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On two phenomenological models of capillary phenomena
A. BLINOWSKI (WARSZAWA)

THE GRADIENT model of a capillary liquid is shown to yield the classical formulae both for the
capillary pressure and for the saturated vapour pressure over a curved interface. This result
is obtained as the first approximation and applies to a wide class of interface geometries, under
rather general assumptions regarding the energy density as a function of mass density and its
gradient.

Wykazuje si¢, Ze przy dostatecznie ogblnych zalozeniach dotyczacych postaci funkcji opisujacej
zaleZnodé gestodci energii od mmlmmmmwwmhm
wmdmwpmwmmmﬁ@udokhxymwhméwmmmmmlmw
ciénienia pary nasyconej od krzywizny powierzchni rozdziatu.

JoKaskIBaeTCA, WTO OPH JOCTATOUHO ODIHX IIPEIOIOHEHMAX OTHOCHTE/ILHO BHAR (yHIImM,

AABJIEHMA M JUIA YIPYTOCTH HACHHLSHHONO IAPA HAX HCKPWBIICHHON MOBEPXHOCTHIO

THE MEMBRANE model of surface tension has proved to be very effective in the theory
of capillary phenomena or, more precisely, in the mechanics of those phenomena; this
phenomenological model allows for an effective description of a wide class of mechanical
phenomena occurring in a liquid with a free surface, e.g. the capillary waves, droplet
vibrations and many others. This model will remain for long a basic tool in investigating
the mechanical properties of free surfaces what may be exemplified by the nonlinear
solutions obtained in our times by CRAPPER [1] and describing the finite amplitude capil-
lary waves. Some attempts were made to construct a more general description developing
the fundamental ideas of that model by treating the interface as a two-dimensional con-
tinuum, and mt.roducmg the viscosity [2] or the dependence of the surface energy on the
radius of curvature (shell model) [3]. At the same time, however, attempts were repeated
to apply a three-dimensional description in which the non-locality effect producing the
capillary phenomena were accounted for, in the first approximation, by introducing the
elastic energy as a function of the density gradient (or, more generally, of the second
and higher strain gradients). Let us mention the papers by Young, Maxwell, Laplace,
Korteweg, Van der Waals, Fuchs (detailed references may be found in [4]); among the
more recently published papers let us mention those by MINDLIN [5] and HART [6].

Paper [7] may serve as an example of practical application of the gradient model
when the capillary tube dimensions make the problem lie decidedly outside the region
of applicability of the classical membrane theory.
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The present author showed in papers [8, 9] that in the case of a certain type of simple
molecular interactions the gradient theory may serve as an approximate description of
non-local interactions.

The first question to be answered in' verifying a new theoretical model is whether in
the cases which may effectively be described by the classical model, the generalized model
leads to the same experimentally verified results.

The fundamental result of the membrane theory is the Laplace formula

) Ap = 2HGo,

in which o — surface tension, 4p — pressure difference at both sides of the interface,
H — mean curvature of interface.

In papers [8, 11] the present author proved this formula to hold true in certain simple
cases also for the gradient theory. The aim of this paper is to demonstrate that the gradient
approach yields the Laplace formula (and also other results known from the classical
theory of surface phenomena) under considerably less constraining assumptions concern-
ing both the form of the energy density function depending on the mass density gradient,
and the form of the interface.

In papers [8, 9, 10] it was shown that in the absence of body forces the condition of
equilibrium in the case of the gradient model of a liquid has the same form as in the
classical case

2 Ty;=0,
while T is expressed by the formula
d(ow d(ow d(ow

Here ¢ — density, w — energy density (referred to unit mass), and I = ¢, ;0,;.
Thus the relation (2) may be written in the form

® ~(°82) #2(%Pe) =0
or
&) -a—%':—)u(a(g;) e.-)'t=c=const-

By substituting Eq. (5) into Eq. (3) we obtain in the case of equilibrium and in the absence
of the body forces

]
© Ty = ow+0)8y-2222 ¢ 10,

Let us now consider a certain class of solutions of Eq. (5) and, namely, the class at
which the surfaces of constant g are also the surfaces of constant I; this class contains
the cases of spherical and cylindrical symmetry and, obviously, the plane case. For practical
purposes we may confine ourselves to such cases in which the mean curvature of the

equal density surface in the gradient zone is small as compared with the reciprocal ot
the zone thickness (i.e. with 1/A, h being the apparent thickness of the zone outside which
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the density gradient is negligibly small). It may be expected then that, the equal density
surfaces will virtually always be parallel to each other in the sense of a common normal,
i.e. if at a certain surface ¢ = const, then also |gradg| = const, that is I = const.

