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A new solution of the Navier-Stokes equation for the motion
of a fluid contained between two parallel plates
rotating about the same axis(*)

R. BERKER (ISTANBUL)

THE EXISTENCE of an infinite set of nontrivial solutions has been proved for the problem of in-
compressible viscous fluid contained between the two parallel infinite plates rotating with con-
stant angular velocity around the fixed normal axis. Stability of the solutions has been investi-
gated and the conditions enabling to point out the subset of the solutions which are stable with
regard to arbitrary disturbance.

Wykazano istnienie nieskoficzonego zbioru nietrywialnych rozwiazaf zadania o przeplywie
niefcisliwej cieczy lepkiej zawartej miedzy dwoma réwnoleglymi nieskoficzonymi plytami,
obracajacymi si¢ ze stala predkoécia katowa wokél ustalonej prostopadlej osi. Rozpatrzono
statecznoéé rozwiazath oraz zbadano warunki pozwalajace na wskazanie podzbioru rozwigzah
statecznych wzgledem dowolnych zaburzefi,

Haiineno, uro cymecrsyeT GeckoHeUHOE MHOMKECTBO HETPHBHAJBHBIX PellleHHY 3a/auH o Te-
YeHWH BA3KOH HeCKHMMaeMOil YKRIAKOCTH CONepKAIeHCA MEXKIY JBYMS ILIOCKONAPAIUTEbHEIME
GeCHOHEUHBIMH IUIACTHHAMH BPAIIAOIITHMHCA C IOCTOAHHON YIJIOBOH CKOpPOCTBIO BOKDYT
tuxcuposarmoll HopMansHOH# ocn. Mccnemosana yeToliMuBoCcTs pelnerint 1 HalileHb! YCI0BHA

HO3BOJIAIOLIME BhIJIEHTE B3 MOJYYEHHOT0 KJIacca pelleHis yCTolYMBbIC K TEOGEIM BO3MyIne-
HHAM.

1. Introduction

LEr IT, and IT, be two infinite parallel plates rotating about a fixed normal axis D with the
same constant angular velocity w. A classical incompressible fluid fills the infinite domain
limited by the plates I7, and IT,. These plates are solid walls. The fluid is assumed to be
in steady motion.
The problem of finding the motion of the fluid filling the domain described above has
a trivial solution in which the fluid is rotating as a rigid body about the axis D with the
angular velocity w. It will be shown in the present paper that the problem admits an infinite
number of other solutions which are exact solutions of the Navier-Stokes equation and
which satisfy the boundary conditions. For each of these new solutions the velocity field,
the pressure field, and the stress exerted by the fluid on the plates I7, and IT, will be given,
The stability of the new solutions will be studied using the energy methed, and it will be
proved that among the new solutions those satisfying the following condition are stable
for arbitrary disturbances:
R\
]
(L.1) b B TARL
' h 2 R3?
(*) An abstract of this paper has been presented at the 13'® Symposium on Advanced Problems and
Methods in Fluid Mechanics organized at Olsztyn from 5 to 10 Scptember 1977 by the Department of
Fluid Mechanics of the Institute of Fundamental Technological Research of the Polish Academy of Sciences.
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In this inequality 4 is half of the distance between the two plates IT, and IT,, and ! is the
distance to the axis of rotation D of a point P which is uniquely determined for each new
solution. (P is the point situated at the same distance from the plates I7, and IT, and where
the velocity of the fluid is zero.) Moreover, in the inequality (1.1) R is the Reynolds num-
ber defined by the equation

2
R=28
y

where » is the coefficient of kinematic viscosity of the fluid.
I owe my thanks to Mr. Goktiirk Ugoluk who made the calculations necessary for the
drawing of Figs. 3, 4, 5, 6, 7 and 8.

2. Statement of the problem. Theorem giving all solutions

LetIT, and IT, be two infinite parallel plates rotating about a fixed normal axis D with
the same constant angular velocity w. A classical viscous incompressible fluid fills the
infinite domain limited by the plates IT, and IT,. These plates are solid walls. The fluid is
assumed to be in steady motion.

