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Unsteady flow of an elastic-viscous fluid past an infinite
porous plate

R.S. SHARMA (NEW DELHI)

IN THE PRESENT work the motion of an elastic-viscous fluid past a two-dimensional unsteady
porous plate was studied by using the Laplace transform technique. Expressions for the velocity
distribution and the skin friction, for various types of plate motion, have been obtained.

w mmejsuj pracy zbadano ruch lepko-sprezystej cieczy wzdhuz dwuwymiarowej, niestacjonarnej
porowatej piyty, stosnuqc technike trﬂnsfom‘la.cjl Laplace’a. Otrzymano zaleinosci okreslajace
rozklad predkoéci w cieczy i wartoéci tarcia powierzchniowego dla réinych przypadkéw ruchu
piyty.

B macrosmuel paGore HCCNEOOBAHO ABIMKEHHE BA3KO-YOPYTo# >HEIKOCTH BAONE ABYMEpHOMH,
HECTAIMOHAPHOMN YIOPHCTOMH IUINTHI, MPHMEHAA TEXHUKY npeolpasosauua Jlannaca. IMonyuennt
SABHCHMOCTH ONPEMIeNIAOIIHE PACTIPE/Ie/ICHHE CKOPOCTH B YKH/IKOCTH H 3HAYCHHA HOBCPXHOCT-
HOI'O TPEHMA JUIA PASHBIX CIYYacB ABMYKCHHA IUIHMTHI.

1. Introduction

THE PROBLEM of unsteady motion of a porous plate in an infinite fluid is of practica
importance in the analysis of the shaking table of the Fourdrinier paper-making machine.
NicoLL et al. [1] have studied the laminar motion of a viscous fluid near an oscillating,
porous and infinite plane. Their analysis is important because it yields an exact solution
of the Navier-Stokes equations of motion. DEBLER and MONTOGOMERY [2] analysed the
flow of a viscous liquid over an oscillating, porous plate with suction or with an interme-
diate film. However, this analysis does not satisfy the initial condition. SHARMA [3] applied
Laplace transformation to improve the work of DEBLER and MONTOGOMERY [2] and extend-
ed the analysis of NicoLL et al. [1] by considering the damped oscillatory motion of
a porous, rigid plane in an infinite viscous fluid with suction or blowing.

In the above referred studies, the fluid considered was a Newtonian one. However,
a mixture of water and wood-pulp is essentially a non-Newtonian fluid because of the pres-
ence of solid constituents in it. Thus the available analyses need to be modified before
one can apply them to the actual fluid situation.

In the present paper the analysis of a generalized unsteady motion of a porous, in-
finite plate in an elastic-viscous fluid has been attempted. Different forms of motion im-
parted to the plate have been considered. Velocity distribution and skin friction resulting
from various modes of plate motion have been obtained. One of the special cases consider~
ed can be regarded as a generalization of the analysis due to NICOLL et al. [1] and the
other as that due to SHARMA [3].
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2. Formulation of the problem

The fluid considered is characterized by the constitutive equations

2.1 Sik = Pik—P8ik»
[}
ox!  ox*
ik - B L DS ¢ § Y SV T '
@2) r 2_£ Y1) o o O (e, L)

where covariant suffixes are written below, contravariant suffixes above, and the usual
summation for repeated suffixes is assumed. Here s, is the stress tensor, p is an arbitrary
isotropic pressure, g is the metric tensor of a fixed coordinate system x?, x'* is the position
at time ¢’ of the element which is instantaneously at the point x* at time 1, /" is the rate
of the strain tensor and

vt = [ LD exp— e-rparar,
]

N(7) being the ‘distribution function of relaxation times. For fluids with short memory,

Eq: (2.2) is simplified to

2.3 P = 2,]08(1)1&_2]{0 h(%_ eIk

where 7o = f N(7)dr is the limiting viscosity at small rates of shear, k, is the coefficient
(1]

of elasticity of the fluid,

o0
ko = [ *N(z)dr,
/]
and 8/dt denotes the convected derivative.
Using the simplified equation of state, the equations of motion for the fluid in the
Cartesian frame of refenence can be written as
3‘0; aﬂ‘) ap 5’!}; [ i) ( azﬂl )
= 0

24 e ot +v"§?,, o 0 Oxy0xy | 0t \Ox, 0x,

3:’9, aﬂ; 32‘0... g azvt %
X Oxy Ox¢ |’

+0m OXp OXy 0Xy  OXp OXx 0Xg

where p is the density.

