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Optical method of strain measurements 
Biaxial tension specimen for birefrigent elastomer 

F. BREMAND and A. LAGARDE (POITIERS) 

THE METHOD uses a coherent light diffracted by an orthogonal grating engraved on the surface 
of the specimen. This method has the convenience of giving both in large and small deformations, 
over a small measuring area, the orientations and the values of the principal extensions as well 
as the rotation of the rigid body. A simulation of a known deformation field enabled us to 
test the method. With a measuring base (less than a square milimeter), we used it to compare 
two cross-shaped tension specimens. Only one shape shown introduces a biaxial stress state in 
a small region around the central point. 

W przedstawionej metodzie pomiarowej wykorzystano swiatlo sp6jne, ugictte przez ortogonaln~ 
siatkct wyryt(l na powierzchni pr6bki. Ma ona tct zaletct, ze okresla orientacjct i wartosci nie tylko 
wydlui:en gl6wnych, ale taki:e obr6t ciala sztywnego w przypadku duzych i malych deformacji 
przy malym polu pomiarowym. Symulacja znanego pola deformacji umo:i.liwia testowanie tej 
metody. Za porno~ hazy pomiarowej (mniejszej niz 1 mm2) zastosowano j~ do por6wnania 
dw6ch rozci(lganych krzy:iowo pr6bek. Dzi~ki temu otrzymano dwuosiowy stan napr~zenia 
wok6l punktu centralnego. 

B npe~craaJieHHoM H3MepHTe.JibHOM MeTo~e Hcno.Jib3oBaH KorepeHTHbm caeT, ~<llparHpo
aaHHbiH opToroHaJihHOH pemeTKo:H: HaHeceHHo:H: Ha noaepXHoCTH o6paa~a. HMeeT OH To ~oc
TOHHCTBo, 'tiTO onpe~eJIJieT OpHeHTHpOBKY H 3Ha~eHH.R: He TOJibKO rJiaBHbiX paCTIDKeHHH, HO 
TaK>Ke apa~eHHe >KeCTKoro TeJia B c.rrytiae 6o.Jibi.IWX H MaJibiX ~e<tlopMarutii, npH MaJioM H3-
MepHTeJI&HOM llOJie. I1MifTai.urn :H3BeCTHoro llOJI.R: ~e<ilopMa~ ~aeT B03MO>KHOCTb TeCTHpo
B8Tb 3TOT MeTO~. ilpH ITOMO~ H3MepHTe.JibHOH 6a3bl (MeHbme:H: ~eM 1 MM2

) MeTO~ npHMeHeH 
~.a cpaaHeHH.R: ~ayx pacr.arnaaeMbiX KpeCTHhiM o6paaoM o6paa~oa. BJiaro~ap.a 3TOMy, no
JI~eHo ~Byxoceaoe Hanp.R:>I<eHHOe COCTO.R:HHe BOKpyr ~eHTpaJibHOH TO~H. 

1. Introduction 

FoR A LONG TIME researchers have shown interest in the measurements of large deforma
tions on the surface of an object. They use several techniques. Three gauge rosettes enable 
access to the three parameters of the Mohr circle of deformations with good linearity and 
good sensitivity up to 20%. However, they present the inconvenience of not being able to 
resist successive alternating strains and in addition the measurement base is quite large. 

The moire methods are more difficult to use in the case of large displacements and are not 
capable of measuring strain greater than 30% and angle greater than 30°. The more useful 
method in the large deformation field is the grid method which consists in engraving 
a series of orthogonal lines or a group of circles on the surface of the specimen. The use 
of circles gives directly the orientations and the values of the principal strains, but the 
dispersion on the results may go up to 15%. The solution we are proposing is based on the 
use of two gratings of parallel orthogonal lines (10 lines per mm) marked on the surface 
of the specimen of which the photographic film is being analysed by the diffraction pro
cedure. This method has already been applied in the case of small deformations [1]. 
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516 F. BREMAND AND A. LAGARDE 

We applied it to measure strains in the central part of two crossed-shaped specimens 
loaded in a biaxial tension test. A comparison between these two shapes is done and we 
show that only one leads to the existence of a biaxial stress state in the central point. 