Let Oxyz be a fixed system of axes chosen such that the axis Oz coincides with the
axis of rotation D, and such that the equations of the planes I, and IT, be z = h and
z = —h, respectively.

z4
e ) A9
D
Aq n,
0 X
Az ,
Fic. 1.

The problem of finding the motion of the fluid has a trivial solution in which the fluid
is rotating as a rigid body about the axis Oz with the angular velocity w. In this trivial
solution the streamlines are evidently concentric circles contained in the planes IT parallel
to the plane Oxy, the center of the circles being, for each plane /7, the intersection 7 of this
plane and the axis Oz. Therefore, the locus of the point I whzn th2 plane [T shifts from IT,
to IT, is the segment 4,4, of the axis Oz.

Now we ask the following quesstion: is it passible to find solatioas of th: prodlm ia
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Fig. 2.

which the streamlines are again, in each plane IT parallel to the plane Oxy, concentric
circles, the locus of the point 7, center of the circles, being no more a segment of the axis Oz,
but a curve I'? The answer to this question is affirmative, and all the solutions which sa-
tisfy the condition of the question are given in the following theorem.

TueoReEM. Consider the steady motion of a viscous incompressible fluid in which the
streamlines are in each plane IT parallel to the plane Oxy concentric circles. All motions,
other than the trivial motion mentioned above, having these streamlines and which are
solutions of the Navier-Stokes equation and of the equation of continuity, which furher-
more meet the boundary condition on the rotating plates IT, and I, are given below.

Let P be an arbitrary point of the plane Oxy. For each position of the point P other
than 0 one has a new solution. Let the axes Oxy be chosen such that the coordinates of
the point P are (/, 0), / > 0. The components with respect to the axes Oxyz of the velocity
field of the new solutions are given by the equations

2.1) U=-oly-g@2)], v=o0kx-f(z2), w=0,

the function f(z) and g(z) appearing in these equations being given by the equations
18 _ 1200 46— g0m- 22 14y e,

(2.2)
g(2)

£ = lgﬂ [¢(z)—¢(h)]+l;j@—)- [x(2)— x(®).
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The functions ¢(z), x(z) and the constant 4 which appear in Eqs. (2.2) are given by the
equations
¢(z) = coshmz-cosmz, x(z) = sinhmz-sinmz,

4 = [1-¢@)P+ [x(A) = (coshmh—cosmh)?,

the parameter m being given by
12
= i
" (2) ’

where » is the coefficient of kinematic viscosity of the fluid. The pressure field of the new
solutions is given by the equation

23)

P w? 2 2
(24 ?‘5'9 =5 [(x—x)*+(y=»)*1+C,
where g is the density of the fluid, £ is the potential of the body force, C is an arbitrary

constant, and x, and y, are given by the equation

x o 1=¢)  n __ xh)
29 PomlEragin. SpmeTE

The equations of the curve I" locus of the points I are

x=f(z), y=23g@.

The proof of this theorem will bé given in Sects. 3 and 4.

Consider a motion which satisfies the condition mentioned in the first sentence or the
statement of the theorem. This motion belongs to the family of pseudo-plane motions of
the first kind(*). A pseudo-plane motion of the first kind is a motion in which the compo-
nents of the velocity are of the following form:

u=ux,y,z1), v=uvx,pz1t), w=0.
As a result of the equation of cohtinuity, a motion of this family admits a stream function
v(x, y, z, t) such that the components of the velocity are given with the aid of y by the
following equations:
U=y, v=-y,, w=0.
The motion reduces to a plane motion if y does not depend on z.

