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High speed wire drawing
G. CAMENSCHI, N. CRISTESCU and N. SANDRU (BUCHAREST)

Tue prosLEM of high speed wire drawing is considered. Since high rates of strains are involved,
as in [3] a viscoplastic constitutive equation of the Bingham type is used. However, the method
used in this paper is different. One starts from the local balance laws and the boundary value
problem in the viscoplastic region is solved using a perturbation series method. Finally, a formula
for the drawing stress which takes into account the speed of the process as well is given and
from this the optimum drawing regime can be found. Numerical examples are given. A com-

parison with the results obtaines with another method [3, 4] gives practically the same results.

Rozpatruje si¢ problem ciagnienia drutu z duzymi predkodciami. Poniewaz wigZe si¢ to
z duZymi napigciami, wigc stosuje si¢, podobnie do pracy 3], lepkoplastymy zwiazek kon-
stytutywny typu Binghama. Jednakze metoda stosowana w niniejszej pracy jest inna. Wyvchodm
si¢ od praw réwnowagi lokalnej, a problem brzegowy w obszarze lepkoplastycznym rozwia-
zZuje si¢ przy zastosowaniu metody rozwinig¢ perturbacyjnych. Wreszcie, podaje si¢ wzér na

reiema ciagnienia z uwzglednieniem szybkosci procesu, skad mozna okresli¢ opty'ma.lne
warunki ciagnienia. Podano przyklady numeryczne. Rezultaty praktycznie pokrywaja si¢ z re-
zultatami otrzymanymi przy zastosowaniu innej metody w pracach [3, 4].

PaccmarpuBaerca 3anaua CKOPOCTHOTO BOJIOUEHHA MpoBonokH. T. K. 910 cBA3aH0 ¢ GoNbIHME
HANPAKEHUAME, TIPUMEHACTCH, aranoruudo pabore [3], BAsKOmIACTHYECKOE ONMpe[eIIAIOmEes
cootHOIeHne THma Bumrema. Opmako MeTon IpHMeHsieMbIi B Hacrosuel paGore coBceM
Apyroit. Mcxogurea B3 3aKOHOB JIOKAILHOrO PABHOBECH:, 8 KPAeBad 33/1a4a B BAIKOIUIACTH~
yecKol 06/1aCTH pelaeTcs MpH MPHMEHEHHH METOIa NepTypOanroHEbIX pasnoxernmi. Haxogre,
npuBeficHa GopMysna ANA HaOpsOKEHWS BOJIOYEHHA C YJeTOM CKOPOCTH ITpoliecca, OTKYAa
MO)KHA ONPENE]HTh ONTHMANBHBLIE PEXXHM BONOYeHHA. JlalOTCH YHCIICHHbIE TpHMephbl. Pe-
SYJBTaThl MPAKTHYECKH COBMNAJAIOT C PE3yJ/IETATAMH NOMYYeHHLIMH IPH NPHAMEHEHHH APYIOro
meroxa B paborax [3, 4].

1. Introduction

THe PROBLEM of wire drawing has been considered starting from the classical plasticity
theory [1, 2]. However, it is not possible to take into account within this theory the in-
fluence of the drawing speed on the drawing force and on other drawing parameters.

The influence of the drawing speed on the whole drawing process has been recently
considered in [3, 4, 5] using the Bingham type constitutive equation and the principle of
total power. These results are in good agreement with the experimental data.

Recently [6], starting from the local balance laws, the problem of the strip drawing
at high speeds was solved as a boundary value problem in the viscoplastic flow region,
using the perturbation series method with respect to a small parameter, the Bingham
number. In the present paper the same method will be used for the problem of high speed
wire drawing.
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2. Statement of the problem

Let R, be the original radius of the wire which is reduced by drawing through a conical
converging die to R,. The desired reduction can be obtained by changing the semi-angle
o of the die.

Let us assume that the mechamcal properties of the material can be described by
a Bingham rigid-viscoplastic model. The region occupied by the materjal is divided into
three zones (Fig. 1). The material in zones I and II has a rigid body motion in the negative

Ny

Fic. 1. Geometry in wire drawing.

