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The effect of shearing prestress on the response of a thick membrane
strip
Part II. The dynamic case

V.0.S. OLUNLOYO (ILORIN) and K. HUTTER (ZURICH)

INVESTIGATION of the effect of shearing prestress on the response of a thick membrane (or thin)
plate strip is hereby completed by treating the steady state response under dynamic loading.
The singular shear layer discovered for the static case reappears here at exactly the same location.
Singular perturbation analysis yields the solution in the core and edge layers although the alge-
braic computations involved are cumbersome.

Badanie efektu wst¢pnego naprezenia $cinajacego na rozwiazanie pasma traktowanego jako
gruba membrana lub cienka plyta, przedstawione w cz. I, uzupelnione jest rozwazaniami do-
tyczacymi obciaZenia dynamicznego. Osobliwe warstwy $cinania wykryte w problemie statycz-
nym pojama]a si¢ znowu w tych samych miejscach. Stosujac technikg osobliwych perturbacji
uzyskl.lje si¢ rozwigzanie w rdzeniu oraz warstwie brzegowej, chociaz obliczenia algebraiczne
stajg si¢ bardzo zloZone.

Hccnemoparme abdexra mpeaBapHTeNLHONO HANPSIKEHHA CHBHTA HA PpeEIleHMe MOJOCEHI,
TPaKTOBAHHOM KaK ToJICTAA MemOpaHa FUIM TOHKas IUTHTR, NpefcTaBnerHoe B | wacrm, momon-
HEHO PACCY)/ICHHAMH KaCAIOLMMHCA JHHAMHYecKolH Harpyske. Ocobble cioH casura oGHapy-
JKeHHEIe B CTATHYECKOH 3aflaue MOABIIAIOTCH BHOBb B 3THX )K€ CAMBIX MecTax. [Ipumersas

TeXHHKY 0CcOOBIX mepTypDalmii mosmydaercA pellleHWe B CEpACUHHKE B B TPAHHYHOM CIIoe,
XOTA am‘eﬁpaaqeme PAcuCThI CTAHOBATCA OUCHE CIIOM{HBIMH.

Introduction

THIS PAPER is a continuation of an earlier work (henceforth called Part I, [1]), under the
same title. While attention was restricted to the static problem in [1], here we deal with
the dynamic response of a thick membrane strip with small bending rigidity. Because
the bending rigidity is taken to be small, its influence could effectively be neglected glob-
ally except close to the boundaries and also possibly in the neighbourhood of the applied
external load.

In fact we do not intend to render an account of the history of the problem here;
neither shall we repeat the outline of the equations governing the deflection of such thick
membranes. These questions were adequately treated in Part I where the solution tech-
nique to be used was also amply described. We therefore merely assume that the reader
is familiar with [1] as far as these issues go, and thereby focus attention on solving the
differential equation

(a) e2V4y—Ly = p(x,y, 1),
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where

L=p: +2p2 ¢ +55 #

* 3 X oxdy "7 ayr
under the assumption that L is elliptic and in the domain [— 0 < x < 0; 0 y < 1].
We further assume that & > 0 is a small number thereby allowing us to employ the method
of matched asymptotic expansions to solve the above differential equation.

In an attemp to make reference to [1] easier, we commence this paper with Sect. 3.
Sections 1 and 2 are contained in Part I and here Eq. (1.11), for example, is to be inter-
preted as Eq. (1.11) of Secf. 1 (in Part I). Equations starting with (3.1) are therefore to be
found in this article.

3. The dynamic response — forced vibrations

In Part I we dealt with the static response of thick membranes. Of equal interest is
the response to dynamic loadings. In particular, our interest will be restricted to the steady
state response, which turns out in general to be computationally cumbersome. For this
reason we shall defer looking at the transient loading phenomena.

The governing differential equation is again Eq. (1.1) (or Eq. (A)), but ¢ must now
include the inertia forces — md*w/dt* where m denotes the mass of the membrane per
unit area. The resulting differential equation can be cast in dimensionless form by in-
troducing the transformations (1.6). Denoting dimensionless time by 7, we set T = w?,
where w is frequency which is chosen such that

N y
mb*w?