Consider the unsteady flow parallel to an infinite plane surface on which the normal
component of velocity takes a given value of ' = — W, If x’ and ' are measured along
and perpendicular to the plane, the velocity components u’, ' and pressure are inde-
pendent of x'. From Eq. (2.4) the governing equation with uniform pressure becomes

ou' ou' o' ' ' )
@ Fr i " ( ayror W a)
where » = no/e’ and k3 = ko/o’, and the continuity equation for flow is identically
satisfied.
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The boundary and initial conditions are
u(0,t) = Up[1+F(1)],
(2.6) t'(c0,t) =0
u'(y’: 0) =0,
where Up is a constant and F(¢') is an arbitrary function of time. Let us assume that the
fluid velocity in the neighbourhood of the plate is

@7 Wy, 1) = Upo[u,(0) +up (', 1)),

where Uy [u;(»")] is the velocity at ¢ = 0 and Uy [uf(y', ¢')] represents the change in velocity
due to F(t'). On introducing the non-dimensional parameters

(2.8) u= _{_}.;‘ y o 92 ] 4v »

Eq. (2.5), after dropping the bars, reduces to

09, Lo u Ok o, 0%
' 4 0t dy oy 4 oyrar oy’

The boundary and initial conditions given by Eq. (2.6) become
u(0,t) = [1+F ()],

(2.10) u(c0,2) =0

u(y,0) = 0.
The fluid velocity in the neighbourhood of the plate given by Eq. (2.7) becomes
(2.11) u(y, 1) = [u()+uy, 1.
Substitution of Eq. (2.11) in Eq. (2.9) gives
(2.12) ku)” +u) +u; =0
and

yo7 1 6!:,- k ﬁu}' _

(2.13) k“f +qu +HI—T-3}"'—T—3‘— = 0,

where the prime denotes differentiation with respect to y. The corresponding boundary
conditions are

u, =1, wu =Ft) aty=0,

@14) u =0, u =0 asy - o0,

Following FRATER [4] the exact solution of Eq. (2.12) with corresponding boundary condi-
tions is

(2.15) ug —cxp[ (l— . ) ]

Equation (2.13) can be solved by applying the Laplace transform defined as

u(p) = | exp(—pt)u(y, t)dt,
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whose inverse is
c+iw

u(y, t) =—2:? f u(p)exp(pt)dt.

c=lw

Application of the Laplace transform to Eq. (2.13) yields

—vrr 1 —tt =t 1 _
(2.].6) kuf +(1“Tkp)uf +“!""Tpuf = 0,

where #; is the Laplace transform of u,. The boundary conditions for Eq. (2.16), represented
by Eq. (2.14), reduce to
U = F =0,
@17 =E B ¥
Uy=0 as y-— oo,

where F is the Laplace transform of F(t).

Equation (2.16) is a third-order differential equation with two boundary conditions.
Following the method proposed by BEARD and WALTERs [5], and SOUNDALGEKAR and
PRATAPPURI [6], we assume u; in the form

(2.18) Ur = Ur, +ku;.+o(k’).

This expansion is justified since the rheological equations are valid only for small values
of k.

On substituting Eq. (2.18) into Eq. (2.16) and equating the various powers of k, one
obtains

2.19) 0y, it~ 2y, = 0,
and
(2.20) iy, iy, — Ey, = )+ L

The corresponding boundary conditions are

U, =F, U, 6=0 aty=0,
U, =0, u,=0 asy— o.