2. Principle of the method [2-3-4] 

We consider the case of plane deformations on the surface of the specimen. Let us 
suppose an initial square which is defined in a referential 0, X, Yby four points: O(o, o); 
A(o,p); B(p,p); C(p, o) where p is the length of its sides (Fig. 1). 

y 

A~"'-p--------.8 

y t-------,M 

o~---~~~P~~ 
X C X 

FIG. 1. Deformations of a square. 

We suppose this square is transformed into a parallelogram 0', A', B', C' in the defor-
med state such that: 

the vector O'A' has components OA' = (a2 cosa2 , a2 sina2), 

the vector 0' C' has components OC' = (at cos at, at sin at). 
Therefore an interior point M(X, Y) is transformed in m(x, y) by the following trans

formation: 

at a2 
x =- cosa1 X +- cosa2 Y, 

p p 

This analytical transformation allows us to determine the gradient of the transformation 

tensor F by the matrix 

The Cauchy-Green's right tensor C = tFF and Cauchy-Green's left tensor c = FtF 
have, respectively, the following matrix: 
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OPTICAL METHOD OF STRAIN MEASUREMENTS 517 

Now we suppose that the square previously looked for is obtained from an orthogonal 
grid composed of two gratings of parallel lines of pitch p. These gratings could be either 
engraved or printed or stick on the surface of a studied specimen. If we assume the grid 
perfectly follows the displacement in each of the point of the model, we can visualise the 
deformations of each small initial square. 

2 

x2 

Cl.. 

x1 

MI. p .. I 1 

Co Ct 

FIG. 2. Deformations of an orthogonal grating. 

In accordance with Fig. 2, we write the following relations where fJ is given by fJ = 

= 7r,f2- (a2- a1) 

Then it is possible to get the components of C and c in any base by measuring the 
pitches p 1 and p 2 and the orientations of the two deformed gratings initially orthogonal 
and of the same pitch p . We will always take the base resulting from the directions of the 
two initial families of lines. 

It is evident that a di~gonalisation made on C leads to the knowledge of proper values 

and proper vectors of C. One can easily obtain the magnitude of the principal strains 

and the orientation y' of the proper vectors of C in accordance with one axis of the referen
tial. The angle y' represents the direction of the pure principal strains. In fact, generally 
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518 F. BREMAND AND A. LAGARDE 

it is different from y which visualises the orientation of the principal directions of the strain 
tensor, and we know the difference y- y' is the rotation of the rigid solid R: 

'Y = y' +R. 

Using the polar decomposition of F, we show the relation 

Thus we get the orientation and the value of the principal extensions and the rotation 
of rigid solid from the knowledge of four parameters (two pitches p1 and p2 and two 
angles cx 1 and cx2). These values are obtained using the procedure of diffraction on photo
graphic negatives representing the deformed state of the studied gratings. 

The diffraction phenomena of a parallel beam of a coherent light through a plane 
grating is well known [5, 6]. The hypothesis made in the case of a phenomenon of Fraun
hofer's diffraction (infinite diffraction giving regularly spaced points) allow the determina
tion of the pitch of the grating knowing the wavelength A. of the radiation, the distance L 
between the screen (£) and the photographic film, the distance d between two consecutive 
points of diffraction 

This relation assumes small angles of diffraction, in other words a large value of L 
with respect to d. When this hypothesis is not verified, we use the relation 

where m is the diffraction order. 

rnA. p= ___ d_m_ ' 

Arctgy 

We have represented in Fig. 3 the diffraction image of a grating of parallel crossing 
lines. We notice that the directions formed by the diffraction points are perpendicular 

FIG. 3. Diffraction image of a grating. 
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OPTICAL METIIOD OF STRAIN MEASUREMENTS 519 

to the orientation of the family of corresponding lines. It is now easy to describe p 1 ; p 2 ; 

tX 1 ; tX2 as functions of d';'; d';; ~1 ; ~2 : 

J.m 
Pt = dm' 

Arctg ---f: P2 = dm' 
ArctgT 

The polar coordinates of these points are numerically read by using a digital table. In order 
to minimise the uncertainties over the four parameters, the center of each point is taken 
three times. A numerical analysis is done on a microcomputer and it gives the statistical 
analysis of the data and computes the strain values. 

