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Optical method of strain measurements
Biaxial tension specimen for birefrigent elastomer

F. BREMAND and A. LAGARDE (POITIERS)

THE METHOD uses a coherent light diffracted by an orthogonal grating engraved on the surface
of the specimen. This method has the convenience of giving both in large and small deformations,
over a small measuring area, the orientations and the values of the principal extensions as well
as the rotation of the rigid body. A simulation of a known deformation field enabled us to
test the method. With a measuring base (less than a square milimeter), we used it to compare
two cross-shaped tension specimens. Only one shape shown introduces a biaxial stress state in
a small region around the central point,

W przedstawionej metodzie pomiarowej wykorzystano $wiatlo spojne, ugigte przez ortogonalna
siatke wyryta na powierzchni probki. Ma ona t¢ zaletg, ze okreéla orientacj¢ i wartosci nie tylko
wydluzen glownych, ale takze obrot ciala sztywnego w przypadku duzych i malych deformacji
przy malym polu pomiarowym. Symulacja znanego pola deformacji umozliwia testowanie tej
metody. Za pomoca bazy pomiarowej (mniejszej niz 1 mm?) zastosowano ja do poréwnania
dwoch rozciaganych krzyzowo probek. Dzigki temu otrzymano dwuosiowy stan naprgzenia
wokot punktu centralnego.

B mpencraBieHHOM H3MEPHTENBHOM METONE MCIIOJIb30BaH KOTEPEHTHBIM CBeT, Audparupo-
BaHHBIA OPTOrOHAIBGHOHN PeELIeTHKOH HAHECEHHOM Ha IOBEPXHOCTH obpasua. Mmeer o To moc-
TOHHCTBO, YTO ONPEJAEIISIET OPUEHTHPOBKY H 3HAYEHMsI HE TOJIBKO IJIABHBIX DACTSDKEHHI, HO
TalOKe BpallleHHe JKeCTKOro Tejla B ciydae Gonbuiux ¥ MaibiX Aedopmaruil, Ipy MajoM m3-
MEPHTEJIBHOM II0JIE. VIMyTaLms H3BECTHOTO Mojsl JedopMaliui aeT BO3MOMKHOCTH TECTHPO-
BaTh 3TOT MeTof. 1IpK MoMomy M3mepuTenbHol 6asbl (Menblreit uem 1 MM?) MeTox mpuMenen
IUTA CpaBHEHMsI J(BYX PacTArHBaeMbIX KPeCTHBIM ofpa3om obpasioB. Bmaromaps atomy, mo-
JIyUeHo ABYXOCeBOe HANPSHKEHHOE COCTOSHME BOKPYT HEHTPAJNBHONH TOUKH.

1. Introduction

FOR A LONG TIME researchers have shown interest in the measurements of large deforma-
tions on the surface of an object. They use several techniques. Three gauge rosettes enable
access to the three parameters of the Mohr circle of deformations with good linearity and
good sensitivity up to 20%,. However, they present the inconvenience of not being able to
resist successive alternating strains and in addition the measurement base is quite large.
The moiré methods are more difficult to use in the case of large displacements and are not
capable of measuring strain greater than 309, and angle greater than 30°. The more useful
method in the large deformation field is the grid method which consists in engraving
a series of orthogonal lines or a group of circles on the surface of the specimen. The use
of circles gives directly the orientations and the values of the principal strains, but the
dispersion on the results may go up to 15%,. The solution we are proposing is based on the
use of two gratings of parallel orthogonal lines (10 lines per mm) marked on the surface
of the specimen of which the photographic film is being analysed by the diffraction pro-
cedure. This method has already been applied in the case of small deformations [1].
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We applied it to measure strains in the central part of two crossed-shaped specimens
loaded in a biaxial tension test. A comparison between these two shapes is done and we
show that only one leads to the existence of a biaxial stress state in the central point.

2. Principle of the method [2-3-4]

We consider the case of plane deformations on the surface of the specimen. Let us
suppose an initial square which is defined in a referential O, X, Y by four points: O(o, 0);
A(o,p); B(p,p); C(p,o0) where p is the length of its sides (Fig. 1).
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FiG. 1. Deformations of a square.

We suppose this square is transformed into a parallelogram O’, 4’, B’, C' in the defor-
med state such that:

the vector O'A’ has components OA’ = (a,cosa;, a,8ina;,),

the vector O'C’ has components OC’ = (a;cosa,, a;sina,).

Therefore an interior point M(X, Y) is transformed in m(x, y) by the following trans-
formation:

a a

x = —L cosa, X+ — cosa, ¥,
P P
a, . &y .

y = —L sino; X+ —= sina, Y.
p P

This analytical transformation allows us to determine the gradient of the transformation
tensor F by the matrix

a a

— COSay — COSay

p p

a, . a, .