Oz direction while zone III bounded by the die wall and by two surfaces S; and S, (which
are to be determined) is the domain where the viscoplastic deformation takes place.
" Assuming a stationary incompressible axi-symmetrical motion, in the absence of body
forces, the governing equations in spherical coordinates (r, 8, ¢) are:
the Cauchy’s equations of motion
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the equation of local conservation of mass
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the constitutive equations
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where d is the strain rate tensor, given by

_m
T’
1 30, v
%=t
_ 9% vgctgﬂ
& = =
oo 1/1 80, av, Uy
4o = (r @t w7 )
dop = dpy = 0,
and
@.5) Hyw —;-(dj.+d§,+d3,+2¢’,)

is the second invariant of the strain rate tensor, and v,, v, are the components of the
velocity vector.
The previous equations are valid in the region 0 < 0 < a, r;(f) < r < r,(6), where
r; = r;(0) and r, = r,(6) are the equations of surfaces S; and S,, respectively.
Introducing the dimensionless variables, denoted by index 0

(2°6) re P'oRz: o = vl?vz: V= 92":, P= Po qR?z

the system of equations (2.1)-(2.4) becomes
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dz,
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i)
V‘%d&

B
th=[2+—==)|d%;
i ( V!I.o)"
o _ 00f
d'r "_a-_rF’

23

S = —p°+ (2+

Q.4)



744 G. Camenscl, N. CRrISTESCU AND N. SANDRU

1 dv) of
0 g o AR g SR
l(it? doo = r° a0 * ro?
o _ 00 ofctgh
dw _r(,_ + Dro L]
o _1[1 002 o8 o8
N P a )
where
ev: R,
2.7) Ry = 572772
( Ui
is the “Reynolds number” and
kR,
2.8 B, =
(2.8) "= 0,

is the “Bingham number”.
In what follows we assume that R, < 1 and B, < 1, and therefore in the system (2.1")
we neglect the inertial terms.

3. Solution of the problem

Introducing the potential function y = ¢(r,0) = R3v,9°(r% 6) the equation (2.2")
eads to

0 — L O
B r%sinf a0’
G | .
vy = ! P—?—.
r’sinf Jr°

Expanding the functions ¢°(r° 6) and p°(r°,6) in power series of the form

v°(r°, 6) = y3(6)+ B,y3(r°, 9)+ vz 20%0)+ ..
(2)

2
£°0°6) = PR, O)+ B, pr%, O+ S 3%, O)+ o
we get |

0\2
0 o L1249 = ekl

(a8 Y [,
*7("*39?6"‘ @) P23 \>20 " arcen

+%(ctgﬁ d;,’f dz%)( 20 a'Po WL I Y oy )l+}

dg? 262 or°* ar°
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We substitute Eqs. (3.2) and (3.3) via Egs. (2.3') and (2.4') in the equilibrium equa-
tions (2.1") and terms of equal order in B, are equated. If we choose the function
vi(r?, 0) in the form
(3.4) ¥3(r°, 6) = r¢(6)
and introduce the functions

_ 1 dyg
(3.5) u() = 0 2

-1
(3.6) v(6) = 5l @’
we get the following equations for u and v:

1

3. " " e i
3.7 w'" +ctgbu +(6 sin’&)“’ 0,
and

(3.8) ﬂ”'+ctsﬂv"+( _’B) il dz ——-——u’ =\
]/3u’+ — 2]/3u1+ “‘T

The regular solutions of these equations are
3.9 u(0) = a+bcos20,

(3.10) 90 = % +B(% +cos20) +Kt(0)(-;— -!-.00520)

+K,(6)[(~_:1.; +cosze) n(tg —g-)-(l—'.’ocosﬂ)(l-i-cosﬂ)],

where

]
3.11) K, 0 = - I—Q:Sfﬂr)sint[(%-,t-cosm) ln(tg —%) —(1-—3cost)(1+eosl)] dt,
0

[}
K0) = % f f(:)sinr(% +oos2r) dt
0

and
12u—-u'ctgh d v
3.12) SO s Lo | (IR | SO
o o 3u? wy P 21/ 3u? u?
Sl e S
We also get
(3.13) . Py= - ‘;zgt:- (% +c0528) +c,
and
(3.14) 22 = —Alnr°+h(0),