We suppose that the body force acting on the fluid depends on a potential 2. Then the

Navier-Stokes equation gives the following equations(®):

(_1_1 +Q) o gt 2O

(2.6) e ’ D(x,y)
p w Dy, vi) i
_+Q) 2 d — - 5 X9
(e v =Dy T
where

(") For these motions see [3], pp. 71-80 and pp. 134-140. These motions were introduced for the first
time in [3]). See also [4], pp. 84-89 and pp. 161-163, :
(?) See [4], p. 162.
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Viip = patypt+yi.
The Navier-Stokes equation gives furthermore the equation

(£'+9) =0.
4] z

This equation shows that the quantity p/o+£2 does not depend on z, just as in the case of
plane motion.

As it is well known, it is possible to eliminate the pressure p and the potential 2 of the
body force from the Navier-Stokes equation. In order to do this elimination, it is sufficient
to take the curl of the two sides of the Navier-Stokes equation. The equation thus obtained,
which contains the velocity field as the only unknown, expresses the condition necessary
and sufficient for a vector field v(x, y, z, f) to be the velocity field of the motion of a viscous
incompressible fluid(®). The equation mentioned can be called the compatibility equation(*).

In the case of a pseudo-plane motion of the first kind, the compatibility equation gives
the following three scalar equations:(°)

. [ D@, w’) -
"2 x ottt
'Vv 'le + [ .D( x y) ?’x:: 0)

y D(y, w)
2 AT Ty -
2.7 Wyl g ) Yyt = 0,

where

Vip = ylaty)e.
3. The velocity field

Consider the steady motion of a viscous incompressible fluid such that in each plane I7
‘parallel to the fixed plane Oxy the stream lines are concentric circles having a point I of
the plane I7 as center. Let

x=f(2), y=¢g(2)

be the equations of the curve I' which is the locus of the point J when the plane IT shifts
remaining parallel to the plane Oxy. The previous motion is evidently a pseudo-plane
motion of the first kind. It is easy to see that the stream function y of this motion must be
of the form

(3.1 v = H(g, 2),

(®) The statement of this sentence is correct only if the domain ¥ occupied by the fluid is simply con-~
nected. If the domain ¥ is not simply connected, it is necessary to add to the equation mentioned in the
statement supplementary conditions in order that the pressure field deduced from v has a unique value at
each point of the domain V.

(*) See [4], p. 3.

(®) See [3], p. 72 and p. 135, [4], p. 85 and p. 162.
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where ¢ is defined by the equation
g = x=fQP+ -7,
and where H is a function of g and z which must be a solution of Egs. (2.7).

I have proved elsewhere(®) that all solutions of Eqs (2.7), which are of the form (3.1),
are given by the equation

(3.2 v = K{[x—f(F + y-g@F},

where K is an arbitrary constant, and where the functions f(2) and g(z) must be solutions
of the following differential system:

(3.3) " =2Kg' =0, wvg"'+2Kf'=0.
From Eq. (3.2) we deduce, for the components of the velocity, the equations

u=2K[y—g(z)], v=-2K[x-f(2)].
These two equations show that the totality of the particles of fluid contained in any plane IT
parallel to the plane Oxy move as if the plane IT were a rigid plate rotating with the constant
angular velocity —2K about a fixed point I of this plane; if the equation of the plane IT
is z = {, the coordinates of the point I are x; = f({), yr = g(0), z; = (.

Consider for a while not the problem of the present paper but the problem of the
motion of a fluid filling all the space and whose stream function is of the form (3.2). For
this case, I have determined in [5] all the solutions of the differential system (3.3). The
motion so obtained has been called in [5] a vortex with a curvilinear axis. The curve I,
which is the locus of the fixed points of the fluid, is in this motion a skew curve wrapped
round a surface of a revolution which looks like a hyperboloid of revolution of one sheet.

Consider now the problem of the present paper. We must search, among the motions
given by Eq. (3.2) which satisfy Eqs (3.3), those which meet the boundary condition of
adherence on the rotating plates IT; and IT,. In order to satisfy this condition, the angular
velocity —2K of the planes JT must first of all, be equal to the angular velocity of the
plates IT, and IT,, that is to say we must have

-2K =w.
Then Eq. (3.2) takes the form

(3.4) v = =5 {x~@F + D -g@F},

and the components of the velocity become
U= —w[y—g(Z}], = w[x-—f(z)]. w=0.

