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Perturbation solution for rigid-viscoplastic spherical container

W. WOINO (WARSZAWA)

A PERTURBATION technique around a rigid-perfectly plastic solution is proposed for analysing
the plastic response of strain-rate sensitive metal structures subjected to high intensity dynamic
loads. The proposed method is explained on an example of an impulsively loaded thick-walled,

rigid-viscoplastic spherical container. An’exact solution involving a non-dimensional parameter
o is obtained and shown to tend to the rigid- perfectly plastic solution when « — 0. Using the
Linstedt-Poincaré procedure a perturbation solution is found and then modified with the help
of Shank’s transformation so as to extend the admissible rarge of the small parameter «. By
comparing the perturbation and exact solutions, practical approximate formulae are proposed.

Zaproponowano metod¢ perturbacyjna analizy plastycznego zachowania si¢ dynamicznie
obciazonych konstrukcji metalowych z uwzgl¢dnieniem wplywu predkodci odksztalcenia.
Metod¢ t¢ wyjasniono na przykladzie obcigzonego impulsem predkosci grubosciennego zbior-
nika kulistego z materialu sztywno-lepkoplastycznego. Uzyskano rozwigzanie zamknigte,
ktore zalezy od bezwymiarowego parametru « i przechodzi w rozwigzanie sztywno-idealnie
plastyczne, gdy « -3 0. Stosujac metode Linstedta-Poincaré znaleziono rozwiazanie perturba-
cyjne wokolo rozwiazania sztywno-idealnie plastycznego. Zastosowano transformacj¢ Shanka
dla rozszerzenia dopuszczalnego zakresu malego parametru o. Przez poréwnanie rozwiazania
perturbacyjnego z rozwigzaniem zamkni¢tym zaproponowano praktyczne wzory przyblizone.

IIpeqnoyker meprypOalMORHLEL METON AHANM3A IUIACTHWECKOTO NOBCHCHHA IHHAMHICCHH
HATPY)HEHHBIX META/UIHYECKHX KOHCTDYKIMI C YJYEeTOM BIHMAHHA CKOPOCTH AetopMamu.
3TOr MeTOA BBIACHEH HA NPHEMEPE HATPYXHEHHOTO HMIYIBCOM CKOPOCTH TOJICTOCTEHHOTO
chepHIECKOro pesepBYapa H3 YKeCTKO-BA3KOIUACTHIeCKoro mareprama. ITomydeno samimyToe
pellieHHe, KOTOPOe 3aBHCAT OT (Ge3pasMEpPHOIO ITApaMeTpa @ H MEPEXOOHUT B HKECTHO-HICAILHO
ImnacTH4YecKoe pemende, xorma o — 0. Ilpwmensa meron Jlmmcragra-Ilyamxape malieHo
neprypbalHOHHOE pellleHHe B OKPECTHOCTH KECTHKO-HACANLHO IUIACTHYECKOrO peIleHHs.
IIpumenexo npeobpasosarde Illamka 1A paciMpeHRs HOMYCTHMOIO HHTEPBAIA MANOrO Ia-
pameTtpa «. ITyTem cpaBHeHHA MepTYPGALMOHHOIO PEelICHHS ¢ SaAMKHYTBIM PElleHHeM IIPeTo-
YEHB! MPAKTHUYeCKHe MpHOEOKeHHbIe hopMy L.

1. Introduction

THEORETICAL analysis of plastic response of strain-rate sensitive metal structures subjected
to high intensity dynamic loads leads as a rule to a nonlinear initial boundary value
problem. Consequently, exact solutions were obtained only for the simplest cases of
structures with a high degree of symmetry, for example the solution for a circular ring
with a power type of stress-strain rate law, published in [1] or the solution for a thick-
walled spherical container with a linear excess stress function, reported in [8](*). To
analyse the behaviour of more complicated structures, such as beams, plates and shells,
various simplifying assumptions and approximations were introduced. Review of relevant

literature can be found in Ref. [3].