3. Simulation (2-3-4] 

In order to test the validity of this measuring method, we have made a simulation 
of an homogeneous strain field. Then, in the deformed state, we consider a grating of pitch 
p, which is composed of two families of parallel lines but having one inclined with 
respect to another at an angle n/2- ~ (Fig. 4). We suppose these two families are initially 

FIG. 4. Geometry of the studied grating. 

perpendicular. The transformation from the initial state (X1 ; X 2 ) to the final state (x1 ; x2 ) 

has the following expression: 

1 
x1 = ---jlx. +tg~x2, cosu 

x2 = x2. 

We deduce the expression of the gradient of transformation tensor: 
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520 F. BittMAND AND A. LAGARDE 

and the tensors C and c have the form 

1 [1 +sin~ 0 1 
C = cos2 ~ 0 1-sin~ ' 

= [1 +sin~ 0 ] 
c 0 1-sin~ · 

= 1= = - 1=- = -
Since E = 2" (C-1) and e = "2 (1- c) where E and e are the Green-Lagrange's tensor 

and Euler Almansi's tensor, respectively, one can easily write 

E _ 1 . ~ ( 1 +sin ~ ) 
1 - -

2 
stn u 2 ~ , 

cos u 

1 . ( 1-sin ~) 
E2 = -2 sm~ cos2~ ' 

1 . ~ 
e1 = -- Stnu 2 . ' 

1 . ~ e2 = 2 stnu. 

Considering the physical representation of the transformation, we know that the 
principal directions in the spatial representation are diagonals of the rhomboids. 

Hence 

~ 
y = T +n/4. 

The diagonalisation of C leads us to the value of 

y' = n/4. 

From there we deduce 

R = ~/2. 

We note that the rotation is equal to the variation of the orientation of a diagonal. 
The used gratings are identical (p = 0.042 mm). Four tests were done with values of ~ 

equal to -36.5°; -27.5°; 27.5° and 36.5°, the distance L being equal to 1095 mm while 
the wavelength of the laser beam being equal to 632.8 x I0- 6 mm. The experimental 

50 90 0 ... ._______ 

"----
FIG. 5. Principal Lagrangian strains E 1 , E2 • Principal eulerian strains e1, ez. 
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FIG. 6. Orientation of the principal strain and rigid body rotation. 

S21 

results (Figs. 5 and 6) compare very well with the theoretical curves. It is worth noting 
that the gratings were of excellent quality and the diffraction points were circular with 
good contrast. 

4. Biaxial tension test [ 4] 

Several biaxial tension specimens have already been used [7, 8, 9]. Their disadvantage 
is a complex shape: the arms are slotted and the central part is made thinner with fillets 
at the base of the arms. We have preferred to give priority at the facility of molding taking 
advantage of the possibilities of our measurement method, and sacrificing somewhat the 
size of the zone presenting a biaxial state [10]. 

We used two cross-shaped specimens (Fig. 7) made from a TM60A urethane. In order 
to limit the influence between the two loading directions, the arms of one shape are made 

FIG . 7. Geometry of the tension specimen B. 
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522 F. BREMAND AND A. LAGARDE 

of thin strips from the molding [7-8]. In addition, I 0 lines of orthogonal gratings (pitch 
p = 0.1 mm) were engraved at the base of the mould and are reproduced on the molded 
specimens. The tension apparatus has been designed to enable independent loadings in 
two directions. The forces are transmitted by means of a nylon thread passing over pulleys 
mounted on rolling bearings. 

At first we studied strains all over the central part of each shape. Let us call: specimen 
A- the classical cross-shaped specimen and specimen B- the shape made with lamellaes. 
Figure 8 shows the comparison of these two tests where the loading was F1 = 4 kg and 

6 4 + A) ~ 1-4: I -

~ 1 
7 

B) 

FIG. 8. Comparison between the two specimens. Strains using specimen A. Strains using specimen B. 