These are Egs. (2.1).

In order to satisfy the boundary condition, in addition to the previous condition,
we must have the following one: the curve I, which is the locus of the fixed points, must
pass through the points 4,(0, 0, ) and A4,(0, 0, —A) which are the fixed points of the
plates IT, and IT,, respectively. This condition gives the equations

(3.5 Sh) =gh) =0, f(—h) =g(—h)=0.
(%) See [5). See also [4], pp. 87-88 where the main results of [5] are given without the proofs.
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In order to integrate the differential system (3.3), we put

(3.6) F(z) = f(2)+ig(2).
From Eqs (3.3) one deduces
[€X)) Fr- ’2’ =0.

Suppose that @ > 0 and put(”)

12
s Mol
(3]

The differential equation (3.7) takes the form

Fﬁﬂ'_zisz! - 0.
The general solution of this differential equation is given by
(3.8) F = C+C,emd+h2 C o= (thx,

where C,, C,, C; are arbitrary constants. The conditions (3.5) give, for the function F(z),
the conditions

(3.9) F(h) =0, F(—h) =

Let P be the intersection of the curve I" and the plane Oxy, that is to say the point of
this plane where the velocity of the fluid is zero. We will choose the fixed axes Ox and Oy
such that the coordinates of the point P with respect to these axes are xp = I, yp =0
(1= 0). Then the condition that the curve I" passes through the point P gives, for f(2)
and g(z),

) =1, g0)=0

and therefore for F(z),
(3.10) F00) = 1.
Itis easy to determine the constants C,, C,, C; app:aringin Eq. (3.8) so that the conditions
(3.9) and (3.10) are satisfied. One obtains

Cy=C,, C,= —2C,coshm(l+i)h,

7 =9 +ix(®),

where the functions ¢ and y and the constant 4 are given by Egs. (2.3). From these values
of C,, C;, Cs, one dzduces ths expression of F(z), and by utilizing Eq. (3.6) the following
expressions for f(z) and g(z) are obtained:

16 = =4O gt~ 22 1y,
(3.11)
x( ) nn- ¢(h)]

g2) = [6(2) - $B]+ 2 [x(2)~ x(A)].

(") fw < 0, the changes to bz made in the solution are trivial and will bz indicated in the note follow-
ing.
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These equations are, for [ # 0, Egs. (2.2) given in the statement of the theorem(®).
We have obtained for the velocity field of the fluid an infinite number of solutions.
Indeed, the velocity field depends on the position of the point P in the plane Oxy. The
point P can be chosen arbitrarily in this plane. For each position of P in the plane Oxy,
different from O, we have a solution which is different from the trivial solution mentioned
in the statement of the theorem. If the point P is taken in O, [/ = 0 and Eqgs. (3.11) give

f2)=0, g(2=0.

ya
0 P x
Fia. 3.
yl
I L
0 P X
Fig. 4.
Yl
0 o -
P X
FiG. §5.

\/2
(®) Equations (2.2) are thus obtained by supposing thatw > 0.Ifw < 0, one mustput m = (—5) s

and it is easy to see that Egs. (2.2), and (2.3) remain as they are, but the right-hand side of Eq. (2.2); must
be multiplied by —1. This means that the curve given in Figs. 3, 4 and 5 must be replaced by the curves
which are symmetric of the previous ones with respect to the axis Ox. The curves given in Figs. 6, 7 and
8 remain as they are.
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Then the curve I" reduces to the segment 4, 4, of the axis Oz, and the motion of the fluid
is a rigid rotation about the axis Oz, that is to say the motion reduces to the trivial solution.
The curve I" which is the locus of the points of the fluid which are fixed has as equations

x=fz), y=g.