From Eq. (2.18) through (2.21), one obtains

(2:21)

2.22) Uy = B, +kp,,
where
(2.23) B, = Fexp(—hy),
g _ Fw+pld) o,
(2.24) e yexp(—hy),

(2.25) b= +y T+l
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3. Method of solution

The unsteady velocity is found by inverting B, and B, given by Eq. (2. 23) and (2.24).
In order to determine the inverse we put F = 1 and, inverting the values of g, and 5, [7],
one gets

yH@t) -\
31) By = L'(B) = W" v
_ romy _ YH@Y?) y 3y 3y
B3 fam L@ VGn 4096:‘+ 25617 2560 T 181
“ e tisrtar T 161 ] g )

where H(4t/y?) is the Heaviside unit step function.
The shear stress in case of an elastic-viscous fluid is given
7 o' o' , 0%
(3‘3) Pxy = ’?0‘5}7 _ko( ayfarr +0 aylz )‘
Non-dimensionalizing Eq. (3.3) with parameters given in Eq. (2.8) and dropping the bars,
one gets

0 ou k| d*u 0%u

e r == )
The skin friction at the plate is
(3.5 Poyly=o = —1+a;+kay,
where

o = % ’
3.6) 0y ly=0

atz=-a£z—] +a¢ﬂ1 e azﬁ‘] .

0y lyao  0¥? lyao 4 0y0t Jyuo

When F(p) # 1, the values of B, and B, can be calculated by applying the convolution
theorem [8]. Thus

H(42 T
b = f Fe- z)[’;y( 2. (e )]dz.
3.7 3 2

> _ o [YH@AY?) y Yy
b = of el s [40962.‘ + 25677 " 2567 T 1280~ MR

3 =
e 16] )]

where F(¢— 1) is bounded and integrable over a finite range and ! A=32F(t— J)e~G+r* 194

is absolutely convergent for time ¢.
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4. Special cases of F(1)

Now we consider some special cases of the function F(t), characterizing the motion of
the porous plate,
(i) The impulsive velocity field corresponds to

4.1) F(t) = KH(t),
where K is constant. From Egs. (3.7) and (4.1) one obtains

|/_)+crfc '/_+ Vi )]

B = —KH(I)[ "erfc( '/

4.2) ;

y
v ')+ (ﬂ,){zssﬁ T6r ~ 3

et

i6

T

For very large values of ¢, 8, = Ke™” and 8, = Kye~” so that u; = (1+ky)Ke™”. For
this type of motion, Eq. (3.6) gives

B, = KH(1) 5 ye"erfc(

oty %-KH(:)[l+erf|/T+ ;:]

it
“.3) _KH@O)[ 1 11,
V) | 32 lG]e :

The results given by Eq. (4.2) and (4.3) are valid for ¢ # 0. As t - o0, «, = KH(t) and
oy — 0.
(ii) Single acceleration is defined by a function

4.4) F(t) = KtH(t),
which is valid for all finite values of 1. From Eq. (3.7) and (4.4) one gets

i, - --KH(:) [(:- “) "erfc( T} ) (r+ )erfc( e 14 t)]
gl b e ol v N a vl
o4t )

4.5

and from Eq. (3.6) and (4.5) one gets

o = lK)‘I{r)[r(l-&-u:rf]/?)+ %erf]/?+e"(—;) ],

_ KH(t)

(4.6) 1
o = 8 [l +el'f'/f + 2'/@ e_l]'
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For large values of ¢, B, = KH(t)(l-«-—i—) e’ and B, = KH(t)y (!-—-;—— %)e",

and o, — K(I+%) and a; = (— %) Thus the skin friction due to F(¢) for large ¢ is

[-— 14K {t + Ti(l —k)” . This implies that skin friction reduces on account of the visco-

elastic property of the fluid.
(iii) Multiple acceleration is defined by the function

4.7 F(t) = KtH(t)— K(t— to) H(t— 1),
which is valid for ¢ # 0. Let By(y, t) and B5(y, t) denote f, and f, for the case when
F(t) = KtH(t); then, for the present case, one has

B = By, )= Bi(y, 1—t0),

B2 = B:(y, )= B2y, t—to).

The values of 8, and §, and «, and «, can be obtained from Egs. (4.5), (4.6) and (4.8).
For large values of ¢, «; — to KH(t) and «, — 0. 1t is seen that these values are f, times
the corresponding values of «, and «, given by Eq. (4.3). This is because the final increase
in fluid velocity for the present case is #, times the corresponding increase in fluid velocity
when F(t) = KH(t).