—L sin oy —E sin o,
p

The Cauchy-Green’s right tensor C = ‘FF and Cauchy-Green’s left tensor ¢ = F'F
have, respectively, the following matrix:
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a; \* a,a
((—') 152 cos(ay — ;)
p P
C= a,a a\* I
_;zf—cos(ozz—-ozl) (?2)
(Gome) #(Grems) [ orminans () con
——Coso; | +{— cosc, —] cosa;sino; +|—] cosa,sSIna,
|\ P P P
o (al)z . (az)2 . (al . )2 (az . )2
—1 cosa;sine; + || cosa,sina, —sina; | +|—sina,
|\ P p )4 4

Now we suppose that the square previously looked for is obtained from an orthogonal
grid composed of two gratings of parallel lines of pitch p. These gratings could be either
engraved or printed or stick on the surface of a studied specimen. If we assume the grid
perfectly follows the displacement in each of the point of the model, we can visualise the
deformations of each small initial square.

FiG. 2. Deformations of an orthogonal grating.

In accordance with Fig. 2, we write the following relations where f§ is given by 8 =
= m/2— (02— 1)

P _ P
cosfi = . m

Then it is possible to get the components of C and ¢ in any base by measuring the

pitches p, and p, and the orientations of the two deformed gratings initially orthogonal

and of the same pitch p. We will always take the base resulting from the directions of the

two initial families of lines.
It is evident that a diagonalisation made on C leads to the knowledge of proper values
and proper vectors of C. One can easily obtain the magnitude of the principal strains

and the orientation y’ of the proper vectors of C in accordance with one axis of the referen-
tial. The angle ¢’ represents the direction of the pure principal strains. In fact, generally
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it is different from p which visualises the orientation of the principal directions of the strain
tensor, and we know the difference y —9’ is the rotation of the rigid solid R:

y=9+R.
Using the polar decomposition of i we show the relation

a,cosa,—a,sina,
a,sino, +a,cosa,

tgR =

Thus we get the orientation and the value of the principal extensions and the rotation
of rigid solid from the knowledge of four parameters (two pitches p, and p, and two
angles o, and o). These values are obtained using the procedure of diffraction on photo-
graphic negatives representing the deformed state of the studied gratings.

The diffraction phenomena of a parallel beam of a coherent light through a plane
grating is well known [5, 6]. The hypothesis made in the case of a phenomenon of Fraun-
hofer’s diffraction (infinite diffraction giving regularly spaced points) allow the determina-
tion of the pitch of the grating knowing the wavelength 4 of the radiation, the distance L
between the screen (E) and the photographic film, the distance d between two consecutive
points of diffraction

_a
=
This relation assumes small angles of diffraction, in other words a large value of L
with respect to d. When this hypothesis is not verified, we use the relation

ml

m °

Arctg A

where m is the diffraction order.
We have represented in Fig. 3 the diffraction image of a grating of parallel crossing
lines. We notice that the directions formed by the diffraction points are perpendicular

Fic. 3. Diffraction image of a grating.
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to the orientation of the family of corresponding lines. It is now easy to describe p,; p,;
®,; o, as functions of df; d¥; 6;; 0,:

im im
== DPr=———=,
Arctgfl Arc:l:gT2
7T T
a1=61+7, a2=62—?.

The polar coordinates of these points are numerically read by using a digital table. In order
to minimise the uncertainties over the four parameters, the center of each point is taken
three times. A numerical analysis is done on a microcomputer and it gives the statistical
analysis of the data and computes the strain values.

3. Simulation [2-3-4]

In order to test the validity of this measuring method, we have made a simulation
of an homogeneous strain field. Then, in the deformed state, we consider a grating of pitch
p, which is composed of two families of parallel lines but having one inclined with
respect to another at an angle 7/2— 6 (Fig. 4). We suppose these two families are initially

FiG. 4. Geometry of the studied grating.

perpendicular. The transformation from the initial state (X, ; X,) to the final state (x,; x,)
has the following expression:

1
X = WXI +tg6X2,
xZ — Xz.

We deduce the expression of the gradient of transformation tensor:

1
F—=1] cosd tgd

0 1
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and the tensors C and & have the form

1 [1+sin6 0 ]

1+sind 0
T cos?d 0 1—siné|’

0 1—sind)’

= = = s 1 5 = — -
Since E = %(C—l) and e = 5 (I—c) where E and e are the Green-Lagrange’s tensor

and Euler Almansi’s tensor, respectively, one can easily write

; in &
E, = %smé(%), e, = —% sin @,
2=—*s 6( zx;;é), ezzésiné.

Considering the physical representation of the transformation, we know that the
principal directions in the spatial representation are diagonals of the rhomboids.
Hence
)

The diagonalisation of (:3 leads us to the value of
y' = nf4.
From there we deduce
R =4§/2.

We note that the rotation is equal to the variation of the orientation of a diagonal.
The used gratings are identical (p = 0.042 mm). Four tests were done with values of 6
equal to —36.5°; —27.5°; 27.5° and 36.5°, the distance L being equal to 1095 mm while
the wavelength of the laser beam being equal to 632.8 x10~® mm. The experimental
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FI1G. 5. Principal Lagrangian strains E;, E,. Principal eulerian strains ey, e;.
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Fi1G. 6. Orientation of the principal strain and rigid body rotation.

results (Figs. 5 and 6) compare very well with the theoretical curves. It is worth noting
that the gratings were of excellent quality and the diffraction points were circular with
good contrast.