—
—

A

o
>

)

A
Fic. 7.
z)
Ay
0 J X
7 e S

Fro. 8.
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The projection of this curve on the plane Oxy has been drawn in Figs. 3, 4 and 5 for differ-
ent values (R = 20, 44, 123, respectively) of the Reynolds number R defined by the
equation

(3.12) R=

wh?

v

This Reynolds number is linked to the parameter m by the equation
3.13) R = 2m?h2.

The projection of the curve I” on the plane Oxz for the same values of R has been drawn
in Figs. 6, 7 and 8.

4. The pressure field

Let us calculate the pressure field of the motion, the velocity field of which is given by
Egs. (2.1), (2.2) and (2.3). If we replace in Egs. (2.6) the stream function y by its value
given by Eq. (3.4), we obtain:

(—’—E— +Q) = wlx+w(g”’ —of),

(i +.Q) = w?y—w(f" +wg).
e y

Now if we replace in these equations f and g by their values given by Eqgs. (2.2) and (2.3),
we find
(i +9) = wix+w?l [Mﬂ - l],
e x 4

Pon) x(h)
—+.Q) = 0ly+wll =—.
( e y 7 4
From these equations we deduce

(41) 240 = O (-x) G- I+C,

where x; and y, are given by Egs. (2.5), and where C is an arbitrary constant(*)

Equation (4.1) shows how p[p+£ varies. This quantity, which depends only on x
and y and not on z, is minimum for x = x, and y = y;. Let M, be a point having x,, y;,
and z, as coordinates, where z, is arbitrary (—h < zo < k). Let M be a point having
x, y, and z, as coordinates; then Eq. (4.1) shows that we have

2
(2+9) =(2+a) +4 .
e M e M, 2

(°) The solutions obtained in the present paper and given by Egs. (2.1)-(2.5) are entirely different
from the solution given by AsBoTT and WALTERS [2] (see also [1]), where the fluid fills the domain
between two parallel plates rotating about two parallel and distinct axes. None of the solutiors of the
present paper can be obtained as a particular case or limiting case of the solution of Abbott and Walters.
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5. Stress applied by the fluid on the rotating plates

We will now determine the stress t, applied by the fluid to a point M(x, y, h) of the
plate (*®)(*)I1,. Let t,,, #;,, t;; be the components of t, with respect to the axes Oxyz.
One has

by = "'a“(“;"'w;), ty = —p(v;+w;),
5= p—2pw; .
In these equations u is the coefficient of viscosity of the fluid. By replacing in these equa-
tions u, v, w by their values given by Eqs (2.1), we obtain
(5.1 s = —pwg'(h), by = pof'(h), t:=p.

If we suppose that there is no body force, or if the body force is the gravity, and if the

plate IT, is horizontal, the third equation in the set (5.1) and Eq. (4.1) give

(52) e = 22 =3+ G-3 14+ D,

where D is an arbitrary constant.
The normal stress ?,, is minimum at the point M,(x,, y,, h) of the plate IT,, and its
value at an arbitrary point M of this plate is given by the equation

; —
(D = (o, + 55— MM3.

When the Reynolds number R tends to + oo, that is to say, according to Eq. (3.13),
when mh tends to + oo, the equations (2.3) and (2.5) show that

lim x;, =1/, lim y, =0.
Ra+m R-a4w

Therefore, when R tends to + oo, the point M, approaches the point P,(/, 0, &) of the
plate I7,. This approach is very fast: for R > 60 one finds that the percentage errors

=l
P )

are smaller than 5%, and Eq. (5.2) can be replaced with a very good approximation by the
equation

2
tie = S5 [(x—1?+y*+D.

Let us now consider the tangential stress t,, at the point M(x, y. h), whose components
are t;, and #,,. The first two equations in the set (5.1) show that ¢, and ¢#,, do not depend
on x and y, and are constant when the position of M various on the plane I, . Define o

and #, by the equations
12
= (E) ¥ to = Fﬂﬂ.