(") In this case the corresponding initial boundary value problem is linear.
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According to the approximation technique proposed by PERRONE in [6], the solution
for the rigid-perfectly viscoplastic structure is approximated by the rigid-perfectly plastic
one with a correction for strain-rate sensitivity in the form of an empirical modification
of the static yield stress correspondingly to initial strain rate magnitude. Hence, the
method is particularly proficient in solving impulsive loading problems when solutions
for rigid-perfectly plastic structures are available. Since most metals exhibit a rapid
increase of the yield stress over a relatively narrow range of strain rates, Perrone’s ap-
proach can not describe correctly the stress field during the deformation process.

In the present paper an alternative approach is proposed which is also applicable
whenever the exact rigid-perfectly plastic solution is known and free of the disadvantage
of Perrone’s simplifying assumption. This is-a perturbation technique around the rigid-
perfectly plastic solution.

Rather than seek for generality, we shall develop the proposed perturbation method
directly on an example of an impulsively loaded thick-walled, rigid-perfectly viscoplastic
spherical container. First, an exact solution of the stated problem is obtained in a para-
metric form. This solution, involving a non-dimensional parameter &, is shown to tend
to the rigid-perfectly plastic solution when « — 0. Next, using the Linstedt-Poincaré
technique a perturbation solution around the limiting rigid-perfectly plastic one is de-
veloped and then modified with the help of the Shank’s transformation so as to extend
the admissible range of the small parameter «. Finally, by comparing the exact and per-
turbation solutions practical approximate formulae are proposed.

2. Formulation of the problem

Consider a thick-walled spherical container made of incompressible, homogeneous
rigid-perfectly viscoplastic material obeying the constitutive relation formulated by Pe-
rzyna [5]. Let a and b denote the inner and outer radii. Our task is to describe a motion
of the container, initiated at a time ¢ = 0 by a radial velocity field vo(r) > 0,a < r < b,
under the assumptions that the internal and external pressures and the initial radial dis-
placements are equal to zero and deformations are small.

Because of the symmetry the normal stress o, and the hoop stresses o, = o, are
principal stresses. Moreover, in view of the incompressibility condition the radial velocity
distribution at arbitrary time ¢ must be of the form

@) o(r, 1) = (—f—) v.(t),

in which v,(t) denotes the radial velocity of points on the internal surface of the con-
tainer. For 1 = 0 Eq. (2.1) gives the relation

(22) Uﬂ(r) = (%) v‘ﬂ! ﬂao = U,(O) > 0

for the initial radial velocity distribution. Integrating Eq. (2.1) with respect to time we
obtain the formula for the radial displacement field

2.3) u(r, 1) = (%)2.(:),
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whefe
(2.4) u (t) = [ vi(t)at
0

is the displacement of the internal surface.
Let us introduce the non-dimensional independent variables

r 2y 3kiny!
. * — — t¥ =" ' _t
=3 ’ a 0ava0(1—7)

and the non-dimensional dependent ones(?)
. o 2y 3klny!

v oF = O _ _ 2V 3klan~"
A A O

where k denotes the static yield stress in pure shear, g is the mass density and the para-
meter 7 = a/b characterizes the geometry of the container. Then a full set of governing
equations of the problem stated above, expressed in these non-dimensional variables,
consists of the equation of motion

do¥ i o;—0o; _ 2lnn~' dov*

(2.6) o* =

2.7

or* 1= a*’

the constitutive relation

o* ay

—_—— *__ ¥ _
(2'8) r* '/ SQ‘O {D{O‘w o, l)r
and Eq. (2.2)

va (%)

(2.9) ﬂ‘ = T

for the radial velocity distribution, in which y stands for the viscosity constant and the
function @( - ) is chosen to best represent results of experiments on the dynamic behaviour
of materials. Equations (2.7)-(2.9) together with the initial condition

(2.10) 2X(0) = 1
for the radial velocity and the boundary conditions
(2.11) or(1,1*) = of (™", 1*) =0

for the radial stress furnish an initial boundary value problem for the sought functions
v*(r*, t*), o} (r*, t*) and oy (r*, t*).
To complete our formulation let us note that the non-dimensional form of Eq. (2.4)
is read as
o
(2.12) uxt¥) = [ o¥(n)dr.