With the abbreviations (1.7) in which we may without loss of generality replace No by
N, # 0, the governing differential equation can be shown to have the form

(3.12) 2V a 7),
where x, y are dimensionless coordinates and L is defined by
a? d* a*
e M 2 Sl 110
(3.1b) L=g: T + 282, T3y + el
For steady state forcing functions
[+ 4]
(3.2) p(x,y,7) = Z pi(x, y)exp (id;7),
J=1
X possesses solutions of the form
L]
33) 20,7, 1) = D) 5 (x, Y)exp (iAyr)

J=1
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where each ¢; (we henceforth delete the subscript j) satisfies the differential equation
(34) V49— Lo~ 1% = p(x, ).

A solution, uniformly valid in the core region I and the boundary layers II and III but
possibly not in the shear layers, is constructed by writing

(3.5) o(x, ;&) = p(x, y3e) +5 (x, y; e)e~Me +E (x, y; e)e -k,

Substituting this representation into Eq. (3.4) results in the following system of differen-
tial equations for v, .é' and .é' -

(3.6) ﬁx gyf +2ﬁ,, i ﬁ” +J.’ = 2V*p—p(x, y),
35 ’-' 335 53_!'
3 4;' 2 =
3.7) 2[ B35 ] V4E —de [ £ +__-3x33y]

1 1
P w8 ., P8 ,!]
+s[ Sg + =8 g~ —HE,

2 2
I8 s 98],  sead e PE 2
(3.8) 2[‘3}" 2, ax]"‘ eV~ | o5+ 5 xzay

2
*E " d E :
[ az+(2 ﬁ)ax; zﬂx!aa _AE]
We construct solutions for y and .g' in terms of the asymptotic series

'P(x, Y 8) = Z a’ep,(x, ),
r=0

(3.9) @
E(x,y;¢) = 2 £5,(x, 7).
r=0

Incorporating these expansions into Egs. (3.6)-(3.8), the following recurrence relations
emerge:

2 pxy), »=0
(3.10) 24 i "‘" g"" +262, : TR Io, g1,
V‘qu,_; v = 2
and
-] a
a 25, >E, 28 0E,
45 o= (—1P+ 4| —=2 4 2 :
(B.11) V4E,_3 = (-1 {4[ 5t axzay]+ oy — 285> 3x}
25 _.,_ 28,

~26% 55 —NE,_ 1}, y=0,1,2,....

_= a Ll B

e +Q-p)———
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These differential equations must be complemented by appropriate boundary conditions.
We only consider clamped edges here for which we may write

- -2ty -2 Ny
60 = 606 1) = 32 (5, 0) = 5 (5, 1) = 0
If Eq. (3.5) and the expansions (3.9) are used, we then find
v,(x, 0)+.El',(x, 0)=0
w(x, 1) +§,(x, D=0

(3.12) et (x,0)+ "“'-' (6,0~ E,(x,0) =

2
a’l"v—l aElr—! . z _
B_y (x, l)"" ay (x, ])+E,(x, 1) =0

Equations (3.10) through (3.12) describe the chain of boundary value problems for
the determination of ¢ which is one of the coefficient functions of the harmonic expansion
of » in Eq. (3.3).

3.1. Solution for .g:n x,»: (@=1,2)

The lowest order boundary layer solutions are obtained from Egs. (3.11) and (3.12)3 4
if » is set equal to zero, whereby functions with a negative index vanish. Thus we have

88y o, 0o _
(3'13) '_”_—ﬁx! ax 01

£, = 0, on the boundary y = 0, 1, respectively.