F2 = 2 kg. In fact, we measured strains in nine points and we used symmetry conditions 
to extend the values anywhere. The black lines represent the principal deformations. One 
can note E2 is smaller than E1 (E2 ~ ±2%, E1 ~ 20%). We also note a biaxial tension 
state exists in a little region around the central point 5. Furthermore, the principal and 
loading directions correspond better for the specimen B than for A in the comer 3, I , 
7, 9. 
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OPTICAL METHOD OF STRAIN MEASUREMENTS 523 

In a second time we measured the strains (e1 , e2) and we calculated the stresses (a1 , a2 ) 

in the central point 5 of the following procedure: 
We suppose the incompressibility relationship to be true 

the stresses a 1 and a 2 are obtained from the applied forces F1 , F2 divided by the fictitious 
section s; (S~) of the arm transmitting the forces (Fig. 9). Knowing the sections S 1 (S2) 
of these arms in the undeformed state, we have 

sl = /2/3 and s~ = e2/2 e3/3 = Stfet 

and, as a result, 

Direction 2 

FIG. 9. Determination of the stresses. 

These experimental data were compared with theoretical values obtained from a given 
mechanical behaviour law. Then we supposed the material was incompressible, hyperelastic 
ofneo-Hookean type, and one can easily obtain the following relationship between stress 
and strain tensor: 

T = pl+Gc, 

where T is the Cauchy stress tensor, p represents a hydrostatic pressure function of a 
point, G is the modulus of rigidity in shear. 

Using the incompressibility equation (c1 c2 c3 = 1), one can write 

(4.1) 

(4.2) 

(4.3) 

The first relationship shows the linearity between the difference of the principal stresses 
and strains (Fig. 10). But the values of G are different and depend on the type of the test 
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• cr2=0 specimen A 

o cr2= 0.0385 specimen A 

+ cs2 = 0. 0735 specimen A 

'~-- cs2=0.033 specimen B 

FIG. 10. Linearity between stresses and strain. 

and the shape of the specimen. Nevertheless we observe G is the same in the biaxial tension 
with specimen Band uniaxial tension with specimen A. From Eqs. (4.2) and (4.3) and from 
this last value of G we computed c1 and c2 in function of <11 for a given <12 (Fig. 11). Then 

2.4 

2.2 

2.0 

1.8 

1.6 

1.4 

1.2 

• o2=0 specimen A 

o u2= 0.0385 specimen A 
+ tr2 = 0.0735 specimen A 

x u2=0.033 specimen 8 

curve a 

curveb 

curve c 

+ 

FIG. 11. Strain c1 versus 0'1 (a2 given) in the central point. 

+ 
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u1-a2 (daN/mm2) 

• ut=O specimen A 

o uz=0.0385 specimen A 

+ 62=0.0735 specimen A 

x 6z=0.033 specimen 8 

FIG. 12. Fringe order- principal stresses. 

• Gz = 0 specimen A 
0 6 2=0.0385 specimen A 

+ uz=0.0735 specimen A 

x cr2=0.033 specimen B 

FIG. 13. Fringe order - principal strains. 

(525] 

http://rcin.org.pl



526 F. BREMAND AND A. LAGARDE 

we note the perfect correspondence between experimental points and theoretical curves 
a and d. Hence we deduce that the biaxial tension test done on specimen B generalizes 
the uniaxial test done on specimen A but not the biaxial test with A. To confirm this, we 
made birefringence measurements in the central point 5. Then we suppose Maxwell's 
laws are satisfied even in the finite deformation field. So we can write the linear relationship 
between N (the fringe order) and a1 -a2 such that 

(4.4) 
Ce 

N=T(a1 -a2), 

where Cis the photoelastic constant, e is the thickness of the specimen, A. is the wavelength 
of the laser beam. 

From Eq. (4.4) we obtained Fig. 12 which always shows a comparison between experi
mental and theoretical data. Again we can see a difference in the proportionality coefficient 
showing that specimen A is not adapted in biaxial tests. Yet if we plot (Fig. 13) the fringe 
orders versus the principal strains, there is superposition of every curve. It is easy to under
stand. Alone this last figure is without stresses. We conclude: the problem is in the deter
mination of the stresses which are not very well biaxial using the shape A because the 
loading directions are not independent. 

5. Conclusion 

Our measuring method leads to the knowledge of orientation and magnitude of the 
principal strains and of the rigid solid rotation of a small region. It allows to measure 
strains in the central part of two cross-shaped tension specimens using a 10 linesjmm 
orthogonal grating. The different results show that only the shape done with lamellae 
give a biaxial stress state when loading in the biaxial tension test occurs. 
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