]

(*) From Eq. (2.6),,s it follows that
. Y « _ 2V/3klnp!

vy = —, Y = —————— U,.
2
Vao QWGD(I'-’?)
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3. Solution for the power function &(-)

In the case of the power function @(-) = ()", where n is a natural number, the
constitutive equation (2.8) takes the form

v*
3D = V3 ! (3=t -1
With a view of Eq. (2.9), Eq. (3.1) yields the relation
1
3 gt [or)"
(32) 0' "—v‘J' 'I+Gn'—ll}"—i"(’*3) ’

where the non-dimensional parameter

zn Da
(3.3) a= lnWi,( °)

is seen to be mon-negative.

Let us substitute Egs. (2.9) and (3.2) into the equation of motion (2.7) and integrate
with respect to r* from 1 to r*. Making use of the initial and boundary conditions (2.10)
and (2.11), we infer that vJ(1*) must be a solution to the nonlinear (for n # 1) initial
value problem

(34

* i
f;:: W*' -
for the ordinary differential equation. The radial stress is related to this solution by

-1, ¥ =1

(3.5) ¥ (r*, 1%; 0, n, @) = A(r*; 7)—aB(r*; n, B) o2,
where the terms
(3.6) L sty iy I = Lopises
: g R P :
1 gt [ -3 3 (* ’-n)(l-n')
@37 = Br*n,n) = 3[r* - ]
1—-n"

are independent of the parameter o.
Finally, combining Egs. (3.5) and (3.2) we obtain the relation between the hoop
stress and the radial velocity

3 Inyg! s
(38) op(r* t*;m,n, @) = 1+ A(r*; n)—a [B(r‘, 7, n)——— 3 r* ]v:’.
1-9"
It can be proved by direct substitution that the solution to the problem (3.4) can be
represented in the parametric form

3.9 ({5 ) = (— %).
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1
(3.10) r*(c;a)=(-l)""% f%:gdf

(=i {2—[( O

where 93({; @) = v (¢*({; a); ) and the parameter { changes within the range —a <
< ¢ € 0. Now, with the help of Egs. (3.9) and (3.10) we can change the variable under
the integral sign in Eq. (2.12) and obtain a parametric solution for the displacement

@G @ a)= - — f‘mi =a,,. {2, %[c"‘ —(—a)?"- ']+lnl ':

where #3(C; @) = uZ (£*(C; 0); ).
According to Eq. (3.9) the motion of the container ends when ¢ = 0. Hence, by
setting £ = 0 in Egs. (3.10) and (3.11) we arrive at the formulae for the response time

n—1
- e — (-1 (=1
(.12) 1= 140; @) = (1) ?[Z =t In(l+3)|,
and for the corresponding final displacement

=, (—1)2n-i+1
n—i

(3.13) uy = ug(ty; a) =

a"‘“—ln(l+a)].
i=1

When » = 1 the initial value problem becomes linear and has an explicit form solu-
tion. Inverting Eq. (3.10) for n = 1 we have

(3.19) Li*; ) = 1—(14+)e~=*)
which, when substituted into Eq. (3.10) with n = 1, yields
(3.15) o3(t*; ) = [(1+0)e 1],

Further substitution of Eq. (3.14) into Eqgs. (3.11)—(3.13) gives the expressions for
the remaining quantities:

(3.16) W% 0) = — [(1+2) (1—e)—ar*],
(.17 0 = —l-In(l+a),
(3.18) uh = 3 [a —~In(1+a)].

When n # 1, the relation (3.10) can be inverted only in an approximate way using,
for example, an iterative procedure which for relatively large n could be troublesome.
Therefore, to obtain an explicit approximate solution to the problem (3.4) a perturba-
tion technique which appears to be more simple in the considered case is proposed.
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4. Limiting case of rigid-perfectly plastic motion

It was shown in [5} that by letting  — oo the constitutive equation for rigid-perfectly
viscoplastic material reduces to that describing a rigid-perfectly plastic material. It
will be proved now that, with o — 0, the solution (3.5), (3.8)—(3.11) indeed tends to that
for the rigid-perfectly plastic container.