(iv) Periodic velocity field is defined by the function

(4.9 F(t) = ""H(1),

(48)

where o is the non-dimensional frequency of oscillations given by o = w'4v/W?2, The
constant K has been dropped in the further analysis for the sake of covenience. Expres-
sions for 8, and B, are obtained as

—%y(HV(le)) y
erfc
(@7

- 5 2 (1-VT+1) (
€eric

B = —;— e H(t) [e - 1/(1+—m)f)

4;‘_ + (1+:'w)r)],
8(l +iw)—w? iw ) “ﬂl-r(“‘m)

(4.10) +e
ol BN DS % §
8V (1 +iw) 5

i 8(l+iw)—-w?
]/(l'i'l'w)f) (l+—§--*-—--7.(l_+-—i:m'

1 —
-y (- V(T+ia))
g erfc( L4

B, = e‘“yH(r)[*} (

x erfc (

oo

Xe

(1 +iw)t )

i (e s+ [~ ) |
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Similarly, one obtains from Eq. (3.6) and (4.10) the expressions for «, and «, as

1
- H t fet -r .
o[ =]
4.11) " etor (LHi0) ot
[ 16YGry 32y ()

1
3 o
p (—‘% - i:-'-) (1+iw) ’e'“erfl/(t+:w):].
(v) The decaying oscillatory velocity field is represented by the function
(4.12) F(t) = H(t)e~®-tox,

For this case the expressions for 8, and §, from Eq. (3.7) and (4.12) are obtained as

[ —%y(n Va-»)

By = —;—H(t)e"” e erfc( -y(a- y)t)

o

-3 (1=Va=»)
+e crfc(

+ l/(l-?)f)]

4.13)

e

8(1—y)+y? _,_,_+l)e—%.r(1+p/(l-'_v))

8-y 2
xerfc( —VW)+%(1,%_%%)

B2 = H(t)ye ""[ (

Y
Wi

Xe

1 S
-5y (1-¥(1=9)
77 g erfc(

yr +l/(l-y)')]
y y? y 1, (T-y) y —\?
w10 (g + 1w+ ) [ |

where y = A2—iw.
Similarly, the expressions for «, and o, are obtained from Eq. (3.6) and (4.13) as

1 S e 1
I=_H - 1- ~vterf 1- —-—_ts
. @ = HO [+ VT=D e et YT + s ]

1
Y o YU-9) _ 1 . f2 7 e
2 =H o ¥ t t l"
« (t)[s s e e oD e +(8 "”’16)( ¥)

xerf]/(l—y)t].
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Consider a particular case when A2 = 1. For this case «, and «, simplify to

—;— H(t)e™* [sinmr + ¥ Qo)(sinwtS Yot +coswtCy t) ] ,

G‘.|=
(4.15)
il g2 _L
oy, = H(t)e [?smwt 8f.:osw! )
_ (+4e?) _
8|/(2 (cos wtSY ot =sinwtCyot)],

where C()/wt) and S()/ wt) are Fresnel integrals.
For the case when A* # 1 and > |1 —4?|, the expressions for «, and a, become

@ = —-l-H(r)e'”'[sinwt-i- V Qo) {sinwtS (Y ot )+cos wtC(Y ot )}],

(4.16) 3
o, = H(r)[ s e R RO {i $in wt — —- cos wt
16/ (nt 8 8
2
(:/+w ) (cos wtS Y wt —sinwtC ) wt ]”
5. Conclusions

It may be seen by examining Egs. (3.1) and (3.2) that 8, and £, depend on the para-
meter y/(4)/1). Also, following WATSON [9], it may be noted that a secondary boundary
layer is created when the plate velocity is subjected to an instantaneous impulse.

Since the fluid elasticity reduces the skin friction, the power input to fluid at the plate
per cycle, given by the expressions

T
P=— f p,,]’_ou((), t)dt,
0

where T = 2n/w, is also reduced. Thus the power required to vibrate the shaking-table
of the Fourdrinier paper-making machine is less than that estimated by treating the water-
wood pulp mixture as a purely viscous liquid.

For the case wherein a damped oscillatory plate velocity occurs about a constant mean,
the dominant skin friction term, at large values of oscillation frequency, is a,. This term
fluctuates with a phase lag of tan~* (S wt/C y/ wt ) with respect to the fluid velocity; and
for very large values of wt, it becomes 7 /4. This result is in agreement with the work of
STUART [10].
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