fact, in analogy with Schmid's law of micro­
plasticity [12], we suggest to take for (/Jw the expression 

(3.15) 

where g;2 is the limit threshold for the displacement of a wall (this may be zero). In the 
present case we obtain agreement with Eq. (3.11) by taking 

(3.16) SLw ( ) 2 
(/Jw = 2Co Ph-PA 

and we check that Eq. (3.11) is nothing but 

(3.17) • R ( 0(/Jw ) 
mi = ~ {wa;} = const. 

In the space of magnetic fields the surfaces with the constant potential (/J w > 0 are regular, 
the surface (/J w = 0 corresponds to the threshold of reversible motion , and the vector 
mR is always normal to the equipotential surfaces- see Eq. (3.17). If we consider a virtual 
magnetic field h* inside the region delineated by the actual potential, then , since the magnetic 
domain already favourably oriented (relatively to h) will grow at the expense of the other 
one, we have 

and thus 

(3.18) 

mR·h = -Svw[m] · h;-;:::0, mR·h*= O 

mR. (h-h*) ;-;::: o, 
which provides a microscopic magnetic analog of the Hill-Mandel principle of maximal 
dissipation. 

4. Macroscopic residual magnetization 

Let S' be the area swept in the mean by the magnetic domain walls in a sample. The 
macroscopic magnetic field H is equal to h and the same for all walls in the sample. LethA 
be the statistical average of the anchoring field hA and Ms the saturation magnetization 
per unit volume. We first express the local expression (3.12) in a fixed frame (common 
to all walls) through a rotation operator that relates this frame and the frame of the in­
dividual wall. Then we take the average over all walls (i.e. all possible orientations) noting 
that the time derivative and average commute. In the process that we do not describe 
in detail, one introduces IIHAII = bA where a superimposed bar indicates the average. 
One uses the rule AB = Ali (certainly not exactly verified) and has to compute the average 
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of the orientation matrix aii of Eq. (3.12) once the latter has been expressed in the fixed 

common frame. We keep the same notation ail for the resulting average up to a scalar 
coefficient. The resulting macroscopic equation for Mf is obtained as 

(4.I) M~ _ 2S'LwM: /) _ JJHAIIa) H 
' - Co \ IIHlla aiJ i' 

where the macroscopic orientation matrix ail in fact is proportional to unity if the distribu­
tion in orientation of I soc walls or 90c walls in the sample is equiprobable. The macroscopic 

evolution equation ( 4. I) is also of the "viscoplastic" type. A macroscopic "viscoplastic" 
potential (/) can be introduced by 

(4 ) (J)(H) _ S' Lw ( ) 2 .2 - 2Co PH-PA ' 

where 

(4.3) 
{ 

2Ms JJ HJJa 
PH= y2MsJJHJJa 

J 2MsiiHAIIa 
p A = h 12Ms11HA11a 

for I soc walls, 

for 90c walls, 

for I soc walls, 

for 90c walls, 

where the norm of magnetic fields is computed with the aid of aii in agreement with the 
definition (2. 7h. It is immediately verified that 

(4.4) MR = ~: . 
The macroscopic maximal-dissipation inequality 

(4.5) MR. (H-H*) ~ 0 

can be shown to hold for any H* inside the region of magnetic-field space delimited by the 
actual equipotential surface (/) = const > 0. 

We rewrite Eq. (4.1) as 

(4.6) MR = _}_ I 1- IIHAlla \ . H = o(/) 
C1 \ IIH lla I a oH . 

This is the form to be compared with the "plastic" type of magnetization incremental law 
(2.4)1 which, on account of couplings with stresses and of magnetic hardening, reads 

(4.7) 

The effect of residual stresses a in Eq. (4.6) can only be felt through HA since this field 

accounts in some way for the distribution of structural defects. The relation between HA 
and the field a is presently under study. In the thermodynamical continuum context where 

the magnetic loading function is chosen as (2.7), it is found- for a = 0- that Eq. (4.7) 
yields 

(4.8) at j± = 0, 

where W is the cumulated residual magnetization. We can compare Eqs. (4.6) and (4.S) 

when cl goes to zero (no characteristic time). 
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5. Analogy between the magnetic behaviour and Bingham's fluid 

The evolution equation (4.6) can be deduced from a dissipation potential ~ as follows 
(compare [3]). The magnetic dissipation reads 

(5. 1) 

in the absence of internal variables. Consider a special case for which 

(5.2) 

where the first contribution is strictly analogous to the dissipated power of elastoplasticity 
(the critical stress level ac and the plastic strain rate eP playing the roles of IIHAII and MR 
respectively), being homogeneous of degree one in MR, while the second contribution is 
homogeneous of degree two (in fact quadratic) in MR and therefore resembles the Rayleigh 
dissipation potential of viscous fluids (with C 1 playing the role of viscosity). Using Euler's 
identity for homogeneous functions of degrees one and two, one deduces from Eq. (5.2) 
the equation for H in terms ofMR and by inversion this yields Eq. (4.6) if IIHIIa ~ IIH ... IIa 
and zero if IIH II a < IIHA II a. This situation is entirely analogous to that describing the flow 
of a Bingham fluid ([13], pp. 228-230) if one makes the correct identification (see Table 
l ). 

Table 1. Analogy between residual magnetization process and flow 
of a Bingham fluid 

Residual magnetizatiofl 

1.\fR: rate 

Ct 

IIH..tll: anchoring field 

IIHII: norm of magnetic field 

H: magnetic field 

Bingham fluid 

D : strain rate 

2~-t: viscosity 

g: threshold 

ya,;-: (second invariant 
of stress)1

'
2 

aD: deviator of stresses 

If C1 tends to zero, we are left with the first contribution in Eq. (5.2) and the equation 
for H simply reads 

(5.3) 

or 

(5.4) fl.= a:-lifR IIHAIIa 
1 11 1 IIMRIIa- 1 • 

The latter equation expresses the fact that IIHIIa = IIH..tlla and the vector MR is propor­
tional to a· H so that, introducing a "plastic multiplier" i, one can write a priori 

(5.5) 
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with~= 0 if IIHIIa < IIHAIIa and A. > 0 if IIHIIa = IIHAiia, in which case Eq. (5.5) reduces 
to 

(5.6) 

and 

(5.7) 

If we set 

(5.8) 

then w = MR(t) in agreement with the definition (2.llh and thus Eq. (4.6) goes into Eq. 
(4.8) in the limit of vanishing C1 or vanishing transit time, a situation for which the magne­
tization of the sample occurs through instantaneous jumps of a statistic population of 
magnetic domain walls. This completes the set of analogies between macroscopic elasto­
plasticity with hardening and rate-independent magnetic hysteresis on the one hand, and 
the micromechanics of dislocations and the jerky motion of magnetic domain walls on the 
other, together with the passing from the microscopic level to the thermodynamically 
governed macroscopic level. A theory of ferroelectric hysteresis can be built along the same 
'line by using the same kinds of analogies [14] although the underlying microscopic mech­
anisms may be quite different. 
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