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Generalized Whittaker’s equations for a nonholonomic system

M. HUSSAIN (LAHORE)

In THIS paper the energy integral is derived for a conservative nonholonomic system whose
position is defined by group variables. This integral is then used for the reduction of the order
of the system. Finally, equations of motion of the reduced system, the so-called Whittaker’s
equations, are applied to solve the problem of a rolling hoop.

W pracy wyprowadzona jest calka energetyczna dla konserwatywnego ukladu nieholonomicz-
nego, ktérego polozenie zdefiniowane jest za pomioca zmiennych grupowych. Calka ta jest
nastepnie wykorzystana do obniZenia rzedu ukiadu. Wreszcie, réwnania ruchu zredukowanego
uléhdu tzw. roéwnania Whittakera, zastosowane sq do rozwigzania problemu toczacej si¢

obreczy.

B paGore BoIBe/leH 9HEPreTHYECKH HETErPA UL KOHCEPBATHBHOH HETOJIOHOMHON CHCTEMBI,
IONIOYKEHRe KOTOPOil ompefe/iAeTcsA MPH IOMOIIM TPYIIIOBBLIX MEPEMEHHEIX. JTOT MHTEIPas
3aTeM HCROIL3YETCA AU CHBONEHHA MOpAIKA cHcreMbl. Haxomel, ypasHEHHA NBHMKEHHA
IPHBEIEHHON CHCTEMEI, T. HA3. YDABHEHHA Y HTTAKEPa, NPHMEHMIOTCHA IUIA PelIeHHS 3aJadH
Karaouleroca obpyua.

1. Introduction

In [4] WHITTAKER has shown that the energy integral can be used for the reduction of
a conservative holonomic dynamical system with n degrees of freedom to another system
with only n—1 degrees of freedom. Equations of motion of the reduced system are the
so-called Whittaker’s equations. In the derivation of these equations, a generalised
coordinate plays the role of time as an independent variable.

In [1] WHITTAKER’S equations have been generalised to the case of a linear nonholo-
nomic conservative system whose governing equations of motion are the so-called Hamel-
Boltzmann equations. In this paper the author presents the equations of motion and
integral of energy after taking constraints into account. However, he has subsequently
ignored constraints altogether except at the-end of the theoretical part of the paper. This
creates an anomalous situation and leads to the pertinent question whether the constraints
should be taken into account from the very beginning or not?

The aim of the present paper is to extend the above mentioned ideas to a nonholo-
nomic system whose position is defined by group variables and which possesses an energy
integral. The said anomaly has been dismissed by considering the constraints from the
very start.

Let us consider a linear nonholonomic dynamical system whose position is defined
by n parameters X;, X,, ..., Xa, the so-called group variables and which has ! degrees
of freedom. It is subject to n—1 constraints of the form

(ll) Na = Cay )i (I= 1923 '"sln E=!+l, ...,.ﬂ).,
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where cy; are functions of x’s only, 7,, 73, ..., 7, are the parameters of real displacement
of the system without constraints and summation over a repeated suffix is understood.
If X;,X,, ..., X, are the displacement operators corresponding to these parameters,
then the following relations are satisfied:

i)
X,=E=a—x. (€,h= 1,2, ...,ﬂ),

(X, Xi) = XXz, — XX, = Cdfx} U= 1’ 2, sery ﬂ),
where £ are functions of x,, X3, ..., X, and ¢’, are constants of structure of the group
of displacement operators. In view of Eq. (1.1) the displacement operators for the non-
holonomic system are expressed by

Y, =Xi+eaXe (=1,2,.,0, a=1+1,..,n)

and satisfy thé commutation relations
(1-2) (Yh }})=KUKYE+KG§X§ (i,j,k= 1329“'3:’ ﬂ=f+l,...,ﬂ),
where

(1.3) Ky = Cyn+ gy Cipr+ Cai Caji+ 55 Cagr) »
(1.4) K = Kijg+ Yi(cg)— Yy (csi) — con K-

For any function f(x,, x;, ..., X,), the derivative df/dt is given by
(1.5 Do att) G=1,2,..D.

