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BRIEF NOTES 

Generalization of the concept of Riemann invariants 
for multidimensional gasdynamics(*) 

1. Introduction 

CZ. P. KENTZER (LAFAYETTE) 

RtEMANN invariants. whose total differentials along characteristic rays vanish, arc 
known only in a few cases. In a general case the characteristic relations of gasdynamics 
are interpreted as a condition of vanishing of a sum of total derivatives taken along 
non.,;parallel directions. At a slight expense in complexity, the method of invariants 
is extended to a general time-dependent multidimensional flow where the Riemann 
invariants do not exist. 

CALCULATIONS of gas flows using the method of characteristics become progressively 
more complicated as the number of independent variables increases. At the present time 
the practical limit is three. The case of four independent variables, three spatial coordi­
nates and time, presents no theoretical difficulties, the pertinent characteristic relations 
having been cast in various convenient froms by e.g. SHAFER [3, 1962], RusANOV [5, 1963], 
ROESNER [4, 1961] and SAUERWEIN [2, 1961]. The absence of examples of numerical 
calculations oft hree-dimensional time-dependent flows attests to the practical difficulties 
of executing such calculations. Believing that the practical difficulties are primarily of 
a conceptual nature and lead to unnecessarily complicated and uneconomical computer 
codes, this work is addressed to the problem of simplifying the formulation of the me­
thod of characteristics. 

The advantages of the method of characteristics are well known. The particular advan­
tage that has a bearing on the economy of computations, namely the use of Riemann in­
variants, is lost in multidimensional gasdynamics. The problem of existence and construction 
of Riemann invariants is discussed and reviewed by, e.g. BURNAT [l, 1969]. In this work 
we shall consider the generalization of the concept ofinvariantsfor the purpose of reducing 
the calculations ofmultidimensional gas flows to simple integrations of systems of ordinary 
differential equations. In this manner the ~onceptual simplicity of the formulation will 
result in simpler and more efficient computer codes. 

(*)Paper presented at the XIII Biennial Fluid Dynamics Symposium, Poland, September 5-10, 1977. 
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2. Characteristic equations 

For a gas with a constant ratio of specific heats y, neglecting viscosity and heat con­
duction, the system of characteristic relations for the determination of pressure p, density e, 
and velocity u, with a2 = ypfe, is 

(2.1) [ :, +ii · v] (pfe'l = o, 
(2.2) _ [ a-u _ _ -] [ ap ~.. _ ) ] ean, · Tt +u· VU+an1V · u + Tt +\u+an1 • Vp = 0, 

where ii1, i = 1, ... , 4 are the 'unit normals, the spatial components of the characteristic 
normals, ln1l = 1. 

RusANov [5, 1963] has shown that Eqs. (2.1) and (2.2) form a system of five independent 
relations if the four unit normals ii1 are chosen so that the end points of the vectors n1, 

which lie on the surface of a unit sphere, do not fall in a common plane. It is always possible 
to choose four such vectors. 

Equation (2.1) defines the entropy function, R = pfe7, as a Riemann invariant carried 
by the fluid particles. Consequently, we concentrate our attention on the remaining four 
equations in the form of Eq. (2.2), and omit the subscript i. 

3. Generalization of invariants 

We shall use Rusanov's notation and write the directional derivative taken in the 
direction of a vector W = { W.x, W,, w., W,} as 

( 
a a a a} 

dw() = W.xax+ W, ay+ Wzaz + W,Tt ( ). 

With iJ = {u,v, w, 1}, where u,v, ware the Cartesian components of the velocity u, 
Eq. (2.1) becomes 

(3.1) du(P /(l) = 0. 
Using the same notation, Eq. (2.2) may be written as 

(3.2) dw,u+dw
2
V+dw,w+dvp = 0, 

where 

V= {u+an.x, v+an,,w+anz, 1}, 

W1 = ea{un.x+a, Vnx, Wn.x, nx}, 

w2 = ea{un,, vn,+a, wn,, n, }, 

JV3 = l!'l{Un:u fJZu wn.+a, nz }. 

The vector Vis tangent to a characteristic ray or a hi-characteristic. The fact that Eq. 
(2.2) is in a characteristic form implies that the vectors V, W1 , W2 , W3 all lie in a common 
characteristic hyperplane with a characteristic normal N, that is, 

V· ii = W1 · N = W2 · N = w3 · N = o, 
where N = {n.o n,, n:,-(u · n+a)}. 
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Equation (3.1) integrates immediately to give the Riemann invariant, 

I 1 
dx _ 

R = p ri' =constant a ong dt = u. 