Let us select such a coordinate system (x;, X,, x3) in which the I = I, — surface
is the x; = s = 0 surface, and for all regions close to the surface the variable s represents
the distance from it (measured along the normal); the remaining two variables x,, x,
may be assumed arbitrarily on the surface P provided they remain constant along the
normals.

In the coordinate system introduced here Eq. (5) is written in the form

a(@“’) 32(9”') u' rj az(gw) rz a(QW) 2H+2K9 l') Frn)
D - *p Y271 ¢ 2\ Tmr i) = ¢

(cf. the Appendix I), where ¢’, o’ denote the derivatives dp/ds and 8%p/ds?, respectively;
H is the mean curvature of the surface P, and K — the Gaussian curvature.

In this manner the problem is reduced to a one-dimensional problem. Equation (7)
is meaningful only for s < R,, R;, R, and R, denoting the principal radii of curvature
of surface P; however, as it was mentioned before, sufficiently far away from P the
gradient of g is negligibly small and hence we can assume that for certain values of s =
=a<0and s=b>0,

(8) e'®) =0, ¢@=0 ¢"@=0 ¢"(b)=0.
On substituting these relations into Eq. (7) we obtain
_ 0(ew) _ 9(ew)

9 = .
@ 69 s=a 69 s=b
Equation (7) multiplied by ¢’ may be written as

_ [é(ew) d(ew) ) *(ew) 0’0" 3ew) ,, 2H+2Ks
S ( ) ( C+2 =5 2 TR

Integration by parts within the interval {a, b) and application of the relations (8) yields

_ zfa(gw) ;2 2H+2Ks

an (""“) 1+ 2Hs+ Ks?

For o' =0, w = w(p) = f—*a—;?dg. Here p = p(o) — pressure.
Let us observe that

(12) 95(9) ef do+p— ef—deﬂp

and hence
d(ew)
(9 20 'Qw)

d(ew) ga _1rEyA J’ 6(9W) 02
(13) pa-p,—ZHfz [TaHs ke &~ 2H | 2=~ %,

b

a
e(w+ 6) = Po=Pa>
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It was shown in [8, 11] that the right-hand integral of Eq. (13) for a plane surface may
be interpreted as the surface tension; also in the general case on the basis of the defini-
tion given, for example, in the paper by Rusanov [12]

(14) o= [(T-T)ds,

(where T, and T, are the respective tangential and normal stresses), we obtain with the
aid of Eq. (6)

(15) a-—f{g(w-b-c) [9(w+c) 2 %ew) (9) '2]}ds 2 "(g}") 2ds.

Hence Eq. (13) is reduced to the classical Laplace formula in the same approximation in
which gradp||grad], in which the integral discussed is independent of the shape of the
surface I = I,,, and in which Eq. (13) was derived.

It is shown in [11] that in the case of spherical symmetry a good approximate formula
is obtained for the dependence of the saturated vapour pressure over the curved sur-
face on the radius of curvature. The procedure employed there may be transferred, al--
most without alterations, to the more general case considered here. The expression for
(W0)|1=const is Prescribed with the accuracy up to an additive constant; let us select a ref-
erence value g, < g,, 0, being the saturated vapour density, so that g, < g,. Then
Eq. (9) may be written as

e, L)
p(ea) ple) , _ plo) p(o)
), [0y [,

(16)
that is
L
plea) _ plos) ple) , _
an Q) 28 _ [ 204 =0
or
¢ 1 dp(o)
1 L do =
i of 0 do %
The symbol dp/dp denotes -%QQ’D- , and from Eq. (13) it follows that
I=0
(19) p(ea)—p(es)—2Ho = 0

Denoting the expressions (18) and (19) by F(o,, 05, H) and @(g,, 0s, H), respectively,
and disregarding the dependence of ¢ on H, we obtain

OF Lo 9F_14& OF 14
0) 0H ~ ' 9oy @ dofe=e,’ 0. 0. dol|e=e.
w_ L, ®_a @ _ &
0H > 3o, dole=e, 0oy  dole=e,
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The formula for differentiation of implicit functions yields

OF 0b  OF 0P

an do, _ OH dp, 0o» 0H
dH ~ oF 3@ _oF o9 °

Ocs O0a  Oga Oos

whence
_1d
do, gp dp le=c,
@) Z7 e W N T w7
o do e=g, do e-e._ 0. do e=0, dQL-e,
that is
@23) % = - i o
(I"E .