All C'-functions of the form j{x+ﬂ§,y) satisfy the differential equation (3.13),,
and from Eq. (3.13), it then follows that

1 2
fx)=0 and flx+p%)=0, Vxe(—o0,®).
Hence

(3.14) Ey(x,5) =0
3.2. Solution for

The boundary value problem for y, can be read off from Egs. (3.10); and
(3.12),,, as

o2 d?
ﬁ-t a'pf + a;f'o +2ﬁ-"!‘a 'Po +sz0 - _P(x:y):

(315) \"o(xs 0) = Vo(xs I) = 0
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and is best solved using Fourier transforms whereby Eq. (3.15) then becomes

CT 2 S0 1 (- £ = —p(E) = — ) p(@sinmy

y=]

with
(3.16) Po(§,0) = Po(£,1) = 0,
where we also have introduced the Fourier-sine series

(.17) B, ») = D p.(®)sin(my).

r=1

It is a routine matter to construct the solution to Eq. (3.16) which is obtained

(3.182) ¥, = Z{A. [exp(—:‘gﬂ;’y){Cosh(é(fgn—h((g(g;’ip(’?ﬁiy) sinh (3(&)y)

r=1

T 2i. 3 . 2 x
—Cosh(d(£)y) }Wfi_?%{—_ﬁ + sin (yny) — —%{7 cos (my)]}
with
. —p(£)(A* = E2B2 —v*n?)
GI8) A = R 5k, +viat — PR Dt =)
and
(3.18¢) 8¢) = VEE@-BH - 1.

In the following, we shall also need (dp,/dy)(&, 0) and (9%,/dy)(&, 1). Thus we record
them here for further use:

30 ;o o N 4 [ee o s7e Cosh(B(®)— (= 1yexp(iep3)
5y (60 = 2{ A.{[:fﬂ§,+ 5¢)

Sinh (3(8))
_ 2imphE }
7 p2p7 32 TV
(3.19) ) e
o _ 21 {[ _pp2y 0(8)(1 —2Sinh?3(8))
oy &V i Arj[ P~ ehe) Sinh 8(£)

ol = x 2ivaép , ,
3.3. Solutions for E‘;: a=1,2)
The boundary value problems for 5, are obtained from Egs. (3.11) and (3.12)5,4
by setting » = 1. They read

:‘
a - B 3; 0, a=12,
(3.20) Ey(x,0) = %;PTG (x,0),

= d
El(x! 1) = __aiyq' (I, l)

5 Arch. Mech. Stos. nr 4/79



510 V. 0.S. Orunroyo AND K. HUTTER

Solutions are of the form

El(x) }’) = T(x+ﬁ§yy);
2

Ei(x,y) = F(x+p%y).

The two yet unknown functions T( ) and F( -) are determined by taking Fourier-transforms
of the boundary conditions (3.20), ;. Indeed, with the aid of Egs. (3.19) it follows

(3.21)

T _ =
5D =T® = 260

Cosh (8(&))— (— 1) exp (i&p2 )] 2ivifZyk
= 2 {[lfﬁ +6(5) Sinh (S(E)) 4 9232+§2ﬂ§—-;{2 +Wz}s

v=1

(322)  E,(, Dexp(—igf2) = F(x+BL)exp(—igh3) = F(§) = 3""’ (& Dexp(—i£p2,)

3(5)(1 —2Sinh (8())
Sinh(3(£))

= 2 exp(— ifﬁiy)/!,{[ex?( —i&fy)

y=1

+ (- (88~ 36)c0th B0 | ity -+ (~ rmenpi-itty),

where A, is given by Eq. (3.18b) and 5(5) is defined in Eq. (3.18¢c). F(x) and T(x) are de-
termined by Fourier inversion. Once these functions are known, the general solution is
obtained by replacing the argument x by (x+ B%¥).

3.4. Solution for vy,

The governing differential equation for y, reads
(3.23) "’Z‘ﬂ‘ +2ikp — - 3""‘ +(A2 -9, =0
and must satisfy the boundary condmons

(6, 0) = —E,(5,0) = —T(®),
P16 0) = —5,(8, 1) = —exp(iEBL)F).

The solution is easily constructed as

exp(—i£p5y)
~ Sinh(3(8)) {T(©)sinh (8(8)(1 - ) + F(&)Sinh (3))}.