Expanding In(1+ «) and In(1—{) into power series, Egs. (3.10)-(3.12) for « < 1 and
—¢ < 1 can be written in the form

T R 4 Wil (—1)'
(4.1) r(C,a)—l—(-?(l+ Z ) 2 i

2) = l+n2 CD g

2n _1yi+2m+1
4.3) ﬁf(C:¢)=%—(*%) (‘;— ;+2,,) 2( ;]4)-2::

With the parameters v,0, @, 1, n held fixed the condition ¥ — oo implies « — 0, and
since —a < { < 0 also —{ — 0+. Consequently, the infinite series in powers of & and

¢ disappear from the right hand side of the relations (4.1)-(4.3). The quantity (-— %)

tends to a limit which, as can be concluded from Eq. (3.9), becomes the limiting velocity
vsp. By virtue of Eq. (4.1) this limiting velocity is found to be described by the relation

(4.4) vp = 1—t*% a0,

which is the solution to the reduced initial value problem
duy,

(4.5) ¢ =L 950 =

resulting from Eq. (3.4) upon setting a = 0.
In the limit the relation (4.2) gives 7, = | and Eqgs. (4.3) and (4.4) yield

(4.6) u}',:-%[l—(l—!*)z], a—0.
Finally, bearing in mind Eq. (4.4) we also infer from Egs. (3.5) and (3.8) that
(C) arp(r*;m) = 4,
(4.8) opp(r*;m) = 144, a—0.
From Egs. (4.7) and (4.8) it can be readily seen that
(4.9) op—0p=1, a—0,

which expresses the static Huber-Mises yield condition(?).

(*) In the dimensional quantities (see (2.6);,;) the condition (4.9) is read as
Ogp—0pp = Y3k, a—0.
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Let us denote by f an arbitrary response function from the set v}, uJ, o, o} and by
f, its limit from the set v},, u}p, 0}, 0. Then we can define “the limiting rigid-perfectly
plastic motion” of the container as

(4.10) Jo =limf when a—0, r*t* n,n fixed,

and by performing a perturbation around f, derive an approximate solution to the
problem formulated in Sect. 2.

5. Perturbation solation

Let us think of the parameter o as being small and assume the perturbation solution
to the problem (3.4) to have a straight-forward expansion in powers of «. Then, making
use of the regular parameter perturbation technique (see for example [4]), the first order
expansion for the sought solution can be found to have the form

i

n —+1
[—1=19" 140(e?), «-0.

14+n

According to Eq. (4.4) the motion of the rigid-perfectly plastic container takes place
within the time iaterval 0 < #* < 1. When the container is made of the rigid-perfectly
viscoplastic material, the corresponding time interval can be expected not to be substan-
tially smaller if the inequality a« < 1 holds. It seems thus reasonable to require for the
expansion (5.1) to be uniformly valid in the sense of Lighthill over the time interval
0<t*< 1 (see [4D(*). However, it follows from the relations (4.4) and (5.1) that
vz, /035! = oo when ¢* — 1—0, which means that the first order expansion (5.1) violates
the assumed requirement.

To remove the above mentioned singularity from the relation (5.1) we shall apply
the Linstedt-Poincaré procedure (see for example [4]).

Introduce a new variable

.1 o¥(t*;0) = 1—t*—ua

(5.2) t* = T
and
(5.3) o = 1+aw,+ 0w, + ...,
where @, w,, ... are constants, so that the initial value problem (3.4) becomes
v} :
5.9 d: = —(1+ow,+ow,+ ...) (x0¥"+1), 0¥0) =1.
Then we let
(5.5 vy = o5(0)+ oo} (V) +o?0} (D) + ...,

in Eq. (5.4) and find 3,(7), v7 (7), v,(7), ... choosing w,, w,, ... in such a way to make
the power expansion (5.5) uniformly valid within 0 < v < 1.

(*) Here, following Lighthill we demand for the first perturbation in Eq. (5.1) not to be more singular
than the term given by Eq. (4.4), that is, for the ratio v%,/uv}, to be limited within 0 < 1* < 1.