11 Arch, Mech. Stos, nr 5/19
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where

s i 6¢(0) . d u - 3
(3.15) h (6) =v+ W E w3 = _T 3

.Here a, b, c, A, B are constants.
Returning to the dimensional quantities, we have

(3.16)

and

'!J,.(l’, 0) =

(3.17)

vﬂ(’s 6)

r Rggz.pg(a)+_“;-r’q»(6}+ 0(B?)

sz’z

u(6) - ﬁw(9)+ 0(B)),

a'cw(fi)az
; +O(B7).

The components of the stress tensor are

2
t, = —23%33%(% +c0528) + Mﬁ%ﬂza —h(@)—c
+k Aln— 200+ ——— 20 +0(B}),
]/3«’ +=
2nR}v, ( b | r
tw = L5 |2~ a) —h@—c+k  Aln 2= +40(0)
(3.18) gt Ly~ = | 4O,
]/3u2+ —=
3
29R3v, (b ) r
fyy =3 it —h(@)—c+k AIan2 —29(0)
@(0) u 2
+6ctgh o . U3 TPl
L
3
2 r
fo = 2"'_’:’:’5 sin20—k [v'(0)+ ———t@)—a +0(B;).
2 ]/ Jut + "T
Let

(3.19)

r=r@, 0€[0,q]
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be the equation of a smooth surface of revolution S in spherical coordinates. Denoting
by e,, €, e, the unit vectors tangent to the coordinate curves and by n the unit normal
vector to this surface, we get

(3.20) n= (re,—r'ey).
]/r +r'?
Across the surfaces S the dynamic conditions of compatibility [7]
(3.21) [t =0
(3.22) [tum]—evalvi] = 0

must be satisfied. Here v, is the normal component of the velocity on the singular surface.
Since the second term in Eq. (3.22) is of the order of the Reynolds number, we neglect
it with respect to the first term.

The condition (3.21) written for the singular surface S,, of the equation r = r;(6),
has the form

(3.23) rU,—riv = —0,%(rlsin6)

if the terms of O(B?) are neglected. Substituting here the expressions (3.17) for v, and
9 with r = r,(0) and integrating with respect to 6, we get the equation of the surface
S; in the form

(329 E—n(ﬂ)smzﬂ R%v, [(b-—a)cosﬁ-» %cos-"ﬂ +a-— —2—] - %ri(ﬂ)qs(&) =0

In a similar way, for the surface S, we find

(3.25) 3{-rz(l.'i)s.luzﬂ R,ﬂ;l(b—a)cosﬂ— —23£c0530+a— %] —%rg(e){p(a) =

In what follows, the stress resultant on a surface r = r(f) with 6 € [0, o] situated in the
zone III will be determined.
The stress vector t, is given by
(3.26) t, = t,,€,+1y9€s+tap€, = (fnr-sinfcosp+1,9c0s0co8p—1,,5inQ)i
+ (2, sinfsing +1,9cos0sing +1,,c0s @) j+ (2, c0s0 — 1,48in0 + 1,,cos @) Kk,

where
rl[r = !rrnr+tr0nﬂs
(3.27) tng = tygh,+ g,
thp=0.
Introducing Egs. (3.20) and (3.27) in Eq. (3.26), we get
1
tyx = —=———[(rt,,—r't,g)sin@+ (rt,s—r'tgg) cosfcos g,
]/r3+r'3 [ +6) (rtyg—r'te)cosB]cosg
(3.28) ly = I/ e [(rt,.,——r 1,0)sin@+ (rt,4—r'tgg)cosflsing,
r

t

- I/r‘

{(rt,,. r't,4) 088 — (rt,,—r'tge)sinf].

11*
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The element of area of the surface r = r(f) is given by
(3.29) do = Yr*+rrsinfdfdep.