Further approximations should in principle be constructed by continuing the approach
outlined above. We shall not go any further but we must mention here that the above
solutions are uniformly valid in the entire strip only if the external loading function is
sufficiently smooth. In Part I we found this to be true for the static case and we shall find
corroboration for this in the next section where we attempt to construct explicit solutions

(3.24)

325  wEyn-=
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for a particular loading distribution. Before we turn to that, we might mention that the
above results are generalizations of calculations performed by us in 1974. In that paper f.,
was set to zero from the outset. That all our results agree for f,, = 0 with those of that
article merely serves as partial check of our computations.

3.5. Steady state response to a sinusoidally distributed line load oscillating in time

As loading function we choose

(3.26) P(x, p, 7) = p,sin(vay)d(x —xo) e
so that (see Eq. (3.17))
(3.27) p,(§) = p,exp(—ix,).

Since p is not differentiable at x = x,, we expect the representation (3.5) not to be uni-
formly convergent in the entire strip.

Substituting Eq. (3.27) into Eq. (3.18b) and the resulting equation into Eq. (3.18a)
yields an expression for i, that can be written as follows:

4
Yo = 2[,.
Jj=1

where I, through I, are the following Fourier inversion integrals:

4]

I = (=1 J’ _ 2ivmp, Bk explil(x — xo + (1—y)B3,)]
YT 2 o (EBrtmBl+vin’ — A%)(E2Br —2mBL,f +vint — A2)
_ Sinh (6(&)y)
Sinh (5(8))
=L f = 2ivmp, By explié(x — xo — B2,y)]
2= I ) (PR omBLEvini— ) (BB — L E +vin— 27
(3.28) = 5
_ Sinh(3®)(1—)) P
Sinh(§(®)) ™’
T f ~p (B~ E =P rsinGm)exp (=) s
ST % o N ey O e T ey
i g f’ ~ 2ivnB, p,cosmy)expli(x —x,))
‘T o ) ERA B E v - @R ot 1)

Inspection shows that all integrals but I vanish when f,, = 0. The latter becomes

1 [ psi .
(329) Ly, 0= = :[0 ﬁ%ﬁ%exp (i&(x—x,))dE

exp ( s -;— V22 —22 |x-x0|)

R 28, Y viat— A2 ’

A2 < vn.

5%



512 V. 0.S. OLunLoyo anp K. HUTTER

In the construction of this solution we have also used the Sommerfeld radiation
condition. Of course, the result (3.29) must also be recovered when I; is evaluated for
Bxy # 0 and B,, is set to zero a posteriori.

The evaluation of the inversion integrals (3.28) is best performed using contour in-
tegration in the complex &-plane. It is readily seen that the integrals do not have branch
cuts, but simple poles only. Thus, integration amounts to collecting all residues within
the contour considered. The evaluation is a tedious though straightforward matter. We
therefore only sketch this evaluation. To this end, let

(E2pz+2mpyf +v2a? = 2%) = BE[E+ (a+i)][E+ (a—iy)],

(3.30) :
(P22t +via* = 1) = Bl (@—ipllE~ (atip)],
where
iy i 23:2_23 _1,2 2 -
(3.31) a=1’;gi_ il _VB ﬁg) -y

In order to guarantee exponential decay of the integrals I, — I, away from the line of
loading, y*> must be larger than zero, which implies

2 201 ﬂ:r
(3.32) 22 <»n?|1 5 ),
a condition that was also imposed on Eq. (3.29). This further implies that « and y are
real. In the complex é-plane, £, = +a+iy are the locations of the simple poles of I, —I.
However, I; and I, possess additional poles. They are located where Sinh (5(5)) =0,
or 8(¢,) = ivm,n=1,2, ... ... ; therefore, in view of Eq. (3.18c)

A2 —n2q2

(3.33) & = Fp,
where B2 > B4, since L is elliptic. Thus &, is either real or purely imaginary; explicitly