We recognize Eq. (3.2) as a generalization of Eq. (3.1), namely, as a statement that a partic­
ular sum of total derivatives of the four dependent variables, taken along four coplanar, 
but not generally parallel vectors, vanishes. It is not possible either to choose the direc­
tions of the normals n or to transform the dependent variables in such a way as to render 
all four vectors_ JJj equal in a multi-dimensional case. However, the form of Eq. (3.2) is 
particularly well suited to numerical calculations, and the fact that the vectors JJ} are not 
parallel introduces only a slight complication. The vectors ~ lie outside of the charac-

teristic hypercones the generators of which are the hi-characteristics V. As a matter of 
procedure, the data along the vectors »'.J should be considered as determined by extr­
apolation from the data on the characteristic hypercones. 

4. Method of generalized invariants 

In order to retain the advantages of flow calculations using the method of invariants 
in a general multidimensional case, we shall outline briefly a numerical treatment of Eq. 
(3.2). 

Consider a field point P with the coordinates (x0 , y 0 , z0 , t0) through which we pass 
the four vectors W1 , W2 , W3 , V. The data are assumed to be given on a grid of points 
in the constant time plane, t = t0 -L1t0 , where an interpolation formula may be applied 
to calculate the dependent variables at the points of intersection of the vectors W1 with 
the data plane. We denote these points by P1. Only P4 lies at the intersection of the data 
plane with the characteristics hypercone having a vertex at P. The points P 1 , P 2 , and P 3 

lie outside of such an intersection. The coordinates x1, y1, z1 of the intersection points P1 
of the vectors »'.! with the data plane are 

x 1 = x0 - {u+ ~) L11, y 1 = y 0 -vLlt, z1 = z0 - wLlt, 

X2 = x0 -UL1t, Y2 = Yo- (v+ :, ) L11, z2 = z0 -wL1t, 

(4.1) 
X3 = Xo-UL1t, Y3 = Yo-vL1t, z3 = z0 - (w+ :.) .11, 

X4 = x0 -(u+anx)L1t, Y4 = Yo-(v+an,)Llt, z4 = z0 -(w+an:)L1z. 

Because of the division by the components of the normal n, the . unit normals n should 
be chosen so that none of their components are too small. 

With the dependent variables at the points P1 denoted by ui, v1 , w1,p1, Eq. (3.2) may 
be written approximately as 

(4.2) 
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Writing Eq. (4.2) four times for four independent unit normals lit gives a linear system 
for the determination of the solution u0 , v 0 , w0 , p0 , at the field point Pat time t = t0 • 

Since the coefficients in Eq. (4.2) have the meaning oftheir average values along the vec­
tors H'J, a second-order accuracy would result from repeating the calculations and using 
the average values of the coefficients both in Eq. (4.2) and in Eq. (4.1). 

A convenient choice of the four unit normals 'ii1 is 

;:;1 = { I, 1' 1}/yJ, 

'ii2={-I, I' I}/y3, 

;:;3 = { I, -I, I}jy3, 

;;4 = { 1, I, -1}/YJ. 

For an increased accuracy of the iteration process, the rates of change of the normals 'ii1 

along the rays V could be calculated from the equation obtained by V ARLEY and CuM­
BERBATCH [6, I965] which, in the index notation with summation convention implied, is 

dn, [ au" oa] -= (n1n1-d1J) n"-+-. 
dt OXj OXJ 

5. Conclusions 

The main advantage of the method of generalized invariants lies in the simplicity of the 
task of performing the numerical calculations. The simplicity of Eq. (4.2), which resulted 
from the approximation of the total derivatives in Eq. (3.2) by finite differences, may be 
contrasted with the customary treatment of the method of characteristics or the finite 
difference method applied directly to the Euler Equations. In the latter two methods finite 
differences are used to approximate partial derivatives, the number of which grows with 
dimensionality of space. 

Further, since a single interpolating function may be used for all five dependent varia­
bles and since Eq. ( 4.2) is to be applied four times for four choices of the normal n1, the 
amount of computer coding is minimal. No transcendental functions are used and all 
operations reduce to a simple linear algebra and arithmetic. It is believed that the savings 
in computer time will be significant and that the present approach will place the method 
of generalized invariants on a competitive footing with the finite difference methods. 

The question of accuracy was touched upon by mentioning that accuracy of second 
order could result from iterating the system once. The necessary condition for stability, 
namely, the requirement that the domain of dependence of the partial differential equations 
be contained in the domain of dependence of the approximating system, could be imposed 
by constructing the interpolation function properly so that it uses the information from 
all grid points contained in and on the convex hull of the domain of dependence of the 
partial differential equations for a given size of the time step L1t. 

Sample calculations of examples of non-stationary three-dimensional flows will be 
published in the near future. 
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