8 Arch. Mech. Stos. nr 3/79
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With this purpose we first set « = 0 in Eq. (5.4) to get

dv;,
(5.6) = ~L a0 =1,

which yields the zero-th approximation
(5.7 o =1-1.
As a next step we differentiate Eq. (5.4) with respect to a, then set a = 0 arriving at
du;, 3

=m0l o0 =

Bearing in mind Eq. (5.7), the solution to Eq. (5.8) is

(5.8)

(5.9) of = — 1:;; [(1+ ':" wlr)—(l—r);].

Now, it results from both Egs. (5.7) and (5.9) that in order to make v} /o], limited
within 0 < v < 1 it is enough to require

e,
1+n’
and then Eq. (5.9) is transformed into the form

(5.10) W, = —

1
7)"].
A double differentiation of Eq. (5.4) with respect to «, followed by setting a =.0,
yields the problem

(5.11) v = —

do} A Y
d; = —w;—(ml+—n— 3,‘ )o:,, , 05 (0)=0

(5.12)

whose solution, obtained with the help of the relations (5.7), (5.10) and (5.11), has the
form

« _ n Jl4n(  24n i _ B I

(5.13) o = l+n{2+n (l = w,t)—(1 'r) [l —-—(l 1.')]

Since the expressnon 0], /03, has already been limited, the ratio v, = v" v" will be
I; aﬂ ‘;

finite if only v}, /o], is limited. It turns out from both Egs. (5.7) and (5.13) that this re-
quirement is satisfied if we assume

n
24n "

Using Eq. (5.14), Eq. (5.13) can be written in the final form

~afa- r)'[

(5.14) w; =

l+n}
T 24n |’

15 of =
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Introducing Eqgs. (5.7), (5.11) and (5 15) into Eq. (5.5) and substituting Eqgs. (5.10)
and (5.14) respectively for o, and w, in Eq. (5.3), we have the second order expansion
which is now uniformly valid within 0 < 7 < 1 as follows:

G160 oed) = I~ 1_’:" (1-7) [1-(1-1)17]
+o? 1:-:»; (1-:){(1—1)1'[1— 2}”' (1-:)%]- ;I:}-&-O(u’),
(.17 w=1-¢ l:-n +a? 2:n +0(s?), a—0,
where, as it can be seen from Eq. (5.2),
(5.18) T= -‘(:—

Finally, on the basis of Eq. (5.16) we get the two-term asymptotic expansion

1
14+n
Using this result the second order expansions for the stresses o} and oj can be readily
found.

It follows from any of the first three approximations to the expansion (5.16) that the
motion of the container ceases when 7 = 1, which by virtue of Eq. (5.18) corresponds
to & = w. Thus, the sum ;o of the first three terms in the expansion (5.17) defines the
response time up to a small term of the order 0(a®).

1

(519)  o¥(r;0) = (1—-7)"+a

1 1
(1-9)*[1-(1-7)"]4+0(s?), a—0.

w, f:
/ //
\

n=9

n=3 tk

05 1 I L 1 L 1 1 1 i

B
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The sum s versus o for n = 3,5, 9 is represented in Fig. 1 by the dashed lines,
whereas the solid lines show plots of the exact response time #; obtained from the relation
(3.12). This figure shows that when taking ;w as the response time we restrict the per-
centage relative error 100%, (sw—1#)/tf so as not to exceed 2%, the admissible magni-
tudes of a must be confined to the range 0 < « < 0.3. Any direct extension of the range
would ‘cause a substantial increase of the error.