4. Biaxial tension test [4]

Several biaxial tension specimens have already been used [7, 8, 9]. Their disadvantage
is a complex shape: the arms are slotted and the central part is made thinner with fillets
at the base of the arms. We have preferred to give priority at the facility of molding taking
advantage of the possibilities of our measurement method, and sacrificing somewhat the
size of the zone presenting a biaxial state [10].

We used two cross-shaped specimens (Fig. 7) made from a TM60A urethane. In order
to limit the influence between the two loading directions, the arms of one shape are made

Fic. 7. Geometry of the tension specimen B.
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of thin strips from the molding [7-8]. In addition, 10 lines of orthogonal gratings (pitch
p = 0.1 mm) were engraved at the base of the mould and are reproduced on the molded
specimens. The tension apparatus has been designed to enable independent loadings in
two directions. The forces are transmitted by means of a nylon thread passing over pulleys
mounted on rolling bearings.

At first we studied strains all over the central part of each shape. Let us call: specimen
A —the classical cross-shaped specimen and specimen B — the shape made with lamellaes.
Figure 8 shows the comparison of these two tests where the loading was F; = 4 kg and

4)

B)

FiG. 8. Comparison between the two specimens. Strains using specimen A. Strains using specimen B.

F, = 2 kg. In fact, we measured strains in nine points and we used symmetry conditions
to extend the values anywhere. The black lines represent the principal deformations. One
can note E, is smaller than E; (E, ~ +2%, E; ~ 20%). We also note a biaxial tension
state exists in a little region around the central point 5. Furthermore, the principal and
loading directions correspond better for the specimen B than for A in the corner 3, 1,
7, 9.
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In a second time we measured the strains (e, , £,) and we calculated the stresses (o, , 0,)
in the central point 5 of the following procedure:
We suppose the incompressibility relationship to be true

€1 8383 — 1,

the stresses o, and o, are obtained from the applied forces F,, F, divided by the fictitious
section S;(S5) of the arm transmitting the forces (Fig. 9). Knowing the sections S,(S5)
of these arms in the undeformed state, we have

Sl = 1213 aﬂd Si = 82128313 = 51/51
and, as a result,

F, e F,¢,
_ g, =

s, 0 TS,

Direction 1

Direction 2

FiG. 9. Determination of the stresses.

These experimental data were compared with theoretical values obtained from a given
mechanical behaviour law. Then we supposed the material was incompressible, hyperelastic
of neo-Hookean type, and one can easily obtain the following relationship between stress
and strain tensor:

T— pi;+ Gc,

where T is the Cauchy stress tensor, p represents a hydrostatic pressure function of a
point, G is the modulus of rigidity in shear.
Using the incompressibility equation (¢;c,c3; = 1), one can write

4.1 (0,—03) = G(e;—c3),

4.2) o, =G (cl — cllcz ),
1

4.3) o, = G(cz— i Es )

The first relationship shows the linearity between the difference of the principal stresses
and strains (Fig. 10). But the values of G are different and depend on the type of the test
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Fi1G. 10. Linearity between stresses and strain.

and the shape of the specimen. Nevertheless we observe G is the same in the biaxial tension
with specimen B and uniaxial tension with specimen 4. From Egs. (4.2) and (4.3) and from
this last value of G we computed ¢, and c, in function of o, for a given o, (Fig. 11). Then
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Fi1G. 11. Strain ¢; versus o, (¢, given) in the central point.
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we note the perfect correspondence between experimental points and theoretical curves
a and d. Hence we deduce that the biaxial tension test done on specimen B generalizes
the uniaxial test done on specimen A4 but not the biaxial test with A. To confirm this, we
made birefringence measurements in the central point 5. Then we suppose Maxwell’s
laws are satisfied even in the finite deformation field. So we can write the linear relationship
between N (the fringe order) and ¢, —o, such that

(44 N="5 (502,

where C is the photoelastic constant, e is the thickness of the specimen, 4 is the wavelength
of the laser beam.

From Eq. (4.4) we obtained Fig. 12 which always shows a comparison between experi-
mental and theoretical data. Again we can see a difference in the proportionality coefficient
showing that specimen A is not adapted in biaxial tests. Yet if we plot (Fig. 13) the fringe
orders versus the principal strains, there is superposition of every curve. It is easy to under-
stand. Alone this last figure is without stresses. We conclude: the problem is in the deter-
mination of the stresses which are not very well biaxial using the shape 4 because the
loading directions are not independent.

5. Conclusion

Our measuring method leads to the knowledge of orientation and magnitude of the
principal strains and of the rigid solid rotation of a small region. It allows to measure
strains in the central part of two cross-shaped tension specimens using a 10 lines/mm
orthogonal grating. The different results show that only the shape done with lamellae
give a biaxial stress state when loading in the biaxial tension test occurs.
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