_ | R=nPn?| 1, n=12,..,»—1,
(334) ‘Ep_ ﬁg_ﬂ:y_’ i, ﬂ=1’,‘l’+1,...,00
and we shall henceforth write

a0 |A%2 —n2n?|

3.35 b= ——.
929 F-FS,

It is not hard to show that the residues at the real poles correspond to solutions periodic
in x. Such solutions are unrealistic because they would lead to an infinitely large deforma-
tion energy. Hence, poles on the real axis must be suppressed which requires that in Eq.
(3.34) n > ». Figure 1 summarizes the above results and shows the integration contour
for the integrals F, —1I,. Applying the residue theorem now yields for I; and Ig:

= ”;‘g;éz cos (vry)sin ((x — Xo) Jexp (—y|x—Xol),
(3.36) : T
Iy = - LRI (ali )~ 2y - (o)

008 (a(x— o)) (¥ (A =¥22) + 20y B2 — yi(o —y)Jsin(ax — X)),
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Im (&)

(x-x,)>0

Re(§)

p-v
- (ve) (x-x,)<0
4

4

FiG. 1. Poles (+a+iy) (A) and Sinh 8(£) = 0 (¢) for the evaluation of the integrals I, —Is and cor-
responding integration contour.

whereas

@31 1 = seate—xo) {2 D) ST b 62— ) sin(emy)

<exp {(580 (o =03 (x=x0)~ B0~ 1)+ Z1 2,70 sgn(x—x0) €
x sin[a ((x— xo0) — B2, (y — 1) )] + Deos [a ((x— x0) — B2, (y— 1)}
<explsgn(ro— 2y (r—x0) -0~ D)]},

639 b =sgaGx—xo) fon D' U 5 g m(pi— pt)sin (rn(1 - )

x exp{sgn (xo—x) @ ((x — x0) — f%,»)} + &MH—ﬁg’ {sgn (x—x0) A sin[a((x—xo0) — f2yy)]

+ Beos[a ((x—xo) — B%,)]} exp[sgn(x —xo) ¥ (x— x0)B2¥ )]} .
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Here

A = Sinh(g)Sinh ((1 - y)u)cos(o)cos ((1-y)o)
+ Cosh () Cosh ((1 —y)u )sin(o)sin ((1 — y)o),
B = Sinh(u) Cosh ((1—y)u)cos(a)sin (1 —y) o)
—Cosh(u) Sinh ((1 - y)u)sin(a) cos (1 —y)o),
Sinh(g) Sinh(uy) cos (o) cos (oy) + Cosh(u) Cosh(uy)sin(o) sin(ay),

(339 C
D = Sinh(u)Cosh(uy) cos (o) sin(ay) — Cosh(y) Sinh(uy)sin(c)cos(ay),
G
H

{[Bin2(* —n?) = (P2% — A)BL, 2 + Wn? B3, (n*n2 — A2) (BT - Bt}
= 2ay(sin*c +sinh?u)f?,

with
p=+yreos0,/2), o= +yrsin(@,/2),

(3.40) r = V(=) (B — %) — 2T +4a?y* (B i),

_ fan=1 2ay(Bz—B%y)
=t {(az—yz)(ﬂi—ﬁ?y)—ﬂ-’}'

The reader may check that §,, = 0 implies I, = I, = I, = 0, and that in this limit I5

4
goes over into the expression (3.29) as it must. Furthermore, y, = 2, ; is not uniformly
j=1

valid everywhere in the strip — 00 < x < . Indeed, for x—x, > 0, I, becomes singular,
provided (x—x,) < p2,y. Similarly, for (x—x,) < 0, I, is singular if (x—x,) < fZ,(y—1).
This is the shear layer region already mentioned in Part I.