Let T denote the function obtained from the kinetic energy T after eliminating the

dependent %, by means of Eq. (1.1), then
T(xl! X2y eeny Xns q,l wery ’?l) = T(xl! xZ) seey xn; "h; weny ’ﬂ)’
where we have assumed that T is independent of time ¢. Equations of motion of the non-
holonomic system as obtained in [2] are
d [oT T T =
1.6 L L W R T
(1.6) 7 3’3‘i) Ny Ky o 7 Kfip o (T) = Y(U)
Gok=1,2,...,0, f=1+1,..,m),
where U(x,, x,, ..., x,) is the force function of the system. Equations (1.6) together
with
dx,

(1.7) @ (&7 + i &3),

obtained from Eq. (1.5), form a system of n+/ equations to determine xy, X,, ..., X,
7y, ..., ¢ as functions of time .

2. Existence of energy integral

In this section it will be proved that the nonholonomic system under consideration
admits an energy integral of the form
(2.1) T—U = const.
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Multiplying each of the equations (1.6) by 7; and summing the / expressions so obtained,
we get

d[oT oT oT
Y[ d’t(aq) ﬂt'FJKma—"??i??J ﬁpja;,—*—ml’:(n nYy(U)

or

@21 %(m 2;:)— %—;}z—mm Jik :: — T ﬁp g;;
~Yy(T) - Y(U) = 0.
Now, using Egs. (1.1), (1.3) and (1.4) we obtain
2.2 7:eM) Kjie = 175 G+ 139 Cipr+ 1i N Caie + 1 g Capie -
Since

Cnn=—Ca (e,f,h=1,2,..,n),
it follows that the right hand side of Eq. (2.2) vanishes and, consequently,
min; K = 0,  mim; K = 0.
In view of these relations and Eq. (1.4), Eq. (2.1) yields

d T\ d =
2.3) i \m 3’;) —— T+ U)=0
Since T is a homogeneous quadratic form in 7, it follows that
oT
—— =2T,
M aﬂl 2

and therefore Eq. (2.3) takes the form
d

which on integration gives the required energy integral
2.4 T—U = const.

Putting L = T+V and L = T+ U the equations of motion (1.6) and the relation (2.4)
become respectively

@3) 2 () -kt ~mkn 2 4D =0,
.6) %—E = h,

where h is the energy constant.

3. Whittaker’s equations

Putting #, dt = dv and assuming that t plays the role of time, we have
(31) M =10 'J; (P ] 23 3: veey l)o
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where
’ df ’?p
e =M gy = e
Let us assume that we get the function Q after replacing %, in L by 7, 1,, then we have
the relation
(32 L%y, X2y covs Xus Qas oeon M) = Q(X1, X2, o0y Xai N10 Ny ooes M-
Now, Eq. (3.2) yields on differentiation

oL 02 0 r},

; _——_— =2, 3 .. l);
(3 o, a’h 611, ni p=2 h
oL 02 1
3.4 o™ et Ry
4 onp aﬂ; n
(3.5 YD) =YD (=1,2..D.

The relations (3.3) and (3.4) give
02 oL oL g,

3. — =t —-E.
.8 o, ony  Onp M
Using Eqgs. (3.2) and (3.6), the energy equation (2.6) assumes the form
a0 ' /
(3.7 " — (X1, Xz oovs Xn3 N1y N2s s M) = .
This furnishes %, as a function of the variables x,, x5, ..., Xp; %3, ---, M, so that
(3.8) N = N1(X1s X25 oes Xn3 N25 oes M)

Substituting for 5, from Eq. (3:8) in the function 9£2/d%,, we get the function L expressed
by

o
oy

The function ' will be called Whittaker’s function for the system. Equation (3.7) yields
the following relations:

(3.9) = E(xli X2y eeey Xpy ﬂ;l bt '?i)‘

02 »29 20 61}1)
(310) E?‘E =M 67]1 an; e o -37} {, afjl ]
o2 0,0
3.1 YD) = m [Y( = ) o ¥iln 1)]

and, similarly, from Eq. (3.9) we get
oL’ 220 a=9 Oy

3.12 =
G12 ony ~ Onsomy o omp’
(3.13) Y(L) =Y, (ﬂ ‘;::3 Yi(n4).
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Comparison of Egs. (3.10) and (3.12) gives

09 oL’

3.14 =23, sl
( ) aﬂp =M a7 aﬂp (p )
and, similarly, Eqs. (3.11) and (3.13) yield
(3.15) Yi(Q) = 5, ¥i(L).
Combining Egs. (3.14) and (3.15) with Eqgs. (3.4) and (3.5), we obtain

oL oL

3.1 e
(3.16)  wmTE
317 Yil) =mY(L) (@(=1,2,..,]).
Proceeding in the above manner, it can also be proved that

oL oL

3.18 —_— == =I+1,...,n).
(3.18) o, o ® n)

Using Egs. (3.1), (3.16), (3.17) and (3.18), Egs. (1.6) and (1.7) assume the form

d [oL'\ oL’ oL , -

(3.19) > (ﬁ) =g Knra_q; = E‘ig [Kos+ 1 K3opl = Y, (L) = Qp,

w,q,r=2,3,....1; f=1+1, ...,n),

dx‘ r &
(3.20) ‘E‘;‘ - E:'{'ﬁh E;‘i‘qp({p'i‘c"fag
where
aE' a
Qp =K g5~ 5?)', [K L

and L/dn, denotes the function obtained after substituting for %, ..., 7, from Egs. (3.1)
and (3.8).