Let us denote by p,(H) the density of saturated vapour at infinity, remaining in equi-
librium with the fluid for a given curvature H. Since p, is almost independent of H, we
may write

(24) pulH) = pu(Hu-o+ 2D g
H=0
From Eq. (23) it follows
dp, doa _ _ 20
) o dH " T-ale.
and hence
s _ 20
dH 1“9&/@. ’
The value of g,(H) differs but slightly from o,(0), so that
dpa 20
d'H !-9,/9. ’
Finally,
26) PuCH) = P(Huat o H & puaa+ 2Ha 22

In the same approximation in which the formulae (19), (26) hold true, the maximum
gradient surface must obviously be at the same time the surface of equal mean curvatures.

A more accurate analysis of the solution (15) seems to be impossible without the
information concerning the form of the function w = w(p, P); however, Eq. (13) suggests
that once the function are known, we can attempt to investigate the higher approxima-
tions corresponding to the shell model of surface tension, i.e. such a model of the surface
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of separation in which ¢ is assumed to depend on the shape of the surface; we can then
analyse the orders of the effects and decide upon the problem of applicability of the shell
model.

Equation (5) may be written in the form
9(ew) 0*(ow) g™ *(gw) ik, jm (9 w) ij
(Al) - 69 +2 afa 0,10,k +4 alz 0, Ijg kO, m& gJ +2 0, Ug .

In the coordinate system assumed here o3 # 0, g,; = 0,, = 0, while g** = 1, and hence
(A2) 0.i0.x8" = 0,30,:8>° = "%

By introducing the coordinates u, (« = 1, 2) on the surface P, the position vector may
be written as

(A3) R(tty, 5) = Ro(ts) — smo(uy),
the symbol 0 referring to the values taken at the surface P. The base vectors are

(A4) €y = €g,+S ?3:0 = eo,+sbwe", e; = —n,,

-3

whence

8ap = 8oap+25bous +57boay blg s
g3=1 8.=0 g¥=0 g?*=1.
The Christoffel symbols are given by

(AS) {a:sﬁ} -7 —g%n, :3351} =0 {333l =0

The assumption of parallelism of the equal density surfaces yields p . = 0, and hence

(A7) oy0x0 m8"8™ = 0.310,30,3 =(a‘,‘_z ‘33}93 {33}9¢)( ) = ¢"0"%,

(A5)

0%
k K =
(Aa) Q-thJ ( x_;axg }k} ﬁx-’) g“ (I: k= ], 2s 3)
From the same assumption it follows that
e %o
(A9 o =" o = O
and

3
(A10) eng =28 Lk} - e Lﬁ} £
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Applying the relation (A6) we obtain

3 e, on
(A1) R R
e) - e = e} (€ox+5Doas€}).

We can always assume g, = &4, and then

(A12) €} e, = 81+sb},
and
(A13) i;;}-n = —bBoug— Bogy bla-
Let us now select the coordinates u, so as to render the matrix b,; diagonal. Then
14 2sb, , + 52b3, 0
(Al4) det]gay| —’ 0 1+ 2sb,, +52b3,|°
and thus
1 1
" 22 _ 12 .y
Lot (L S (T L
From Eq. (Al1l) we also obtain
A ba=o b
(A16) I2—0, 2]=0
and, finally,
(A17) H 3 } g = boy1+25boy1 D022+ bo22 _ 2H+2Ks
ﬂﬁ 1+-f(b011+bozz)+'.fzbo“bozz 14+2Hs+ Ks?’
what leads to the result
2H+2Ks
SRR | 0 PO il ke i
(A18) g™ =" 0
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