2 h

(*°) It is easy to see that the stress t, applied by the fluid to the point of the plate I, which is symmetric
of the point M with respect to the plane Oxy is symmetric of t, with respect to the same plane.

(*") It is possible to measure the stress applied on the rotating plate by utilizing the orthogonal rheo-
meter of MaxweLL and CHARTOFF (see [8]).
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If we utilize the values of the functions f(z) and g(2) given by Egs. (2.2), the first two equa
tions in the set (5.1) give the following equations:

tix _ _ sinha—sina

to cosha—cosa ’
(5.3) . .

tyy _ _ sinha+sina

to cosha—cosa

These equations show that the ratios #,,/f, and #,,/t, are functions of the Reynolds num-
ber R only.

Let the tangential stress t,, be drawn in the plane Oxy with its origin at the point 0-
The locus of the end point of t;; when the Reynolds number R varies is the curve repre-
sented in Fig. 9, in which the projection of I" on the plane Oxy given in Fig. 5 is also

y
ty/t
0 1 1 L 1 A, L 1 aul | B
' 4 4 6 8 x
L/t
B t
ol R=5
R=20
-}
R=44
-6 R=79
-
R=723
-8
FiG. 9.

drawn(*?). When the Reynolds number R tends to +co, the direction of the tangential
stress t,, approaches very rapidly the direction making the angle —z/4 with the axis Ox,
that is to say, with the straight line OP. If we call 0, the angle of t,, with the axis Ox,
itis easy to deduce from Egs. (5.3) that for R > 60, one has 8, = —x/4 with a percentage
error which is smaller than 19.

(*2) Figure 9 has bzen obtained by supposing that @ > 0. If ® < 0, it is easy to see that the curve of
Fig.9 representing the locus of the end point of the tangential stress f;, must b replaced by the curve which
is symmetric of the previous one with respect to Ox.
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Let t,, = (t3,+13,)'/? be the intensity of the tangential stress. Again Egs. (5.3) show
that for R > 60, one has
R\
lye = fo(-i-) 5

with a percentage error which is smaller than 3%,.

6. Stability of the motions obtained

In the linear stability method the disturbances are assumed to be infinitesimal and the
equations are linearized. In the method of energy there are no such approximations:
the disturbances are not supposed to be infinitesimal, they are arbitrary, and the method
is mathematically rigorous. We will now study, using the method of energy ('), the sta-
bility of the motions obtained in the present paper.

Consider a viscous incompressible fluid filling a bounded domain V(¢) of space. Suppose
that for the motion of this fluid there are two solutions v and ¥ of the Navier-Stokes equa-
tion, having the same velocity distribution on the boundary S(¢) of the domain ¥(¢). Put

— _1 2
u=v-v, K—-é—!udv.

If v is the basic motion and v the perturbed motion, then u is the disturbance and K is
the kinetic energy of the disturbance.

The rate of change of K is given by the following equation which is the Reynolds-Orr
energy equation:

©.1) %‘.f_ i f[v(Va): (Vu)+u- D- uldo,

14
where D is the rate of the deformation tensor of the flow v.
From Eq. (6.1) it is possible to deduce the following theorem of stability:(*4)
THEOREM OF STABILITY. Let ¥ be a solution of the Navier-Stokes equation for the motion
in the bounded domain V(t). Let d be the diameter of this domain. Let —c be a lower bound
Jor the characteristic values of the rate of the deformation tensor D of the flow v in the time
interval (0,¢). If one has

3 2
(6.2) c< :23'
Jor all t, then for any disturbance u one has
lim K =0,
=4

and the motion v is stable(*).

(**) See SERRIN [9], pp. 253-256 and [10], pp. 2-3.

(**) This theorem is due to SERRIN [9], p. 254 and [10], p. 4. See GEorGEScU [6], pp. 52-53 and
JosepH [7], vol. 1, p. 15 and p. 24.