Let (X, Y, Z) denote the components of the stress resultant in the Ox, Oy and Oz
directions, respectively. After integration we easily get

X=Y=0,

(330) Z=2n J’ [r2cos6t,, +rr'sinBty,— (rr'cosd+ r2sinb)¢,e] sinf dd
2
=2 lz-———"f’ga sin?a [a +b (2cos’c¢-— —;—)] - ~;— risin’a

r?sina

k TR r 1
_—-T—-h(a)‘l‘T{AP sSin ﬂ(ln‘h?——z—)

u(e) i risin2a u'(x)

u'? 4 u':
"/3“2 + v ]/3"‘2 + vy

Pz o»@]].

Using the relation (3.22) with the above mentioned simplification, the stress resultants
acting in the zones I and II on the surfaces S; and S, are obtained. The following rela-
tions are evident:

—r2sinZq

+4r2sinZav(x)

(3.31) ry(e)sine = Ry, ry(¢)sina = R,.
We also have
(G.32) Riv; = Rjv,,

which expresses the global conservation of the mass.
Denoting by Z' and Z'* the stress resultants on S, and S,, we have

Z' 4R, ., ( |
(3.33) 2R =R sina |a+b|2cos a=3 —c—h(a)

u'(a) u(x)

R 1), 1
[ Risina = 2|7 % ]/3u*+341 ]/3u=+Ei

4

+4v(e) +ctgav’(u)] .
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T’ sin’a [a+b (Zcos’a.-— %)] +c+h(a)
2

+k [—A(ln—-l—'—-i—)—%ctgu V@ L e

u'? u'2
V3uz+T V3M2+ i

-w(a)-ctsw'(a:)].

Zl’!
3.33
[(mt.]) ﬂR%

Let us calculate the stress resultant on the die surface 8 = a, ry(a) < r < ry(2). We
obtain

ry(a) 2=

(B34 T= f ft,,|a_¢rsinu(sinaoosg:i+sinasin¢pj+oosak)drd9:=
ry(=). 0
z R; =R,
R R.R,

= —nR}sin2e ’—-erogsmhsma b—5

and

1 R\ [, ¥'(e)
e e |
i 2"/3u’+-—-
4
ri(a) 2x

(335) N= f f:.,|'“rsina(cosucoscpl-i-cosasimp]—sinak)d-drp
ra{a) O

b R? R,—R R2
— —mR2 nd —g |22 M7 R2 e
= :rRllm,sm u(s a) R R.R, c(l R})

R3 R, R, 1 1/ R
_h(a)(l-—jq—z-)+k[A(ln—Rzma - T("T‘;’))

6cosa u(x) R}
]/3” + "4—

It is easy to check that the condition

(3.36) Z'+Z"+T+N=0

is satisfied. This means that the equilibrium condition of all the resultant forces acting
on the boundary of zone III is satisfied.
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4. The kinematic and boundary conditions which determine the parameters a,b,c¢, 4, B

We shall assume the following conditions:

a) the v, component of the velocity is zero along the die surfaces;

b) the discontinuity surface S, passes through the points P,, P;;

¢) a friction condition on the die surface is prescribed;

d) the force resultant Z” is given.

Using Eqgs. (3.6), (3.10) and (3.17), the condition (a) can be written as

@.1) % (1-cosa) + 3;'— cosasin®aB+ 6fsinﬂ {K,(ﬂ) (_; +c0528)

+K,(0) [(% +c0326) In (tg %) —(1-3cosb) (1 +0050)]} dé = 0.