Next we determine v, . For this F and 7 must be known as evidenced from Eq. (3.25).
They can be evaluated from Eq. (3.22) if the relations (3.18b) and (3.27) are invoked. We
then find that v, can be expressed as the sum of five Fourier inversion integrals viz:

9
(3.41) vux,) =) 1,
J=5

where

£¥[Sinh (3(8) (1)~ (= 1ye > sinh (§(@)y)J * ™ ~">”
Sinh (3()))1(8)- J2(8)

(4D Is = popty [ &,

oo

G4y I = —pofty [

-0

i£5(8)Sinh (3(8)y)e =P

RGERG) &,

(G44) I, =

pr [ (=882 —a2)[Sinh (3E)(1 —y))— (~ 1Ye *sinh (3(E)y)]e ™"

-~ dE : ]
2 J Sinh (8(8))J):(8) - )2(8)
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while
o [ 8(®)[Cosh (3(&)— (= 1e ] Cosh (3(&)y)e ™ T
L fm Sinh (3(8))1: () - 12(6) .
and
(346) I, =
S f i£3(&)[Cosh (5(8))— (— 1ye***]Cosh (3(&))Sinh (5(&)y)e &~ 5" .

WPxy J Sinh? (3(5)”1(5)]2(5)

Here
11(®) = (i + Emv2pi, +n* — 12)

and

J2(8) = (82B%~Emv2B2,+a* — 2%).

Direct inspection reveals that when f,, = 0, all the above integrals vanish except for I
which now becomes

e Tern % v A 1£(x—%o)
340 I _p» [ [Sinh(8(8)(1-y))—(=1)'Sinh (3(¢))y)]e di
( 7) [Bxy=0 2 __[; Sinh (3(5))(5265 + ey? — 12) ;

the solution to which was constructed in an earlier paper [2].

If we now focus attention on inverting the integrals involved in y,, we find that the
poles remain at the locations identified while treating the integrals I; —I,. This implies
that all integrals have simple poles at £, = + & +iy (See Fig. 1). Except in the case of Is
additional poles lie on the imaginary axis wherever Sinhd(£) vanishes. For Iy, I, and Ig
these are simple poles while for /; we have a double pole. All these integrals can be eva-
luated by invoking the residue theorem. Unfortunately, the calculation while straightfor-
ward is fairly laborious and we can only list the results here. In particular, we find

(348) I;=-— sgn(x ) { 2 <(— l)ﬂprﬂng:r(ﬁ: "ﬂ:r) 16‘/(,':“: = Z’)(ﬂ: _ﬁ:’)

n=yw

x {sin (nz(1 — ) ) = (~ 1)’ exp[ —sgn(x — xo) dp2,]} exp[ — sgn(x — xo)
x o (x—x0)—H)]) + T Xo) sgn(x =%0). g pymexp[ —sgn(x—xo) (71(x — xo) — F1)]
x {sgn(x— Xo)* (%A —yB)cos(& ((x=x0)—B%,y)) - (yA+@B)sin(a ((x—x0) —ﬁi,y)]
—(—1)exp((—sgn(x—x0) yB%) [sgn(x — x0)(& C — yD) cos (& ((x — xo)
— B2,y 1)) - -+ aDysin(a ((x—x0) B~ DI}
(349) I =202 ‘;f: exp[ ~sgn(x —x0)y [(x—x0)— A1) sin (& (G~ x)

— B2y))[uSinh uycos ay —a Cosh uysin ay] + sgn(x — xo) cos (& ((x—xo)
— B%,¥)) [ Cosh pysin gy + o Sinh pysin o},
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= 2 _ p4 32
(3.50) I = —32("1)' ,ynm’ '/—(::Tf% sinazy[(—1)"+(—1)
n=v S 1

 x exp(—sgn(x—x0)8% )] [B2n? (n2 —v?) + B2, (v*n? — 27)] exp[ —sgn(x—xo)@

2 mrr(x—xo)—ﬁi,n
* [(¥=Xo) = Y]] +sgn(x—xo) 4&;43:,(;:2 —&@)(Sinh?u +sin’0)

«{cos (&l(x—x0) = FoID[(pA+ ah)B—sga(x—xo)@A—p)A]
+ g (x—xo)sin (&[(x—x0) B D (74 + a) A+ sgn(x — o) ad — y1) B]

with
A = P —n?y—Bi(&-y?),
4 = 2afly,
A = A—(=1y[Ccos(ap?,)—sgn(x—xo)sin(E@A2,) exp (—sgn (x—xo)yB2],
B = B—(—1y[sgn(x—xo)sin(@B2) +cos(d82,) exp (— sgn(x— Xoyy2,)]-
G, = [Bin2(v* —n?)—v?n2Be,— A*B3)* +4n?v*fs,(n*n? — A2) (B3 -B%),