Now Egs. (3.19) may be regarded as the equations of motion of a new nonholonomic
dynamical system whose Lagrangian is L’ and for which 7 plays the role of time and 0,
are non-conservative forces. Hence the energy integral enables us to reduce a given non-
holonomic system with / degrees of freedom to another one with /—1 degrees of freedom.

To see how the solution of the system is completed we consider Egs. (3.19) and (3.20).
These form a system of n+/—1 equations of the first order in the variables x,, ..., x,,
725 ---, My Whose solution gives these n+I—1 quantities as functions of 7 in the form

Ny = NpkTs B, €15 Ca 0005 Cagias) (D= 2,3, wis D)y

Xe =Xe(T,h,00,C3, ccsCapi-g) (e=1,2,..,n0),
where h, ¢y, ¢3, ..., Cayi—y are constants of integration. When the above expressions
for 7, and x, are substituted in Eq. (3.8), we obtain, after integration, the functional
dependence between 7 and time ¢ in the form

‘=J‘ dr L
'h('rs h! Cy» "'scll-pl—l) nahy

where ¢,,; is another constant of integration. Thus we obtain the complete solution of
the equations of motion.
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Special cases (I)

As a special case we consider a conservative holonomic system whose position is
defined by n generalised coordinates g, ..., g,. In this case we have the relations

a
oq;’

X1 = s oens Xa =G, M =§'1,---,ﬂ-=?n d'l'=d91. Yl=

ro _@L it ’ dq- =
'}2— dql '?zs wery '?l dql Q'n

therefore all the C,, vanish and, consequently, the K, and K%, also vanish. Hence Eqgs.
(3.19) give

d [éL'\ oL
(321) "aq—l(a—q;)——az =0 (r = 2, 3, ...,ﬂ),
where
E' = Lr(q’ wens Gns G'i, seey 9':, h)-
Equations (3.21) are identical with those obtained in [5] with the help of the energy integral.

Special cases (if)

Let us consider a linear nonholonomic conservative system whose position is specified
by the generalised coordinates g, ..., g, and which is subject to constraints
Ay =0 (ax=1+1,...,n5e=1,2,..,n).
In this case we have

Xe = qe (e= 1,2, -"s")’

3.22 :
( ) 71' =w = T; = qu”
(3.23) . =%=a,,q,=o (@=1+1,...,m),

where a,, are functions of g, only. Solving Egs. (3.22) and (3.23) for 4, in terms of 7,,,
we get

él' = DgMi.
In view of this the displacement operators for the system are given by
(3.24) Vi F B (o g Eisis
aq, aﬂ’;

Using the relations (1.2) and (3.24), we have

oa, da
K'lj't = biibhj (_aai'."" a;:) = ?{Js
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The relation (3.1) gives

r ‘ﬁ" r
e = Mlp = “’1‘—1 = 0 Tp.

In view of the above Eqgs. (3.19) assume the form

_“'_(EL)_ s DL e DLy H )
@, oy |~V G " By Vo, O ),

(r.9=2,3,..,l;5=2,3,...,m),
where 7, stands for dL/dn,. These are the same equations as obtained in [1].

4. Example
Let us consider the motion of a heavy circular hoop, of unit mass and radius @, which

rolls without sliding on a fixed horizontal plane Ox;y,. The centre of inertia G of the
hoop is the centre of the figure and the central ellipsoid of inertia is a surface of revolu-

Z;

X U

Fic. 1.

tion about the axis GZ of the hoop. As shown in Fig. 1, let H be the point of contact
of the hoop with the fixed plane.

The parameters defining the position of the hoop are the coordinates x,,y, of G
relative to the space fixed system OX, Y, Z, and the Euler angles 6, v, ¢. The coordinate
z, of G is given by the relation

4.1 z, = asind.