Note -from Eq. (3.3) that for fixed magnitudes of n, y, # and a, the parameter a is

1

proportional to v; . Thus any additional assumption about the magnitudes of a imposes
a restriction on an admissible range of initial velocities, which in turn diminishes the
practical value of the expansion (5.16). This deficiency, however, can be overcome by
introducing the nonlinear Shank’s transformation(®) [7] performed on the sum ;. As
a result of the transformation we obtain a simple rational fraction

n+2+

o
1+n

(5:20) o e e

Equation (5.20) gives an approximation to the exact response time with strikingly high
accuracy within the range 0 < « < 1 which is much larger than before. Since on the
scale of Fig. 1 the curves representing w, and ¢ versus «, for n = 3, 5, 9 are undistinguish-
able, these results are replotted in Fig. 2, where a distribution of the percentage relative

FiG, 2.

error 100% (wp—#5)/t¥ is shown. We observe that for each a the approximate response
time obtained from Eq. (5.20) is larger than the exact one and becomes more accurate
as n increases.

Note that the first three terms in the expansions (5.17) and (4.2) are the same. There-
fore, the rational fraction (5.20) can also be treated as an approximation to the infinite

(%) Applying Shank’s transformation to the first three terms of a power series 14-ax + bax?+ ... results
in a simple rational fraction
a+(a®>-ba
a—ba >
which often gives a more accurate approximation to the sum of the series than the sum of the original
three terms does. The fraction can be seen to yield the exact sum when the original series is a geometric
one, whether convergent or divergent [2].
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series in Eq. (4.2). Since for « close to unity the infinite series turns out to be slowly
convergent(%), the rational fraction gives much better approximation to its sum than ;o
does. Moreover, for larger n the infinite series becomes almost geometric, which reflects
in the increasing accuracy of wy.

Taking advantage of the fact that w, is a good approximation to #* within the ex-
tended range 0 < a < 1, we first substitute @ appearing in Eq. (5.18) by Eq. (5.20), then
introduce the result into Egs. (5.16) and (5.19) to get the modified expansions

1+,, (1——)[1—(1— ')%] +0(a?),

(5.22)  o*(t*; a)--(l-—-—r: '+a (1——) [1—(1——— ]+0(a=)

Wy 1+n
By inserting Eq. (5.21) into Eq. (2.12), the expansion for the radial displacement is obtained:

1 2
(5.23) u:(r*;a)=7w[ (1..__)]

1
o n ff e[ 2 _1"_)']_ 1 } :
e T ‘(l ?.) [l me ol L 153 @)
Finally, setting t* = w, in Eq. (5.23), we have the two-term expansion

*
G2l) ot a) =1-"——a
Wy

. _ 1 n 2
(5.249) Upp =5 [I o (l+n)(l+2n)]+0(a )
for the final displacement.
The diagrams of the final displacement versus a, respectively for n = 3, 5,9, are

shown in Figs. 3 to 5. The dashed lines represent the one-term expansion in Eq. (5.24)

Ugk
050
— Exact solution
L\ —-— One-term expan.
\\ —.— Two-term expan.
N
N
040 |- o
~
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— '\ \\\
™
~
.\. \.\\
030 - NN
~
n=3 ~
~.
~
L 1 1 1 1 1 1 1l &
0 02 04 06 08 10
o
Fic. 3.

(°) Forexample, when « = 0.96887 and # = 5 we have w; = 0.5594, whereas to get the same magnitude
from Eq. (4.2) the sum of the thirty nine terms must be taken.
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Uak
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(i.e. when only the first term is retained) and the dash-dot curves correspond to the two-
term approximation. The continuous lines plot the exact final displacement obtained
from Eq. (3.13). It can be seen that for each o the one-term expansion gives the final
displacement larger than the exact one, the percentage relative error not exceeding 7.87;,
5% and 2.9% respectively for n = 3, 5, 9. The final displacement resulting from the two-
term expansion is smaller, the corresponding relative error being less than 3.8%;, 3% and
2%,. We can also infer that the accuracy of the two approximations becomes higher for
larger n.

6. Example

To demonstrate the practical applicability of the present solution consider a
spherical container made of mild steel and assume the following numerical values: k =
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= 147.15MPa,y = 404s ', n=5,p = 7.8kgdem™3,a = 1.68m, b = 2.4 m (5 = 0.7),
Va0 = 56 ms~*(7). A corresponding value of the small parameter equals to a = 0.96687.
According to Eq. (3.12) the exact response time is #;* = 0.55732, whereas the approximate
value computed from the Eq (5.20) equals w, = 0.55941. The exact final displacement is
uly = 0.26244, while the one-term and the two-term expansions in Eq. (5.24) give the
approximate values 0.27971 and 0.25922 respectively. In view of Eq. (2.6), the dimensional
final displacements are 1.77954 cm, 1.89664 cm and 1.75771 cm respectively. These
magnitudes give the maximum final strain intensities(®) equal to 3.17Y;, 3.387% and 3.139%.