H, = 2ay(sin*o+ Sinh?u)fs;

G5l I = Z (‘2'“ apmadBL,[(~ 1) — (= 1y exp( —sgn(x—xo)3B2,)]
x cosnaryexp| —sgn (x — xo) @ [(x — xo) — B2,]]

v exp[ —sgn(x—xo)y[(x— xo) — B3] g
T R Sy B x)(@6~ AP

x cos(&[(x — xo) — B2,1) — (PG + HO)sin (&[(x—x0) — B1) — (— 1)"
x exp[ — sgn(x — Xo) yBZ,][sgn(x — xo) (U@ — oP)cos (&[(x — xo) — f2,(y—1)])
— (uP+0Q)sin (&[(x— x0)— B3, — D]},
with

uCoshucoso+oSinhusino,
oCoshpucoso—puSinhusine,
CoshuySinh ucosocosoy— Cosh uSinh uysinosinay,
CoshuyCosh usinocosay + Sinh uySinhucosasinay.
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pnBiyexp[ —sgn(x—xo)y ((x—x0) —B2,)]
(352 I = - 7 (b i) { —sgn (x—xo) o

x cos (&(x — xo) — B2, ) + Bsin (& (x— xo0) — BZ,y)— (= 1) —sgn(x — x,)
x € c0s (8(x — xo) — B,(y— 1)) +Dsin (&(x— xo) — B2,(y—1))]}

- -%0)¥83, [

—Sgﬂ(x—xo)Z” —1)" [[(—1)"—( 1) exp(—sgn(x - x0)8%)]

x [sin (nmy) (1 - ﬁx ﬁ” +sgn(x—xo) (Yo P2y — o (x— xo)))

+sgn (x — Xo) ycos (ny) L ﬁ"’] +5gn(x—xo)(—1) B2, sin(nmy)e “""’°ﬁ’3’]l

| (B B (=1~ (= 1y e sinuny) ”2"2[1‘("”"' 2 w]

G 8a3(pz—p3,)°
22 &") 2¢  ~202 2’,2_ -5 25,2 2.2 :’ . 5
n°m [2 ﬁx( w ﬂx't‘;G A ) 4n*via ﬁ ] ” eXp[—sgn(x-—xo)w[(x—xo)—ﬁ,,y]]

with
Z = CoshuSinhu(cos?o—sin®s), F = cososino(Sinh?u+Cosh?p),
o = G(CF-DE)—H(CE+DF), # = G(CE+DF)+H(CF-DE),
€ = w(CF—DE)—o(CE+ DF), @ = u(CE+ DF)+o(CF-DE).

Inspection of the above expressions reveals that the derived series are not uniformly
convergent for all x. In fact, when a(y—1) < (x—x,) < ay, these series become diver-
gent. In this singular region (referred to in Part I as the shear layer) we search for a per-
turbation solution by writing

-]

Zs'rp!"*(X, y); for X= %(x—xo) >0,
¥=0

(3.54) 6=1 .
Z € «pl"“(X, y); for X= —l—(xo—x) > 0.

v=0

Following the earlier work [1], we derive the following expressions:
Pot = Fot+goX,
i 2
VA ‘gl +gl X"pv Sln('ll':"l.'y) e"‘ﬁxx i ﬂ” 330

283 Bz oy

(3.55) .
90'® = Fo+80X,

Xz

sin(my))_ sin(wmy) g% Ply 98 5

W”"‘(g‘*"' [ 267 ¢ B oy
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as our results for the first two approximations to the solution in regions 4 and B of the
shear layer (see Fig. 1). Explicit expressions for go(= 0) as well as the other functions can
be derived by carrying out a two-term matching of the shear layer solution (3.55) with
the core. The details of such a matching has been illustrated in [1] and in view of the space
requirements there is little to be gained in flogging the algebra here.
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