(**) It is possible to improve the inequality (6.2) by replacing the number 3 in the right-hand side
of this inequality by greater numbers, see SERRIN [10], pp. 4-5 and VELTE [11], p. 14.

9 Arch. Mech. Stos. or 2/79
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The previous theorem is stated for a domain F{(r) which is bounded. In the problem
of the present paper the fluid fills the infinite domain ¥, which is limited by two parallel
planes I, and IT,. In order to be able to apply the theorem of stability to the solutions
given in the present paper, it is necessary to extend this theorem to the infinite domain V.

We will at first extend Eq. (6.1) to the infinite domain V;. If we repeat the proof of
this equation after having replaced the bounded domain V(¢) by the infinite domain V,,
we see that it is necessary to impose to the disturbance u and to the field p, = p—p where p
and p are the pressure fields associated respectively with the velocity fields v and v, the
following conditions concerning their asymptotic behaviour as the distance r to the axis
Oz tends to + o0:

u=00", Va=0@", p=0@"),

with k > 1, k; > 0. If these conditions are satisfied, Eq. (6.1) is valid for the infinite do-
main V.

Then it is possible to extend the theorem of stability to the domain(*6) ¥, . One obtains
the following result: the theorem of stability is valid for the infinite domain ¥V, the ine-
quality (6.2) being replaced by the inequality

ey

(6-3) c< W,

where 2k is the distance between the planes IT, and IT,.

Now we will apply this last result to the new solutions given in the present paper. At
first we must determine the number c. It is easy to see that the characteristic values of the
rate of the deformation tensor D of the flow given by Egs. (2.1), (2.2) and (2.3) are

1=0, A= o (fg)n

Therefore ¢ is an upper bound of % (f"*+g'*'2. From Egs. (2.2) and (2.3) one deduces

2j2

f?+g?* = (cosh?mz — cos*mz).

For —h € z < hwe have
0 < cosh?mz—cos?mz < cosh?mh—cos?mh.

By utilizing the value of 4 given by the third equation in the set (2.3), we find that for
—h < z < h one has

coshmh+cosmh )1"2

12 12y12 12
e B ( coshmh—cosmh
From this result one deduces that we can take

coshmh+cosmh )“'2

s -12
¢ = mal2 coshmh—cosmh

(16) See SErRIN [10], p. 6.



A NEW SOLUTION OF THE NAVIER-STOKES EQUATION FOR THE MOTION OF A FLUID 279

The inequality (6.3) then gives

R\!? R\Y2 |2
5 cosh (—) —cos (——)
(6.4) L® g 2 4

h 2 - R\ R 12
cosh(?) +cos(—-2—)

In this inequality R is the Reynolds number defined by Eq. (3.12).

Those solutions of the set given by Egs. (2.1), (2.2), (2.3), (2.4), and (2.5) for which the
inequality (6.4) is satisfied are stable for arbitrary disturbances. Call ¢(R) the function
which constitutes the right-hand side of the inequality (6.4); the graph of the function ¢(R)

l/nl

is given in Fig. 10. If, for a solution belonging to the mentioned set of solutions, the point
having I/h and R as coordinates is situated in the streaked domain, this solution is stable.

It is possible to obtain for the stability condition an inequality which gives a smaller
region of stability, but which is simpler than the inequality (6.4). Indeed, we have for all &

coshf—cos& _ coshé—1
cosh&+cosé © cosh&+1

If we utilize this inequality, we can obtain a lower bound for the right-hand of the inequality
(6.4). By utilizing this result, we see that if the inequality

1/2
! 72 tanh(%)

65) < —
h 2 R32

= tanh’-g-.
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is satisfied, then the inequality (6.4) is also satisfied. Therefore, those solutions given by
Egs. (2.1), (2.2), (2.3), (2.4), and (2.5) for which the inequality (6.5) is satisfied are stable.
Call ¢,(R) the function which constitutes the right-hand side of the inequality (6.5);
the graph of the function ¢, (R) is given in Fig. 10.
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