The diagrams of the radial velocity v} and displacement u} versus time are shown
in Fig. 6, the continuous lines representing the results obtained from the exact solution
(3.9)-(3.11). The dashed curves correspond to the one-term approximations to the ex-
pansions (5.21) and (5.23) while the dash-dot ones illustrate the results given by the two-

Vo'
10
B ut
08} 4030
06|
Hoz0
= \
DS
04 \\ A
AN
AN
- AN
N\ Hom
o2 n=5, y=404, = 096687 \.\\\
—— Exact solution ‘\_\\
. ~—~ One-term expan. N ]
—-— Two-Term expan.
1 1 1 1 1 0
0 02 04 05
tﬂ
FiG. 6.

(’) The initial radial velocity v.o = 56 m s~* gives the maximum strain rate intensity &, = 100 s~!
resulting from

. 1 . I 5 G 4
ieg (=80 + Gp— )2+ Go—8)21102 = 3 i}; va(t)

for r=aand t =0,
(®) The maximum final strain intensity &, is given by the expression

g = T;zz— [(er— £5)* + (ep—£6)* + (c9— &,)*]Y/2 = 3 % u (1)

for r=a and ¢ = t; or t = @, T, where T is defined by Eq. (7.4).
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term approximations. It can be inferred from Fig. 6 and the obtained numerical results
that the one-term approximations to the expansions (5.21) and (5.23) describe the radial
velocity and displacement with sufficiently good accuracy.
Figure 7 shows the radial (Eq. (3.5) (and hoop (Eq. (3.8)) stresses for fixed r* =
1

= 1,2. The continuous lines correspond to the case when v*" is calculated from the

»
O
20
18
15
1
r=12
n=5, y=404, o=096687
= —— Exact solution
i === (One-term expan.
w =
- 1 1 1 1 1
Gr (3] 02 03 04 05 g
-003 |- 3
-005
FiG. 7.

exact solution (3.9) and (3.10), whereas the dashed ones represent the results obtained
with the help of the one-term approximation. Again, the approximate result can be seen
to be in good agreement with the exact solution.

7. Conclusion

Analysis of the final results obtained in Sect. 5 and the numerical example have shown
that just the one-term approximations to the expansions (5.21), (5.23) and (5.24) give
a remarkable good accuracy for a relatively large range 0 < a < 1 of the “small para-
meter”. In view of the relations (2.2), (2.3), (2.5) and (2.6),,, the approximate solution
in physical quantities takes the form

(7.1) ”-”~°( )(“ Tw.)
(1.2) i T”‘“T“’*( ) ["(1" To, )]
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1 a\’
(7.3) -—2- th(l‘) ’
where
_ 0a%o(1—7)
(7.4) Zﬁklnﬂ_l ol

To get the approximate dimensional formulae for the radial and circumferential
1

stresses we retain only the first term in the expansion (5.19) and substitute it for v:‘; in
Egs. (3.5) and (3.8). Bearing in mind Egs. (2.5) and (2.6),,,,5, we finally arrive at the
expressions

(7.5) 0, ~ V?k[A-aB(

s 3 Inyp!
o e
in which

2Ly

(7.8) %A=In%+ ’;—?}‘ Inp~t,

I gt |fa)" 3 (——n)(l—n)
e z""*:[(r) S =

It has already been pointed out that the larger the exponent n, the more accurate the
expressions (7.1)-(7.3) become, their simple forms remaining unchanged. On the other
hand, the increase of n makes the exact formulae (3.9)-(3.13) more difficult to work
with. Thus, for larger n the approximate formulae developed above seem to be more
convenient in practical applications.
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