Let p, ¢, r be the components of instantaneous angular velocity of the hoop, referred
to a semi-moving rectangular trihedral GUVZ where the axis GU is perpendicular to the
plane ZGZ,, and the axis GV is directed upwards along the line of greatest slope of the
plane of the hoop. Then we have

p=0, gq=psind, r=pcosh+p.
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The equations of constraint in terms of p, g, r are

X, = apsinysinf—arcosy,
@42) ! T

1 = —apcosysinf—arsiny.
Let us choose 0, v, ¢, x,, ¥, z; as the group variables which specify the position of the
system at time ¢. Due to the holonomic constraint (4.1), the system without constraints
(4.2) has five degrees of freedom and therefore we take

n=p=0, m=g=psinb, 17 =r=pcosb+d, Ny =25, #s=j,.
The corresponding displacement operators X, are given by

0
X1=E+acosﬂa—:

1 o 0
z=;m—6-%-c0tﬂa¢,

0 0 i}
Xs—'aEs X, T T

Evidently, the commutators of all the operators, except (X;, X3), vanish and this commuta-
tor is expressed by

(4.3 (X, X;) = —cotbX,+X,,
therefore,
Ci22 = —Cyy, = —cotl,
Ciz3 = —Ca =1
The equations of constraint (4.2), when expressed in. terms -on 7,,, become

44

74 = an, sinysinf—an;eosy,

(4.5) . .
7s = —an;cosysinf—an;siny.

By using these relations, the displacement operators for the nonholonomic system are
given by

Y, = 2 +asimpsini9i —acosapsinﬁ—a— +acosﬂ-—{—j-
Ox, V1

a0 0z’
1 2 ]
(46) Yz = m a—w- '—00165,

Y ——a——acos i—asin -
*= % ¥ox, LT
The kinetic and potential energies are expressed respectively by the relations

2

V = gasin®.
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By taking constraint into account, we have
= a
T = — (ni+ni+4nd),
4.7 L=T-V= -5‘41 (31} +n3+4n3)—gasind,

2
Q= % (3+n3 +4n3") —gasinb.

The Whittaker’s function L’ which is obtained without taking constraints into account is

49 = y2i=gasnd | @ (L reoo) + T oy st
The equations of constraint, in terms of 7, ,, assume the form

1s = asinysin@—anjcosy,

ns = —acosysind—an;siny.

Now, using Eq. (4.9) in Eq. (4.8), the Whittaker’s function L’ for the nonholonomic
system is expressed by

(4.9)

(4.10) L' = ay/(h—gasinb)(3+7n% +4n3").
In view of Egs. (4.6) and (4.10), we get
(4.11) Yo(L') = Y(L') =0
Differentiating Eq. (4.10) with respect to u; and 73 we have
oL’ e "?;
— = ayh—gasin ————-,
on; 3+nt +an?
@i - V3+ni +an¥
oL’ — 4n;
——+ =a} h—gasin —————.
g = Y s e T

Differentiating Eq. (4.8) with respect to 54 and ns and using Eq. (4.9) we obtain

OL' _ 2)/h—gasinf (sinysinf—n;3cosy)

a?}; - 3+ 2'+4 27 ?
@.13) " V3+n3' +4n3
oL _ 2]/h gasmB(cosqpsmﬂ+q,smtp)
ons V3i+ni+an¥
Using Egs. (1.3) (1.4) and (4.4), the non-vanishing K,, K% are given by
-— = - Giny
Ki;; = —cotf, K;;3=1, Kij4 <ind
4.19) )
_ acosy _ asiny o _ _ Gcosy
325 7 “5in@ ° Bse=—gnp > Kiss sinf
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In view of the relations (4.11), (4.12), (4.13) and (4.14), the equations of motion (3.19)
and (3.20) yield

d [, h—gasinf | h—gasinf P
@ (’h ]/m) = I/W (23 ~nicotf),
h—gasinf . h—gasinf
@ gl ]/3+nz'+4ﬂ") =

-a'? = n;cosecl, %%— = n3—n;coth,

These equations form a system of four equations for determining the variables v, ¢, 73, 15
as functions od 6. After the solution of these equations has been obtained, we use the
equation of energy

2 h—gasinf
4.1 =2 4/ h—sgasinb
5:102 =g ]/3+n§’+471§'

to determine 0 as a function of time ¢. Thus the solution of the problem is completed.
If we use Eq. (4.16) directly in Eq. (4.15), we get the equations of motion in the form

d,h = 203 —n,cotb, ﬂ—"’h

These equations are similar to those obtained in [3] by the use of Lagrange equations.
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