By imposing the condition that the surface S, should pass through points P, and P},
it yields also that the surface S, is passing through points P, and P;. From Egs. (3.24)
and (3.25) we get the unique condition

4.2 Lo (b—a)cosa+ —abcos’a—a+ - 0.
2 3 3
The friction condition on the die surface is taken in the form [8]
43) trofo—a = MVl looa,
where II, is the second invariant of the deviatoric part of the stress tensor obtained from
(4.9 Vily = k+2qy 1, ,
and m is the constant friction factor which satisfies the condition
4.5) 0O<m<1.
From Egs. (2.6), (3.3), (3.4), (3.5) and (3.6) we obtain easily
_ Riv, ., W2 kr3 u'v’ — 6uv
(4.6) m=—5 I/Su Lo Wk, ., W + .0
3+ -
Using Egs. (3.18), (4.4), (4.6) in Eq. (4.3), we find
p—r 1
@7 bsin2a = m 1/ (@) + L2 (“)
@38) i u' () _ u'(a)v' ()— 6u(a}v(a)

m—m =
'/3uz+— '/ 3u‘+-—-

Finally, if the back force resultant Z* is given, then the condition (3.33), is the fifth
relationship between the unknown parameters.
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The conditions (4.1), (4.2), (4.7), (4.8) and (3.33), determine the five parameters as
follows:.

From Egs. (4.2) and (4.7) it results

V3 (sin2a¢—y /3 cos2a)
2(1—cosa) [2y(l —cosa) (142cosa)+ /3 sin?,c:] ’

4.9) 3y

" 2(1—cosa)[2y(1—cosa) (1+2cosa) + /3 sin2a]
where
(4.10)

I
Vi—m?’

From Egs. (4.1) and (4.8) via Egs. (3.9), (3.10) and (4.9) we get

- L;—cosusinza+sinu (ysina— ol ) I

@11) A=6 V3 -
(1—cosa) [sinZoc— —53: (1—cosa)(1 +Zcosa)]
y I]/fsi.nZa +6ycos2a-—4q;] L +4y21,
- =
+6 V3 sin2a+6ysinZa ,
(1-c0sa) [sinZa— -J_—3—(1-—cosa:)(1+2t:osa)]

where
- f sin?*~16.df o A
@12 =) Vi, Loy T 0%
and

5 3y (/3 sin2a—3ycos2a+2y)

' sin?a (/3 cosa+3ysina)?
(4.13) &’

" sinta (V3 cosa+3ysina)”

The expressions for the parameters B and ¢ were no more given since they are not
involved in the final formula for the drawing stress.
In the limiting case m — 1, we have

3cosa
"~ 4(1—cosa)?(1+2cosa)’

3
~ 4(1—cosa)?(1+2cos)

a* =

(4.14)

b*
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and
4.15) 4 = g 3sintalt+(3cos2a—2) I3 +213
- V3 sin?a(1—cosa)*(1+2cosa)
2—3cos2a 2
e * i
(4.16) Ay Tente A3 BT

where “*” indicates the corresponding limiting values.

Using Eq. (3.17), it is easy to verify in this case that v,(r, @) = 0, i.e. the material
adheres to the die surface.

In the other limiting case, m — 0, i.e. in the case of no friction, we have

1
4.17) a'*=—2m, b** =0, A*=-2)3, AM*=13*=0
For the drawing force Z", from Eq. (3.33) we get
ZH Rl

(4.18) o i ::R’ (———1) sina [a-l-b( 2cos?a— —)}+Akln

2
The magnitude of this dmwmg force is

12" 12 | 2qo, )
4.19) R = ke + R, (1—— F(a, m)+2kin G(a, m),
where

cos’% (2y+ /3 sin2q)

(4.20) F(a, m) =

ysin %— (1+2cosa)+ /3 cosacos %

 ialiond )
—-cosasin*a—sina [ysine— —=cosa
@421)  G(a,m) = V3

(1—cosa) [sinZa— 2 4 (1—cosa) (1+2005a)]

V3

yl |/§sin2m+6ycos2a—4y] I +4y%I,
V3 sin2a+ 6ysin’a

(1—cosa)|sin2a— —?;— (1—cosa) (1 +2cosa)] .

In the two limiting cases, m — 1 and m — 0, we have

2cos® z
F* (a) == p .
422 sin —- (1+2cosa)
G*2) = 3sin*al} + (3cos2a—2) 17 +2I5

V3 sin?a(1 —cos a)?(1+2cosa)
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and
F**(a) = 2sinacos? -3'2‘—
(4.23) {
G**(a) = —,
(@) = 3
respectively.
Introducing the notations
zl zﬂ
@4.249) Oz = m, Og2 = ;E{s

and the mean yield stress in tcnsion o, = ]/_k the relation (4.19) becoines
lﬂ':zl |0'n[
(4.25) 2, ]/_B [( )F(a m)+B,In (—) G(a, m)]

Taking o,; = 0 in Eq. (4.25), the variation of drawing stresses with respect to a, for
2

different reductions in the area r% = 100 (1 - -f:—;) for two values of the B, number and
1

r%=10%,
- @-ﬂa
J rd —— ——— -
az-z/ _--" r.gﬁ
af”” ¢
a I 1 1 3 i —
012345678910 75 20 25 .

Fia. 2. Relative drawing stress versus die angle for two reductions in area, two values of the friction factor,
and two values of the Bingham number.

for y = 0 and y = 0.05 (corresponding to the friction factor m = 0.0499), is shown in
Fig. 2. Each of these curves exhibits a minimum which is the optimal angle of the die
for a certain combination of the process variables.

5. Comparison with another method

In papers [3, 4] another formula for the drawing stress was established, starting from
a radial kinematic admissible velocity field for the flow of a viscoplastic body through
a conical die and using the principle of total power. This formula, in which the dissipa-
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tion due to the presence of the discontinuity surfaces is neglected (since the Reynolds
number is small), is of the form

5.1) l%’fl— = V;B, [(i - -g%) F(ax,m)+B,In (%:—)3 g(at,m)],

where

™ cosa I TToovta + - 3 cos?
(5.2) f(a,m)—Tcosa +11cos a+3—sﬁ; 3 —cosa— 3~ cos’x],

S L 21/ 12
(53) %(a,m= 3 cigo— 63m= "/ +cos?a i

oosa+l/c«os3u+ -
1+ '/11

The formula (5.1) is of the same form as Eq. (4.25). In order to compare the predic-
tions for the drawing stress as given by Egs. (5.1) and (4.25), it is sufficient to compare
the numerical values of the functions F(a, m) obtained using Eq. (4.20) with & (x, m)
from Eq. (5.2), and G(a, m) from Eq. (4.21) with %(a, m) obtained using Eq. (5.3). In
the following Tables 1 and 2 this comparison is done for ¥ = 0.05 and for various values

Table 1
o F(ax, m) F(ax, m) o F(x, m) F(x, m)
1° 0.0925716 0.0925487 8° 0.3329874 0.3338127
2 0.1273378 0.1273770 9 0.3665293 0.3675794
3 0.1620073 0.1621238 10 0.3997939 0.4011024
4 0.1965536 0.1967655 15 0.5610998 0.5643093
5 0.2309507 0.2312786 20 0.7118981 0.7182991
6 0.2651726 0.2656395 25 0.8494882 0.8607876
7 0.2991934 0.2998253 30 0.9715071 0.9898914

Table 2
a G(x, m) G (x, m) o G(x, m) F(x, m)
1° 1.5307271 1.5309953 8° 0.6960114 0.6960278
2 1.0538124 1.0540403 9 0.6827402 0.6827473
3 0.8956561 0.8950054 10 0.6721172 0.6721237
4 0.8153284 0.8154560 15 0.6401979 0.6403163
5 0.7676158 0.7677053 20 0.6241699 0.6246091
6 0.7358003 0.7358575 25 0.6144947 0.6154844
7 0.7141481 0.7131004 30 0.6079916 0.6097919
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of a. These tables show for the values of the drawing parameters considered an excellent
agreement between the predictions for the drawing stress as given by Eq. (4.25) and by
Eq. (5.1), though these formulas were established using two distinct methods.

6. Conclusions

For high speed drawing of wires a formula giving the drawing stress as function of
drawing speed, friction, die angle, plastic and viscous property of the metal is obtained.
The formula makes possible the finding of optimum regimes for the drawing process.
A comparison with a formula obtained earlier with another method [3, 4] gives an ex-
cellent agreement.
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